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An error analysis of Goertzel’s (Watt’s) method for

computing Fourier coefficients
By W. M. Gentleman*

Goertzel’s method, also known as Watt’s algorithm, is one of the three standard methods of
computing Fourier coefficients, and is especially commonly used when only a small number
of coefficients is desired for a given sequence. This paper gives a floating-point error analysis of
the technique, and shows why it should be avoided, particularly for low frequencies.

(Received November 1967, revised November 1968)

Given a sequence f;,j=0,1,...,N— 1, we often
require the finite Fourier coefficients, defined for any
frequency w by

N—1
a(w) = Eofj cos (jw)
Not (1)
b(w) = Eo f; sin (jw).

There are three standard computational methods
available.

(i) Direct evaluation of the defining formula (1).
This requires N multiplications and N — 1 addi-
tions for each coefficient. Moreover, it requires
N sines and N cosines.

(i) A method due to Goertzel (1958) and Watt (1959)
(see also Goertzel (1960), Hamming (1962) and
Ralston (1965)) involving the derived sequence

U =fr+2co8 (Wt — Uy uy=1un.1=0 (2)

from which the Fourier coefficients can be
obtained as

b(w) = u, sin (w)
a(w) =1, + cos (w)u; — u,. } 3

This is attractive not only because it requires half
as many multiplications as method (i), but also
because it requires only one sine and one cosine.
(iii) The fast Fourier transform (Cooley and Tukey,
1965) which computes the complete transform
(i.e. all frequencies of the form 2#t/N for
t=0,1,...,N — 1) by factorising the equivalent
matrix multiplication When the chosen factor-

isation is N = H n;, this requires C;N Z n; multi-

pllcatlons and addmons and CZN smes and
cosines, where C, and C, are constants depending
on programming details and are normally about
1 and 1/max (n;) respectively (Gentleman and
Sande, 1966).

When the complete transform is required, the fast
Fourier transform clearly takes less operations, being
O(N log N) rather than O(N?2) as are the other methods.
If, however, only a few frequencies are required, the
other methods may be more efficient. Moreover, the
fast Fourier transform cannot be used if the frequencies
are not of the form 27¢/N, and unlike the other methods,
requires space to accommodate all the data at one time.

In view of this there is still considerable interest in the
first two methods.

As well as the considerations above, comparisons of
roundoff error are important, especially as the computa-
tions are often done for long sequences on special-
purpose hardware of low accuracy.

Gentleman and Sande (1966) used the ratio p of the
root mean square (rms) error of the transformed sequence
to the rms of the transformed sequence itself as a measure
of error in the computation. For a computer using
floating-point arithmetic with Wilkinson’s (1963) round-
ing conventions, where e is the largest number that can
be added to unity and still produce a result indistin-
guishable from unity (e.g. ¢ = 2~ in a binary machine
with a mantissa of b bits), they showed p < 1-06 (2N)3/2¢
for method (i), and p < 1:06 X (21;)%/2¢ for method (iii).
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Fig. 1. Bound on ||8]|/]| £]| in units of € for w fixed
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Error analysis of Goertzel’s method 161

Experiments on random sequences showed that the
actual values of p are typically proportional to N for
method (i), but proportional to the bound itself for
method (iii). The observed values of p for method (ii)
suggested that the best bound for this method might be
proportional to N2, but as there is practical experience
(e.g. Thatcher, 1964) that method (ii) suffers from more
roundoff at low frequencies than high, p is not a satis-
factory error measure for this method and so a different
analysis is given here. (Since the errors for methods (i)
and (iii) do not exhibit a frequency dependence, p is a
satisfactory measure for them.)
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Fig. 2. Bound on ||§]l/I]£]] in units of € for w inversely
proportional to N

Derivation of the bound

We shall analyse the effects of roundoff by backward
error analysis. That is, we shall find an effective sequence
f+ 8(w) such that the sequence u (and the a and b
derived from u) obtained by floating-point computation
from the true sequence f is also what would have been
computed from the effective sequence had exact arith-
metic been done. The ratio

p(w) = rms (8(w))/rms (1) = ||8(w)||2/|| f|] L2

is then somewhat comparable to the ratio p used in the
previous analysis.

At this point it is relevant to point out that Goertezl’s
method is just an extension of Clenshaw’s method (1955)
for evaluating Chebyshev series by three-term recurrence.
(In fact, the cosine coefficient a(w) corresponds to the
Chebyshev series sum.) Both Clenshaw (1955) and
Watt (1959) comment on the rounding error of the
algorithm, but since they were thinking in terms of
fixed-point arithmetic, they remark that the error

involved in evaluating each term u, arises wholly from
taking the product 2 cos (w)u, ., and is at most one
bit in the last place. This is equivalent to changing f;
by at most one bit in the last place, and one feels the
algorithm is very satisfactory.

This result is somewhat misleading, however, as we
have ignored the extent to which the f;, must be scaled
down to prevent the u; from overflowing. This is more
obvious when we consider floating-point arithmetic.
Here, if the computed #; is written

we = fl(fye + 2 cos (w) tye g — Ui 2)
= fi +2cos (W — Uy + O
=(fi +8) +2cos (W — U2 (4)
where §, is the error in this computation, we can again
regard this error as an effective change in the element f;.

There are several orders in which the evaluation can be
performed, but in all cases we now have

[8] < 3 x 1:06€{| fi| + |2 cos (4| + [upe2l}. (5)
For example, using the better of Wilkinson’s rounding
rules

t, = fl(2 cos (w) X 1) = 2 cos () (1 + &)

tL=Af + 1) =i + 1)1 + &)

we = flty — ey n) = (8 — g 2)(1 + &3)

with |£], [&]. [&5] < e

yields
8 = fil(l + £ + £3) — 1} + 2 cos (w)uy ¢4

{1+ €D+ & + &) — 1} — ol + &) — 1}

SO

[8] < |fi|2 X 1-06€ + |2cos(w)uy 1|3 % 1-06€ + |uy . »|e.
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Fig. 3. Observed ratios of error norm to sequence norm,
together with bound, for w =0
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162 Gentleman

If we think of the sequences as vectors, equation (5)
states that the vector whoseelementsare | 5, | isless, element
by element, than 3 X 1-06 e times the sum of three vectors
whose elements are |fi|, |2 cos (w)u. | and |uy o]
respectively. For such vector norms as L;, L, and L,
that implies

|18]] < 3 x 1-06¢{||f]| + |2 cos (w)| [|w]| + [[u”][} (6)

where u’ and u’’ are the vectors formed by the sequence u,
shifted once and twice respectively. Clearly for these
norms ||u”’|| < ||w|| < ||u||. (There are end effects in
equation (6) associated with the definitions of 8y,
8n_2 &, and §,, but these are negligible compared to
the main contributions to roundoff error, and we will
ignore them.)
Thus we have

18] < 3 x 1-06€{]|f]] + (1 + |2 cos w]|ul[}. (7)

We will now replace u in this bound by U, the sequence
which would have been computed from f had exact
arithmetic been used. We would expect that when the
error in the method is acceptably small, ||u|| is close to
U]

We recall here that in proving the validity of Goertzel’s
method, the explicit form of U, is derived, namely

U, :’E‘ sin (w(i — k + 1))

i=k sin (w)

i ®

This can be interpreted as defining the vector U to be
the product of a matrix B(w) with the vector f, where

By, ,'(w) =0 i<k
sin (w(1 — k + 1)) i< Kk ©)
= - i .
sin (w) =
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Fig. 4. Observed ratios of error norm to sequence norm,
together with bound, for w = /20
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Fig. 5. Observed ratios of error norm to sequence norm,
together with bound, for @ = 7/6

In view of this interpretation
|Ull < [|B)]] |If]], ie Ul < Bl (10)

where B(w) is the norm of B(w). In the L, norm, the
one usually used with Fourier transforms, B(w) is the
largest singular value of B(w), that is, the square root
of the largest eigenvalue of BTB, and the equality in (10)
is achieved when f is the corresponding eigenvector of
BTB.

Combining all this with equation (7) gives

118]] < 3 x 1:06€{1 + (1 + |2 cos w)B(w)}[f]] (11)
or
pw) < 3 X 1:06€{1 + (1 + |2 cos w|)B(w)} (117)

in which we see that the behaviour of the bound is
determined by the behaviour of B(w).

Discussion of the bound

The bound of equation (11) gives rise to three
questions:

(i) What are some typical values of this bqund?
(i) How does it behave as a function of N in the two
cases

(a) w fixed? (as when we analyse more and more
cycles of a periodic phenomenon sampled at
a fixed rate)

(b) w inversely proportional to N? (as when we
analyse a fixed number of cycles of a periodic
phenomenon sampling at finer and finer
spacing)

¥20Z YoJelN €1 U0 1sonB Aq £6895€/091/2/Z L /8101ME/|UlWoo/Wwoo"dno-olwapede/:sdpy woly papeojumod




Error analysis of Goertzel’s method 163

(iii) How realistic is it? What does it mean in terms
of the answers?

The first two figures show the value of this bound
plotted in units of the machine precision € on a log-log
scale versus N. In Fig. 1 it is plotted for several constant
frequencies, in Fig. 2 for frequencies inversely propor-
tional to N. Before considering the behaviour as a
function of N, we draw attention to the magnitudes of
the numbers. Even for N as small as 63, the bound at
w = 0 is larger than 10%. This means, for instance,
that on a machine like the IBM 360 for which € ~ 106,
we cannot guarantee the effective sequence will agree
with the intended sequence to better than one part in a
hundred, even for a sequence of 63 points. And since,
as we shall see, the bound grows as N2, this means that
the technique should be highly suspect for sequences of
length one thousand or more, such as are frequently
analysed. Of course this is just the bound, but as we
shall see shortly, it correctly predicts the actual situation.

Returning to the question of growth as a function of
N, we see that the slopes of the curves in Figs. 1 and 2
suggest that for w = 6 (a constant different from zero)

the bound eventually grows linearly in N, but if w = 5,

including the case « = 0, the bound eventually grows as
N2. By forming BTB explicitly and considering the
integral equation which the eigenvalue problem
(BTB)f = P?f approaches in the limit as N — oo, we
can show that this is indeed the case. For w = 6, the

N2
largest eigenvalue 8% approaches —anl 0 and so the
bound approaches 7o sin
5 T 1 T T T 17T [ T
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Fig. 6. Observed ratios of error norm to sequence norm,
together with bound, for w = 27(3/N)

(1 + |2 cos 8))
1811 < 3 x 1-06e =SSN 7] (12)
whereas for w = %, the largest eigenvalue B2 approaches

y2N*, where if o = 0, vy is the largest root of

0 = X A1 4 cos Ay cos Ay) + o2 sin A, sin A,
with Ay = V(&2 — Dfy, X = V(@ + Diy
and if « = 0, y is the largest root of

= sinh? p — sin? p — (cos p + cosh p)?

with p=1/4/v.
In this case the bound approaches
1811 < 9 x 1:06eyN?||f]]. (13)

A short table of values of v is given as Table 1.
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Fig. 7. Observed ratios of error norm to sequence norm,
together with bo und, for w = 27(10/N)
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Table 1

Values of proportionality constant y for various
values of Nw = «

o Y

0 28-44 x 102
2 6-031 x 10—2
47 2-754 x 10—2
6 1-784 x 10—2
8w 1-319 x 102
107 1-055 x 10-2

Evidently the problem, though worst at w = 0, is not
unique to this ‘D.C.’ term, but exists at other low fre-
quencies as well. This is very unfortunate, since it is
most often low frequencies which are of interest. (The
behaviour close to w = 7 is the same as that close to
w = 0, but these frequencies are not so often of interest.)

So far we have only discussed &, the difference between
the effective and true sequences. But how much can &
affect the Fourier coefficients @ and »? It is easy to
show that if a sequence is changed by J, the square root
of the squares of the changes in a and b can be as large
as 4/N||68||. This then gives a bound

| Ala(w)) — a(w)|| < v/Np(w)|| £]| (14)
| AG(@) — b(w)||

although we might expect that on the average the error

2
would only be about \/ (N) times this, as would be

the case if §/||8|| were randomly oriented in the unit
N-sphere.
Figs. 3 to 7 show actual values of the ratio

fla(w)) — a(w)"/ 1111
SAb(w)) — b(w)

observed at various frequencies and sequence lengths,
for two different kinds of sequences: a random (white
noise) sequence, and ‘worst’ sequence, i.e. the one which
maximises the bound, the eigenvector corresponding to
B2 The combination of bounds (14) and (11°) is also
plotted. These computations were done on the GE645
computer with the arithmetic carried out so that
€e=2726x 1-5 x 10-8. We notice that although the
‘worst’ sequences are not uniformly those with greatest
error, the error in them is consistently high. Moreover,
although the bound overestimates the actual error, it

appears to be of the correct form for these ‘worst’
sequences. (In fact, a statistical regression analysis of
the observed errors plotted in Figs. 3, 6 and 7 shows
that the behaviour of the error for the ‘worst’ sequences
must be like N%2||f|| rather than N#2||f|| or less.)
The slower growth of the errors in the random sequences
is presumably similar to the earlier N3/24/N||f]| results
(Gentleman and Sande, 1966) and is related both to the
sharpness of ||U|| < BJ|f]| and to the sharpness of the
relation between ||8|| and the change in the Fourier
coefficients. We are, therefore, interested in what this
‘worst” sequence looks like. Unfortunately, e.g. Fig. 8,
far from being a pathological function it is exactly the
sort of sequence for which we would be most likely to
want to use the method, resembling a slightly damped
cos w!

Summary
Where does this leave us?

(i) We have shown the bound on p(w) to be asympto-
tically proportional to N or N2 depending on
whether w is constant or inversely proportional
to N.

(ii) Correspondingly, we have shown the bound on
the error in the Fourier coefficients to be propor-
tional to N32||f|| or N32||f]|.

(iii) We have observed that actual errors appear to
follow these bounds, subject to the usual change
of scale and division by 4/N, except that with w
inversely proportional to N, the full N572||f]]
appears to be attained by sequences of a kind
likely to be of interest.

Reinsch (unpublished) has suggested that for small w
we calculate the u, by the recurrence rewritten as

Ay, = fi + Auy g — 2(1 — cos Oy 14
U = Uy 1 + Duy. 1s)

This avoids the instability near = 0, but near w = =
we must calculate the sums of adjacent elements rather
than the differences, and this complicates the program.
Without some such modification, however, the catas-
trophic growth of roundoff errors make Goertzel’s
method inadvisable unless one can be certain of having
adequate precision (such as when the sequence is short
or when the frequency is well away from 0 or ).
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