158

The Crout reduction for sparse matrices

By R. P. Tewarson*

An algorithm is given for minimising the number of non-zero elements created during the forward
course of the Crout reduction (no new elements are created in the back substitution). Practical
computational techniques for the efficient utilisation of the algorithm are also discussed.

(Received September 1968)

1. Introduction
Let us consider the solution of the system of equations

Ax =b (1.1)

where A is a non-singular matrix of order » and x and
b are n element column vectors. Let A% be the matrix
obtained from A4 after kK — 1 rows and columns of 4
have been modified by the Crout reduction (Hildebrand,
1956). Let a'® denote the ith row jth column element
of A%, Evidently

as’;) == a,']', i,j > k. (1.2)

At the kth stage of the Crout reduction, we can choose
any one of the non-zero elements a;;, i, j > k and move
it to the position (k, k)—the north-west corner—by
permuting the rows and columns. The row permutations
are also applied to the updated right-hand side b at
this stage. The column permutations change only the
order of the elements of x which should be noted. In
any case, the Crout reduction with a{) as the pivot for
the kth stage is given by

S ad®a®), i > k, (1.3)

k+1) k) _
ay, = aik)

gk = (a;(kj) 2 a(k)a(k))/a(k+l) ji>k, (1.4)

Bt — (blr(k) _ Z a;(l;)bslk))/ag;jn_ (1.5)
h=1

If A is sparse then we would like to choose the pivot
at the kth stage in such a manner that as few of the
elements in (1.3) and (1.4) would change from zero to
non-zero. This will minimise not only the storage
requirements but also the round-off errors. Computer
programs for the Crout reduction, where the sparsity
of A is not taken into consideration, are given by
Forsythe (1960) and McKeeman (1962).

2. Main result

We will state and prove a theorem which one can use
in minimising the local growth of non-zero elements at
the kth stage of the Crout reduction (CR). We will
need the following definitions. Let S, V and G denote
the matrices obtained from the submatrices al®), i > k,
Jj<k;a®, i<k, j>kand a®, i,j > k respectively,
by replacing each non-zero element by unity. We
define a Boolean matrix D as follows,

—5*V, @2.1)

where * denotes Boolean matrix multiplication, viz.,
the usual matrix multiplication with 1 41 =1. Let

us denote by D, the matrix obtained from D by changing
each zero element to unity and vice-versa, and let

W=D®G, (2.2)

where @ denotes Boolean matrix addition, viz., 1 +1=1.
If U=(,1,...,1) is an m element vector, where
m = n — k + 1, then we can define the vectors

c=UW (2.3)

and
r= WUurT, 2.4

where UT denotes the transpose of U. If r; and c;
denote the ith and jth elements of r and ¢ respectively
then we have the following:

Theorem 2.1
Ifr, +c,= max (r; + ¢;), and complete cancellation

in computing the inner products in (1.3) and (1.4) is
neglected, then the choice of 4y’ as the pivot at the kth
stage of CR leads to the creatlon of minimum number
of new non-zero elements.

Proof: Let the ith row and the jth column elements
of G, D, D and W be denoted by g;, d;, d;; and w;;
respectively. In view of (1.3), (1.4), (2.1), the deﬁmtlons
of S and V: if djy = 1 and a®) = 0 then afk™D £ 0;
also if dy; = 1 and a4 = 0 then ak+h £ 0. In nearly
all the cases this is the only 51tuatlon when a non-zero
element will replace a zero element in CR. It is possible

that dy =1 but Z akal) =0 or d;=1 but
Z K ah) = 0. (Our experience is that such cases

are rare for sparse matrices and therefore not included
in the analysis given in this note, as it would unneces-
sarily complicate the analysis without significant
advantage.) Thus, neglecting the rare cases when the
cancellatlon of inner product takes place we have

—0_,d =0andg,;=0=4d;=1landg; =0=
a non-zero element replaces the zero element . On
the other hand,

dj=0andg;=1=d;=1landg; =1, or
=landg;;=1=d;=0andg;=1,or
d;=1landg; =0=d;=0andg; =0.

In all of the three cases given above no new non-zero
elements are created. Therefore, in order to minimise
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the number of new non-zero elements created at the
kth stage of the CR we choose the pivot a%!) such that
the row-column pair (p,q) contains the maximum
number of the unit elements of W. In other words,
r, + ¢, = max (r; + ¢;), since r; and ¢; denote respec-

L
tively the total number of ones in the ith row and the
jth column of W. This completes the proof of the
theorem.

3. Computational considerations

Having chosen a%) as the pivot according to Theorem
2.1, where r, + ¢, = max (r; +¢;), the CR is per-

L)

formed using (1.3), (1.4) and (1.5). The pivot is not
moved to the position (k, k) but a record of this fact is
kept in the computer. To get the W matrix for the
(k + 1)th stage of the CR we proceed as follows. Let
« and B denote respectively, the vectors obtained from
the gth column and the pth row of A +D by first deleting
the element a% ™" and then replacing the zero elements
by unity and the non-zeros by zeros. If W is the matrix
obtained from W by deleting the pth row and the gth
column, then the W matrix associated with the (k -+ 1)th
stage of the CR is W @ o*f, the computation of which
is fairly easy.

The pivot chosen according to Theorem 3.1 cannot
be used due to round-off and stability considerations,
in the case that its absolute value is less than a certain
chosen number called the pivot tolerance. We have
found that a pivot tolerance of 10—3 worked well in
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Theorem 3.1

The total number of new non-zero elements that are
created in the kth step of the GE if al¥) is chosen as a
pivot is equal to the corresponding element g,, of the
matrix G, where G = G(UTU — G)G.

BAUER, F. L. (1963). Optimally Scaled Matrices, Numer. Math., Vol. 5, p. 73.

CLASEN, R. J. (1966). Techniques for Automatic Tolerance Control in Linear Programming, Comm. ACM, Vol. 9, p. 802.
ForsyTHE, G. E. (1960). Algorithm 16; Crout with Pivoting in ALGOL 60, Comm. ACM, Vol. 3, p. 507.

ForsYTHE, G. E., and MoLEr, C. B. (1967). Computer Solution of Linear Algebraic Systems, Englewood Cliffs, N.J., Prentice

Hall, p. 37.

FuLKERSON, D. R., and WoLEFE, P. (1962). An Algorithm for Scaling Matrices, SIAM Rev., Vol. 4, p. 142.

HiLDEBRAND, F. B. (1956). Introduction to Numerical Analysis, New York: McGraw-Hill Inc., p. 429.

MCcKEeMAN, W. M. (1962). Algorithm 135; Crout with Equilibration and Iteration, Comm. ACM, Vol. 5, p. 553.

OsBORNE, E. E. (1960). On Pre-Conditioning of Matrices, J. ACM, Vol. 7, p. 338.

TEWARSON, R. P. (1967). Solution of a System of Simultaneous Linear Equations with Sparse Coefficient Matrix by Elimination

Methods, BIT, Vol. 7, p. 226.

TEWARSON, R. P. (1968). The Gaussian Elimination and Sparse Systems, Stony Brook, N.Y., The College of Engineering Report
No. 118. (Presented at the Sparse Matrix Symposium, Sept. 9-10, 1968, Yorktown Heights, N.Y.).

Book Review

Numbers Without End, by C. Lanczos, 1968; 164 pages.
(London: Oliver and Boyd, 7s. 6d.)

This book has its origin in a series of lectures which the author
gave in Indiana about 25 years ago. The audience then were
freshmen who were interested in mathematics primarily as a
cultural subject, which has played a vital role in the evolution
of the human intellect. The author has avoided ‘formal
algebra’ as much as possible in order to bring out the ‘real
beauty and imaginative features’ of the world of numbers.
The result is a book on what might reasonably be called
‘higher arithmetic’, which is the old name for the Theory of
Numbers.

The reader is given, in the first half of the book, a very

pleasant, gentle introduction to the theory of numbers.
including Fermat’s theorem, continued fractions and the
problem of the period of repeating decimals. In the second
half of the book the extension of the rational field to include
algebraic numbers and transcendental numbers is discussed
and this leads into the question of enumerability of sets. In
the last chapter it is proved that the rationals are denumerable
and that the reals are not, and various related topics are
discussed.

For anyone wishing to have an enjoyable introduction to
some beautiful mathematical topics this is a book well worth
having.

R. F. CHURCHHOUSE (Chilton)
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