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Variable metric methods of minimisation

By J. D. Pearson*

Two basic approaches to the generation of conjugate directions are considered for the problem of
unconstrained minimisation of quadratic functions. The first approach results in a projected
gradient algorithm which gives ‘n step’ convergence for a quadratic. The second approach is
based on the generalised solution of a set of underdetermined linear equations, various forms of

which generate various new algorithms also giving n step convergence. One of them is the
Fletcher and Powell modification of Davidon’s method.

Results of an extensive numerical comparison of these methods with the Newton-Raphson
method, the Fletcher—Reeves method, and the Fletcher—Powell-Davidon method are included,
the test functions being non-quadratic.

(Received October 1968)

1. Introduction

The problem considered here is to find the minimising
vector x* for a quadratic function f{(x)

S(xX) =1IxAx +b'x +¢ )

where A4 is a n X n positive definite matrix, b is an
arbitrary n-vector, and c is a scalar.

Clearly the minimum is given by the unique solution
to the necessary condition Ax* + b = 0 and as such this
problem is trivial. In general, however, 4 may not be
known explicitly but values of the gradient at x;,
g = Ax; 4+ b may be given. Or alternatively, (1) may
represent a quadratic approximation to a general function
arising in some unconstrained minimisation technique,
in which case 4 and b depend on x;. It is no longer
obvious that successively solving A(x;) . x* + b(x;) = 0
will be efficient.

It is generally argued that any method which can
minimise a quadratic function efficiently will probably
be good on more general functions since it can do well
in a quadratic vicinity of the minimum. While this is
not necessarily true it provides a motivation, and
accordingly we are interested in methods which use only
first order gradient information, assume that the function
is at least locally quadratic and attempt to estimate 41!,
the inverse hessian of f{(x).

The methods considered here, called variously ‘variable
metric’ [1], ‘quasi-Newton’ [2], [3] or °‘conjugate
gradient’ methods [4], consist of choosing an n X n
matrix H; (which approximates 4-!) and forming a
direction d; = H;g; using g;, the gradient at x;. A new
point is defined by x;,; = x; + «;d;, where «; is cal-
culated to minimise f(x;,.;). The matrix H; is then
updated in some way. If H; = I, this is the method of
steepest descent. If H; = A~! this is the generalised
Newton-Raphson method.

Since, as is reviewed in §2, a quadratic can be mini-
mised in n steps if d,, d,, . . ., d,_, are conjugate direc-
tions, this paper studies a class of H; matrices that will
generate conjugate directions. In §3, H, is chosen as a
projection matrix and, in §4, H; is chosen as a solution
to an equation H,;Y, = S;. The Davidon algorithm [5]
is shown to be a member of this latter class. In §5
recursions are developed for the determinant of the
metric. We then consider the use of prior information
on A in starting the algorithms. A numerical com-
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parison of several new algorithms with the Davidon and
the Fletcher-Reeves algorithm is given in §6.

Notation
At iteration i the following column vectors, etc., occur:

x;  is the current solution.

g; is the gradient of f(x) at x;.

H; is the current direction matrix or metric.

d; is the search direction from x;.

S; = X;4 1 — Xx; = a;d; is the step in x;.

Yi=gi+1 — &i = As; is the step in g;.

o;  is the step length, a negative scalar.

gi denotes g; transpose, a row vector.

S; =[S, S1,...,85_,] denotes a matrix with
columns sg, . . ., 5;_; and also without ambi-
guity [so, sy, - - ., 5;—;] denotes the subspace
spanned by the vectors sg, 57 .

Y;=1[»0Y1»...,Vi—1] denotes an n X i matrix
with columns y;.

I, is the n X n identity matrix.

e Sio 1.

2. Methods using conjugate directions

A set of n independent and non-zero directions,
dy, dy, . . ., d,_ are said to be conjugate if, given a sym-
metric positive definite matrix A, they satisfy [6]

didd; =0 0<i#j<n 2)
and, of course d;Ad; > 0.

If, in accordance with the notation, the directions d; are
the actual search directions, then at iteration j + 1,

Xjt1=Xo + igo o;d; so that the value of the quadratic
function takes the form
Sxy) = 3x,dx, + x,b + ¢
= IxgAdxy + b'xy + ¢
8 Wi Ad, + b+ Axo)

Because «; is calculated as the minimum value of

Sxip1) = flx; + o;d;), at x;, the gradient g; ., must
i

satisfy dig; ., = 0. However,g;, = Axy+ b+ X o;4d;
from which we find j=0
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On the other hand the expression above for f(x,)

assumes its minimum value when each «; is a solution
of df(x,)/dx; = 0, i.e.,

a; = — di(b + Ax,)/d; Ad,
as before.

Thus the process of making n one-dimensional mini-
misations down the directions d; is equivalent to mini-
mising f(x,) as a function of the «; values, and no more
than » searches are necessary.

The choice of conjugate directions results in conjugate
steps. For what follows it is convenient to argue in
terms of the steps

Si = Xip1 — X
Yi=8i+1— &i
Since g = Ax + b, we note that
yi = (Ax;p +b) — (Ax; + b) =
We will define n X i matrices Y, and S as follows:

Y= [Yo Y1s -+ 0 Vi1l
Si = [50, Siy e v Si— 1].

Thus conjugacy of the steps s; = «;d; implies

sids; =0i+#j
Yis;=0i<j 3
Siy;=0i<j.

A third orthogonality condition will be useful.

Lemma

Let f(x) be a strictly convex differentiable function of

x which has an unconstrained minimum. A necessary
i—1

and sufficient condition that x; = xo + 2 o;d; is the
ji=0

unique minimum of f(x) on an i-dimensional hyperplane
through x, and spanned by [dy, d,,...d;_] is that
dig;i=0forj=0,1,2,...,i— 1.

Proof: If x; is a minimum with respect to each «;
then it is necessary that Jf(x;)/d«; = gid;= 0 for
j=0,1,2, ., i — 1. On the other hand suppose
d,g,—Ofor]=012 . i — 1 at x;, but for some

X=x;+ Z &d; # x; we have f(X;) < f(x;). Then
using the strlct convexity of f(x),

f(R) > flx) + gi(%; — x;) = fix).

This is a contradiction unless x; = X;.

If «y, «f,..., 2;_; are non-zero then the condition
above is equivalent to S;g; = 0, the form in which it
will be used. Consequently any method which succes-
sively goes from Sig; =0 to Si,;g;+1 = 0 with inde-
pendent directions will minimise a quadratic in n steps.

3. A projected gradient algorithm

A set of steps s; and y;,, i=0,1,...,j — 1 are con-
jugate if Yis;=0, i=1,2,...,j— 1. Successively
conjugate directions can be generated by incorporating
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yj—p into Y;_; to form Y;, and choosing s; so that
Y/s; = 0. It is natural to use a search direction d;
which is the gradient g; projected orthogonal to
[¥0s ¥1> - - » ¥j—1] and the following recursion achieves
this.

Let R be a positive definite symmetric matrix, and let

i: 0 Ho - R,
l<i<n H,=R— RY(Y,RY)"'Y/R. (4

At stage i form the gradient g;, define the search direc-
tion d; = H,g; and choose «; to minimise f(x; + «;d;).
Evaluate x;,, = x; + «;d; and g;,,, form s; and y,,
then repeat for i + 1. The following theorem shows
that the algorithm is successful; a similar result is proved
by Goldfarb [8].

Theorem 1

If R and A4 are positive definite symmetric matrices,
the projected gradient algorithm minimises a quadratic
form with hessian A4 in n or fewer steps.

Proof: For i=0, dy= Rg, and the minimisation
yields gidy = 0, i.e., «g = — dogo/doAd,. Thus if the
initial gradient g, is not zero then «,, s, and y, are non-
zero and sgg; = oodog; = O.

Now proceed by induction and assume S;, Y; have
rank i and Sig; = 0. If g, 0 then a cycle of the
algorithmgivesS;, |, Y;. of ranki + 1 and S/, ,g;, ;=0.
To establish this, note that the new direction d; = H.g;.
Suppose d; is identically zero, then since H; is R times a
projection matrix, g; must have the form Y,w for some
i-vector w. However Sig; = S;Y;w = S/ASiw =0
implies w = 0. Thus d; 7 0 if g; # 0. The minimisa-
tion yields g/, d; = 0, i.e., «; = —g;H,g;/di Ad;. Now

giH;g; = gi[R — RY(YiRY,)~'YiR]g;
— g/[R — RY,(Y/RY)'Y;RIR-'[R — RY,
(YiRY))~'YiR]g;
=diRd; > 0.

Thus if d; % 0 then «; 5= 0 and as a result y; and s; are
both non-zero. The projection property of H; ensures
that Y/s; = 0 = Sjy; = Si(g;+1 — &;)- But Sjg; =0 by
hypothesis and s;g;,, as a result of the minimisation.
These are equivalent to S/, g;. 1 = 0. It is possible
that the new Y, , and S;, ; have rank i. However, since
s;As; >0 and Y/s; = 0 implies s;4s; =0, j < i, then s;
cannot be in the subspace [sg, sy, .., 8i—1]- Thus
S;.+1 and Y;, ; must have rank i + 1.

The induction thus proceeds until either i <n, g; =0
and the minimum of the quadratic function is found, or
S,g, = 0 at stage n. However, since S, has rank n,
g, = 0. This completes the proof.

Clearly the directions generated are conjugate with
respect to A4, since Y;s; = Oby designfori=1,2,...,n

The choice of H, is open and although the most
obvious choice is Hy, = 1I,, Hy can be used to take
advantage of a partial inverse of 4. See § 5.

Equations (4) and (5) have a well known equivalent
form derivable directly from Appendix A, or by induction.

Algorithm 1
0<i<n Hpy=H,— HyyH][yHy, (5)
HO - R.
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4. A class of variable metric algorithms

Practically speaking it is advantageous to use a
method in which the metric H, tends to the inverse
hessian 4—!. If this is the case, it seems likely that on a
general function, if the method reaches a quadratic
neighbourhood of the minimum it would do better than
any pure conjugate gradient scheme, because the former
can do in one step what the latter must do in 7 steps.

One way of estimating A~! is to use the following
idea. For a quadratic function we must have 4-1Y;=S,.
Suppose H; is a matrix satisfying H;Y; = S; and we
define the search direction as d; = Hig;,, Then
Y/d;= Y/Hg; = S/g;. Thus if Sjg; =0, s; = a/d,
then Y/s; = 0 and the new step will be conjugate to the
previous ones when the function is a quadratic. In
addition, at stage n, H,Y, = S, and under appropriate
conditions H, = A~' with d,= A-g, the desired
Newton step.

A class of general solutions to H;Y; =S; can be
defined by taking

H; = S8;Y} + R(, — Y, Y}*) ©

where Y} and Y}* have the form (Y;MY,)~1Y;M for
symmetric positive definite matrices M. (Y} and Y}*
have the property that x* = Y b minimises
(Yix — byM(Y;x — b). See [9])

This general idea will now be formalised into a class
of four algorithms.

Let R and M be positive definite symmetric matrices
and define the general algorithm as follows:

fori=0 Hy =R
forl<i<n H,=S8Y*+RUI,— Y,Y* (7

where
Y}, Y#* have the form (Y/MY))~'Y/M 8)

with M = A~ or R independently for each term, giving
four choices.

Starting with the value i = 0, we form the gradient g;
and the search direction H;g;. If g; = 0, the algorithm
terminates, x; being the required minimum. Otherwise
o; is calculated to minimise f(x; + «,H;g;), and we set
X; 1= Xx; + o;Hjg; and i is increased by one for the
next iteration.

Theorem 2

If R, M and A are positive definite symmetric matrices,
M being equal to A—! or R, and if the algorithm is
applied to a quadratic function with hessian A4, then it
terminates after at most » iterations. If » iterations are
required, then H, = A1,

The proof follows the proof of Theorem 1. In
particular the argument for i = 0, which begins the
inductive proof, is identical.

To treat the values of i> 1, we assume as in
Theorem 1, that we have g; %% 0, that Y; and S; have
rank 7, and Sjg; = 0. Now we shall show that the next
iteration causes these results to hold for i + 1, except
that we may have g;, ; = 0, in which case the required
minimum is found.

The search direction,

Hig;= Y!'Sigi +U,— Y!*'Y))Rg; =0
+ [, — MY (Y;MY;)~'Y/]Rg;

is zero if and only if M ~'Rg; e[y, ¥, ..., y;i_1]. But
for M=R or M= A-! it can be shown that
M ~'Rg;e[yo, y1,- .., ¥i_1] and Sjg; = 0 implies g, = 0.
Thus if g; 5= 0 then H/g; + 0.

Computing «; at stage i, «; = —g/H/g;/g/H;AHg,,
and is non-zero if and only if g/H/g, 0. However,
if M =R, g/Hg;,=g/HR 'H/g;, >0,and if M = 4!
then g/ H/g; = g/Rg; > 0. Thusifg; % 0 then «; = 0.

By construction Y;(x;.; — x;)= Y/s; = 0. Using
the argument of Theorem 1 we must also have
S;+18i+1 =0. Furthermore, the reasoning of Theorem
1 shows that if g; 5= 0, then Y;,, and S;,, must have
rank i + 1.

This completes the inductive cycle. Either at stage
i <n, g; = 0and the algorithm terminates with x; = x*,
or it continues to stage i + 1. However, at stage n,
S, and Y, will have rank n with S,g, = 0. Conse-
quently g, =0 and then H,Y,=S, has a unique
solution H, = A~1.

As before, since by construction Y/s; = 0 for all i,
the search directions for a quadratic turn out to be
conjugate. This is not the case if a restart procedure is
used, as will be described in §5.

Particular algorithms can be obtained by alternate
choices of M in Y} and Y}*. Recursions for H;, , in
terms of H;, y; and s; can then be found by applying the
expansion formula (17) of Appendix A.

Let M = A—'in Y} and Y}* defined by (8).

H; = S(S'Y)~'Si + R[I, — Y(S/Y)~1S]]
= (S; — RY))(S;Y)~'S; + R. )]

This has the form of (15) in Appendix A, where
A=(S;—RY),B=S;,,C=Y;,, D=3S; and E=R.
A recursion formula is obtained by noting that at stage
i+1, 81— RY; . =[S, — RY,, s; — Ry]] = [4, d],
where a = (s; — Ry;). Similarly in the notation of
Appendix A, we find that b==s;,, ¢ =y, and d = s,.
So that H;,, can be written in the form of (16) which
reduces to

H; = H; + [(s; — Ry))

—(S; — RY)(S Y)~1Siylls: — S(¥iS)~'Y/s;)]'|A
where A = §/[I, — Y,(Y;S;)~'S/]y;, However, on a
quadratic function the algorithm guarantees that

Y/s; = 0. Using this and substituting for H; reduces
the general expression above to a simple recursion.

Algorithm 2
H, = H; + (s; — Hy)(s)[s;y;  (10)
Ho = R.

G. P. McCormick first derived this formula using a
rank 1 perturbation argument similar to Broyden [2].
Note that H; will generally be unsymmetric.

Now make an alternative choice of M = R in the
formula for Y} and Y}*.

H; = S(Y;RY)~'Y;R + R[I, — Yi(Y;RY))~'Y{R]
= (8; — RY)(Y;iRY)"'Y;R + R. (1n

Proceeding exactly as before Appendix A can be used
to give the expression for H;,  in terms of H;. Using
the additional fact that Y;s; = 0 when the function is
quadratic yields:
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Algorithm 3
Hi = H; + (s; — Hy)(Hy) [yiHy;
H, = R. (12)
Again H; is unsymmetric and H;y; # H;y;. Now con-
sider the cases where Y} = Y}*.

H; = S(SiY;)~'S] + R[I, — Y(Y;RY)~'Y;R]. (13)
This is obtained by substituting M = 4~! in Y} and
M = R in Y}*. Expanding each term independently
using (17) recursively shows that (13) is equivalent to
Hi = H; + [s; — S(S/Y)'Siyi]

si — S(YiS) 1 Yis] 1A,
— [Ry; — RY(Y{RY))"'Y/Ry;][Ry; — RY;
(YiRY)"'YiRy]/A,
where A, = si[l, — Y(S;Y)~1Si ]y;
A, = yi[l, — RY(YiRY))~'Y{]Ry;.
However, when the function to be minimised is a quad-
ratic form the algorithm forces Y;’s; = S;/y; =0. In
addition using the definition of H; in (13)
Hyy; = Si(SiY)~'Siy; + R[I, — Y,(Y{RY;)~'Y{ R]y;
= [I, — RY(Y;{RY;)"'Y/]Ry;.

Substituting these results lead to:

Algorithm 4

H_.,=H + $iSi/8{yi — (Hiy)Hy) |yiHy; (14)
Ho - R

This is recognisable as Fletcher and Powell’s modification
of the Davidon algorithm. Here H; = H;.

Finally, a fifth algorithm can be derived by sub-
stituting M = R in the expression for Y} and M = 4!
in Y}*

H; = S(Y{RY))"'Y;R + R[I, — Y(S/Y)~1Si]

However, the expansion of H; ,. ; does not seem to be
representable in terms of H;, y; and s;.

5. Further properties of variable metric algorithms

In this section we give recursions for the determinant
of H; and indicate how to make use of partial informa-
tion on the hessian A.

It is of interest occasionally to keep track of the
determinant of H,. During calculations involving
penalty functions |H;| often approaches zero and this
indicates difficulties due to ill-conditioning of the
associated hessian A.

Appendix B contains a brief derivation of the effect
of rank 1 and rank 2 perturbations of the determinant
of I,. An alternative derivation of the rank 1 result is
given by Bodewig [18].

I, + x.y'| =1+ xy
1L, +x.y +uw’| =0+ xy)(1 + uv) — xv.yu
Clearly for Algorithm 1, |H;| = 0 unless i =0. For
Algorithm 2, (10), if |H;| # 0,

Hi = H[I, + (H's; — y)(si/siyi)’]

whence
|Hi | = |Hi|(siH 's)/(s'y))-
Similarly for Algorithm 3, (12),
|Hii1| = | Hil(siy)(vli Hipi)-
For Algorithm 4, the Davidon recursion, (14),
|Hiy 1| = |Hi|(siy)/(yi Hy)-

Since s/y; = 5i{(gi+1 — &) = —sig; > 0 (because we
are minimising) and assuming H; > 0, it can be seen
that all three recurrences preserve the sign of the deter-
minant of H;, which is equal to the product of the
eigenvalues of H;.

In a region where A is ill-conditioned small incre-
ments in s; give large increments in y;, quantities such
as s;y; are small while y; H;y; can be large. On penalty
functions (s;y;/yiH;y;) can be smaller than 10—¢ and
| H;| rapidly becomes almost singular for these problems.

Fletcher and Powell [5] have shown that the Davidon
algorithm does preserve the definiteness of the H,.
These results show directly that definite matrices tend
to become singular when the problem hessian is ill-
conditioned. Murtagh and Sargent make use of similar
recursions [17].

Now consider the use of partial information on A.
Suppose the first m rows and columns of A4 are known.
It is possible to solve part of the minimisation problem
immediately. Let the gradient g; and x; be partitioned
into m and n — m components as follows:

gi1 = Auxin + Axxin + by
8i2 = Anxiyy + Apxi; + b,

where A,,, A;, = A3, are the known parts of 4. Since
Ay, is invertible because A is definite, we can satisfy
g1 =0 in one step by moving to any point
X = (X1, Xp2)” satisfying

8mt = A11Xm + A12Xm2 + by = 0.

If in addition b, is unknown, then start at any point
X,_1 and find x,, = x,,_1 + %m_1dm— by minimising
fx,,) where [3],

A7l 0O
dm—l = < (;1 O> E&m—1-

Direct calculation shows that g,,; = 0 at the minimum.

We now wish to complete the minimisation in no
more than n — m further steps. This can be done by
either (i) computing an equivalent H; which would result
had m equivalent steps been taken to reach x,, or
(ii) solve the remaining problem in terms of the n — m
independent variables on the hyperplane defined by
gi1 = 0’ i = m.

One approach to the first method is to identify m
equivalent steps. Let s¢, 5, ..., S,,—; be the first m
columns of the n X n identity matrix. Let y; = As; for
i< m— 1, then each y; is the ith column of 4. The
resulting matrices Y,,, S,, both have rank m and S,,g,,=0.
Note that the s; are not conjugate and Y;s; = 0 for
i< m— 1. However, Theorems 1 and 2 do not assume
conjugacy. In fact Y,, and S,, both have the properties
required at stage m of the inductive proofs. Thus we
can continue from x,, with H,, defined by (5), (7), (8)
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using any of the methods. For example, with R = I,
the projected gradient algorithm continues with

Hm = In - Ym(Yr’nYm)_er’n

and the Davidon algorithm continues with
A7l 0
N G R A AR

Where Y,’” - (AIIAIZ)'

Since we do not have conjugacy for i < m, Algorithms
2, 3, and 4 cannot be used to construct H,, using the
equivalent steps. This is inconvenient although it takes
the same amount of work to construct H,, directly as
it does to do it by updating. [See [18], p. 219.]

All subsequent moves for i >> m lie on the hyperplane
since by Theorems 1 and 2, Ys; =0, i > m and the
first m columns of Y; are the first m rows of 4. Thus
all later steps satisfy Y;s; = S;y; = 0 and the Algorithms
2, 3, and 4 can be used. (Algorithm 1 always applies
since the steps do not need to be conjugate for the
derivation of (5).)

The second approach uses a reduced gradient format
[20], starting with any point x,, on the n — m dimension
hyperplane g, = 0. Let x=(y,z) where
y= — A;;'(415z + b)) is an m vector and zis ann — m
vector of independent variables. Then dy/dz=—A;;'4,,,
V=X, 2= Xpp, i > M.

Let H be an arbitrary (n — m) X (n — m)dimensional
metric and g be the gradient of f(x) defined by

_Y y  of [wfez)

=y 3z |1,_,]|"¢

If dx is the incremental step in x induced by an incre-
ment dz = H'g.do in the subspace of independent
variables then,

W/ d _
dx — [Iy/ Z] dz = [Iy/bz] A% . dx

n—m
dy[dz] ~ [dy/dz]’
~{|:In~m:|H|:In—m g'da.
This is the same as using an n X n metric H given by,

/0 _ [dy/oz]’
Hz[ly/ Z]H[Iy/ Z]’d:H/'g'

n—m n—m

At stage i > m any of the previous algorithms can be
used in place of H, starting with H,, = I,,_ ,, and updated
using

Vi=8iv1— &

Si=12Ziy1 — Z
where x; = (x{y, x{2) = (¥i, zi)’, with the step s; = a;d;
found in n-space exactly as before. Since
[0y/dz] = — A[;'A4,, is a constant, all moves are on the
n — m dimensional subspace g;; = 0 and consequently

the algorithms converge to g;, = 0 in no more than
n — m further steps, as desired.

The idea of using variable metric methods in conjunc-
tion with reduced gradient techniques [20], as opposed
to projection methods [8, 15], is due largely to
McCormick.

6. Numerical results

Results of testing these algorithms on nonquadratic
functions will now be given. The numerical procedure
for the seven schemes considered is as follows.

Given f(x), g(x), and possibly A(x), the matrix of
second partial derivatives of f(x) evaluated at x, and
starting at x, with H, = R = I, carry out the following
operations fori =0, 1, ....

(a) Find the first local minimum of f(x; + «;d;)
Sfxig 1) = H:inf(xi + ody)

where d; = Hig/¢iH:H;g;.

(b) Update H; according to the algorithm used.
Algorithm 1, Projected Gradient Method (P-G)

Hiyy = H; — (Hy)Hy)'[(yiHy))
when i is a multiple of », reset H; = R.
Algorithm 2
Hiyy = H; + (s; — Hy)silyis;
Algorithm 3
Hiy = H; + (s; — Hiy)(H;iy)' [(yiHy:)
Algorithm 4, Fletcher—Powell-Davidon (F-P-D)
Hi = H; — (Hy)Hy) [(yiHy;) + sisi[yis;
Algorithm 5, Newton—Raphson (N-R)
H; = [A(x)] !

The program uses a modified Newton—Raphson step
when it appears that 4(x;) has negative eigenvalues as
identified during the process of solving A(x;)g; = d;
using the Crout procedure. In this case the direction of
move is roughly along an eigenvector corresponding to
a negative eigenvalue. By this means a region is located
where the function is convex [10].

Algorithm 6, Fletcher—Reeves (F-R) [19]

dy = —8o
div1= —8it1 + di(g 118 +1/88)
when i is a multiple of n + 1 reset d;, = —g;.

Algorithm 1, Projected Newton—Raphson (P-N-R)
Hi = H; — (Hy)Hy)[(yiHy;)
Riv1=R; + (s; — Ry)(Hy:) [(yiHy:)

when i is a multiple of » reset H; = R;.

The last method investigates the effect of solving
R;Y; = S; exactly using the schemes of §4 in the absence
of quadraticity. H,y; provides the projection of y;
orthogonal to [y, ¥(,...,¥;—1]. Every n steps R; is
an approximation to A(x;)~! and a Newton-Raphson
move is made.

The reset form of the algorithm is obtained by re-
setting H,,, for Algorithms 2, 3, 4, and 7 to R and
restarting. Algorithm 1 must be reset every n steps and,
in Algorithm 6, d,, , is reset to —g,,; always.
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The linear minimisation is performed by a Fibonacci
search. Cubic interpolation works well on low-order
polynomial functions but does not prove as rapid for the
logarithmic penalty functions used in the Sequential
Unconstrained Minimisation Technique (SUMT) for
which Algorithms 1 to 7, plus several others, make
up an experimental XMOVE subroutine [11], [12].

Five problems were considered. The data for these,
and other information can be found in [16]. The
numerical results are of course strictly comparative for
each problem. Computing was done on an IBM 7044
in single precision, 36-bit arithmetic.

Table 1 gives results for Rosenbrock’s banana-shaped
valley [13].

fx) = 100(x; — x)* + (1 — x)? (40)

the starting point being (x;, x,) = (—1-2,1:0); the
numbers quoted are the number of iterations required
to obtain f(x*) < 10—13,

Table 1
Numerical results of problem 1
MODE
ALGORITHM
NORMAL RESET
1,P-G — 42
2 18 31
3 21 37
4, F-P-D 19 35
5, N-R 12 —
6, F-R — 16
7, P-N-R 36 21
Table 2
Numerical results of problem 2
ALGORITHM NORMAL RESET
1, P-G — 65
2 36 47
3 46 47
4, F-P-D 40 49
5, N-R 23 —
6, F-R — 30
7, P-N-R 58 55

Table 2 gives results for a test function credited to
C. F. Wood of Westinghouse Research Laboratory:
fx) = 100(x, — x{)* + (1 — x;)?
+90(xy — D% + (1 — x5)?
+ 10- 1(x2 - 1)2 + (X4 —_ 1)2
+19-8(x; — (x4 — 1)
This is designed to have a non-optimal stationary point
that can cause premature convergence. The initial
point is (xy, X, X3, X4) = (—3, —1, —3, —1), and the

number of iterations is that required to obtain
Sfx*) < 1013,

Table 3 shows the results for a test problem formulated
by the Shell Development Company:

5 5 s 5
fx) = '21 ex; + -21 Zn CiyXiX; + ,Zl d;x;
ji= j=1 i= j=

subject to
x;>0,j=12,...,5
5
Z a,'jxj' > bi} i - 1, 2, e ey 10.
j=1
This is a linearly constrained problem, which for

particular choices of e;, ¢;;, d; has a convex objective
[12]. For this problem, SUMT replaces f(x) by
10

f(x) —r X log, g(x) for a parameter r >0, where
i=1

g:(x) > 0 represents the ith inequality constraint. If
x*(r) is the solution of the modified problem, then
x*(r) — x* as r— 0 where x* is the solution to the
actual problem [3].

Table 3

Numerical results of problem 3

r=10 r=1-56x10"2|r=2-44x10"4

ALGORITHM

NORMAL| RESET | NORMAL| RESET | NORMAL| RESET

26 — 55 — 70
27 22 44 41 62 60
33 22 50 40 67 54
22 46 40 60 56

7
Q
I

N LA W=
T
T
w)
3

, N-R 11 — 17 — 22 —
, F-R — 34 — |>165] — | Fail
» P-N-R 31 20 50 37 67 54

Table 4 gives results for the dual to the previous
problem. Here the dual problem has a cubic objective
and quadratic constraints [12], [16].

Table 4

Numerical results of problem 4

r=20-25 r = 0-0625

ALGORITHM

NORMAL| RESET |NORMAL| RESET [ NORMAL| RESET

— 120 | — —
134 98 | 195 | 132 | 221 | 187
136 100 | 220 | 134 | 246 | 168

1 169
2
3
4, F-P-D | 406 97 | 473 | 133 ! 500 | 169
5
6
7

211

, N-R 30 — 36 | — 48 | —
, F-R — |>489 | — | Fail| — | Fail
, P-N-R | 166 113 | 198 | 150 | 230 | 186

Finally, Table 5 shows the results for an intriguing
problem of maximising the area of a hexagon subject to
the constraint that its maximum diameter is 1. It is
interesting to note that the solution is not a regular
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Table 5

Numerical results of problem 5

r=1-0 r=10"2 r=10"4 r=10-¢
ALGORITHM
NORMAL RESET NORMAL RESET NORMAL RESET NORMAL RESET

1, P-G — 13 — — 194 — 278
2 17 20 34 42 308 79 326 97
3 11 11 31 32 73 56 96 70
4, F-P-D 47 18 66 40 206 64 215 80
5, N-R 18 — 30 — 54 — 65 —
6, F-R — 13 — 55 — 194 — 278
7, P-N-R 19 23 51 58 92 91 120 101

hexagon [14]. The particular formulation used had
9 variables and 13 inequality constraints, although there
is a certain amount of redundancy.

Problems of this last kind with various number of
sides form an excellent set of standard tests.

Summary of results

The range of examples used here illustrates the marked
difference between minimising the polynomial functions
of problems 1 and 2 and minimising penalty functions.
The principal difference is that the hessian of the penalty
functions at points where one or more constraints are
binding is excessively ill conditioned. Indeed the deter-
minant of H; for all methods rapidly becomes effectively
zero.

Ranking the methods depends on the test problem
used. For the more well behaved tests 1 and 2, the
Fletcher-Reeves algorithm is simple and fast, while the
variable metric algorithms follow somewhat behind.

For the penalty function methods, the variable metric
algorithms are much better and operate more efficiently
when reset. This is presumably because their estimated
H; matrices become singular in directions of descent.
Problems 3, 4, and 5 indicate that the two new algorithms
(2 and 3) appear to be competitive.

The generalised Newton-Raphson algorithm always
required fewer iterations, and when it can be used it
generally proves to be the quickest method.

The one surprising result was the performance of a
pure projection method of Algorithm 1, since it contains
no second derivative information, yet it is better than
the Fletcher-Reeves algorithm. Algorithm 7, showing
the effect of resetting a projection to an estimate of the
inverse hessian, indicates that an improvement can be
made this way although it does not appear to be worth
the trouble.

Conclusions

This paper has unified a series of algorithms in a
single framework. Basically, this is that variable metric
schemes depend on the generalised solution to a set of
linear equations, and their associated projection proper-
ties give rise to conjugate directions. A result of this
general approach has been three new algorithms whose
comparative numerical properties are promising. Exten-

sions to this work will be found elsewhere in [7] which is
concerned with the rate of convergence of a general
conjugate direction method.

The results of this paper raise the possibility of per-
forming an error analysis of the variable metric schemes
considered as methods of solving linear equations. This
should provide a means of selecting the best algorithm
for an ill-conditioned quadratic problem, and shed some
light on its use for penalty functions.
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Appendix A
Bordered inverse lemma
As an application of the matrix inverse lemma consider
H, = A(B'C)"'D'+ E (15)

where A, B, C, D are all n X i matrices with { << n such
that they have rank i. H; and E are n X n matrices.
Let a, b, ¢, d be n-vectors such that [4, a], etc., have rank
i + 1 and consider

H;, | = [A4, a]([B, b]'[C, c])~![D,d] + E (16)
B'C Bc]!
~Ual e ye| DAVHE
Applying the bordered inverse lemma to the centre
matrix [15],
BO-t 0
Hi+1=[A’a] <|: 0 0
+ [—¢’BR’, 1] A—[—b'CR, 1]> [D,d] + E

where

R = (B'C)~!
A = b(I, — CRB)c.
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Now multiplying through yields
H; = ABC)"'D' + (—ARB’c + a)A-1
(—b'CRD' +d’)+ E
__H; + (a — A(B'C)~'B’c)(d — D(C'B)~1C’b)
b, — C(B’C)~1B)c

I, + xy" +w’| = |I, + T 'x.y’T + T-'u.v'T|.
Given y and v we calculate T to satisfy the equations
YT =e;,v'T =e;
where e; are the unit coordinate vectors. Let
T-x =a, T"'u=0>,

17
. ) a7 where a, b are n vectors, then the determinant becomes,
giving the basic formula used throughout this work.
lel +a’ e2 +b3 €3, €4, « « o enl = [(1 +al)(1 +b2) - aZbl]
] where a; is the first element of @ and
Appendlx B a, = eja = e{T~1x = y’x, etc.
Formula for the perturbation of a determinant Thus

Let T be a non-singular transformation; then since
|T~'AT| = |T~!|.|4].|T| = |4]

for any independent vectors y, », we have

[, + xy" + w’| = (1 + x»)(1 + w'v) — v'x.y'u
In particular, the case u = 0 gives
[, + xy’| = (1 + x'p).
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