179

The evaluation of definite integrals by interval subdivision

By H. O’Hara and Francis J. Smith*

An algorithm is described for the efficient and reliable evaluation of badly behaved definite integrals
to a prescribed accuracy by concentrating the abscissas near the regions of greatest irregularity
in the integrand. This is achieved by subdividing the interval of integration and by using a com-
bination of the 7-point Clenshaw—Curtis quadrature and the 9-point Romberg quadrature in each
subinterval. We argue that our algorithm will nearly minimise the number of function evaluations
needed to evaluate a badly behaved integral.

(Received September 1968)

1. Introduction

In a previous paper (O’Hara and Smith, 1968) we dis-
cussed the problem of the efficient evaluation of an
integral

b
I= j Ax)dx (1.1)

to a prescribed accuracy when f{(x) is well behaved and
when we can choose the abscissas at any points in the
finite closed interval [a, b]. We argued that the integral
is best evaluated by a modification of the Clenshaw-
Curtis method (Clenshaw and Curtis, 1960) provided
that the coefficients in the Chebyshev expansion of the
integrand fall off fast enough (which we used to define
‘well behaved’). When the integrand is sufficiently badly
behaved it is known (Ralston, 1965; Wright, 1966) that
the integral is best evaluated by splitting the interval of
integration and by using low order formulas to evaluate
the integral over each subinterval. This was illustrated
with an example in our previous paper. Another
example is given in Fig. 1 where the integrand has a
discontinuous derivative.
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Fig. 1. Error E obtained by integrating ¢p(x) (see §4) over
(0, 6) with N integrand evaluations using 1: interval
subdivision and the CCR-method (see §4), 2: Clenshaw
—Curtis quadrature.

In this paper we describe a method for subdividing
the interval which concentrates the abscissas near the
regions of greatest irregularity, and we examine which

quadrature should be used in each subinterval to evaluate
the integral reliably with the minimum number of
function evaluations. We assume that numerical values
of f’(x) are not available, that all singularities have been
removed as far as possible by changes of variable, etc.,
and that it is known that f(x) is sufficiently well behaved
that the integral can be evaluated with at most a few
thousand abscissas. For example, when it is known that
f(x) is liable to have sudden peaks, whose positions are
unknown, with half-width, say, (b — a)/105, then the
whole interval should first be subdivided into a set of
103 or 104 smaller intervals; otherwise the method we
describe would be unreliable.

2. The algorithm

We consider first an algorithm for evaluating an
integral to a prescribed absolute accuracy, e. Some-
times a relative or percentage accuracy is required; this
can be treated with a similar algorithm which we discuss
briefly in the Appendix.

The basic feature of the algorithm is that the interval
is broken up into subintervals; each subinterval is
divided until the estimated error bound for the sub-
interval is less than the acceptable error. Then to make
the algorithm as efficient as possible the difference
between the error bound and the acceptable error is
used to increase the acceptable errors in the remaining
subintervals, keeping the sum of the absolute errors
less than e.

The main structure of the algorithm we propose is
independent of the quadrature, I,,, used to evaluate the
integral over the interval (p, ). We let |E,,| denote a
computable absolute error bound for this quadrature
(assuming that there is one). We begin by calculating
|Epl. If |Eu| <€ the quadrature I, is accepted;
otherwise we bisect (a, b) at ¢. If |E, | < k,., where
k,. is a constant less than one (we will assign k,, a value
later), then we accept I, as the integral over (a, ¢) and
the interval (c, b) is considered. Otherwise we bisect
(a, ¢) at d and
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check if |E,;| < k,q4e; we continue this process until
such a condition is satisfied, say, at (@, e¢). Now (a, )
has been integrated to an accuracy |E,,|, so if the whole
interval (a, b) is to be integrated to an accuracy e then
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the remaining interval (e, ) must be integrated to an
accuracy €, = € — |E,,|. We therefore consider next
the interval (e, d), and check if |E,,;| < k,4e,. Provided
that the constants k,, are chosen small enough for this
process to converge we eventually obtain a value for the
integral

and an error
|Eas| = |ZE,,| < Z|E,,| < e 2.1

We considered several possible ways of choosing the
constants k,,, including some which were functions of
the number of subintervals between g and b, (details will
be given in a thesis of O’Hara, 1969), but in practice we
found little difference between them. Those which were
marginally more efficient occasionally did not converge;
we therefore adopted the simple choice

Koy =0-1if g+ b 22

and when g = b, k,, must be set equal to unity to ensure
that the inequality in (2.1) is satisfied. This gave con-
vergence in all but a few rare cases, and in these cases
0-1 can be replaced by 0:01 or a smaller number to
ensure convergence.

In the foregoing discussion we have assumed that
|E,q| is a computable error bound for the quadrature I,,,.
In practice it is only rarely that it is possible to compute
a realistic bound. Usually we have to depend on a
computable error estimate which is occasionally fallible
(for example, by comparing two or more independent
quadratures). If the interval is subdivided several times,
however, the quadrature over the whole interval is very
much more reliable than the quadrature over each sub-
interval. This follows from the first inequality in (2.1)
and because |E,,| will be bigger than the actual error in
I,, in all but a very few cases if the error estimate |E

val
is reliable. This is verified in the results we discuss later.

3. Low-order quadrature

A wide range of low order quadratures can be used
to evaluate the integrals over each subinterval, but most
of them are unsuitable because all or nearly all previous
function evaluations are lost each time an interval has
to be divided. Hence all of the Gaussian quadratures
and the wide range of optimal formulae due to Stern
(1967) are unsuitable and, as expected, we found them
to be inefficient in practice. Those due to Sard (1949)
we found to be unreliable. On the other hand some
simple formulae such as the trapezoidal rule or Simpson’s
rule are not accurate enough to be efficient even though
they lose no function evaluations at each interval sub-
division. The 5-point Newton-Cotes and the 9-point
Romberg quadratures are better because they are in
general more accurate and they also lose no function
evaluations at each subdivision. The 17-point, 33-point,
etc. Romberg quadratures lose no function evaluations,
but algorithms based on these quadratures are in general
no more efficient than those using the 9-point Romberg,
so we will not discuss them further.

There are two other quadratures which are very
suitable for any method of integration by interval sub-
division. These are the 5-point Lobatto quadrature and

the 7-point Clenshaw—Curtis quadrature. The abscissas
of the 5-point Lobatto quadrature include the two end
points and the mid-point, therefore only two function
evaluations are lost each time an interval is subdivided.
Similarly the 7-point Clenshaw-Curtis formula includes,
in the interval (—1, +1), the 5 abscissas +1, +4 and 0,
and hence only the function evaluations at the two other
abscissas are lost when the interval is subdivided. This
quadrature can be written:

+1
[ Faydt = 3 [FQ1) + F(— D] + $3 [F)+F(— 3]
+ 38 FO) + 35 [F(V32) + F(— v32)) G.1)

Like other Clenshaw—Curtis quadratures (O’Hara and
Smith, 1968) it has a high accuracy, comparable to or
better than that of the 9-point Romberg quadrature.
This is illustrated in Table 1 where we compare some of
the quadratures we have discussed for two integrands.
Similar results were found for other integrands. The
maximum errors shown in the table are obtained by
introducing an arbitrary parameter « and changing the
variable from x to y

b+a b—ala—1+4(x+ 1y
where x = > + 5 l:a iy gy g l)y] (3.2)
to give
b +1
I= [ feodx = | g(e y)dy. (3.3)

The respective quadrature is then applied to the second
integral for 100 values of « between 0-5 and 2-5. This
is equivalent to evaluating 100 different but similar
integrals for each integrand f(x). This process helps to
eliminate the probability of an error being accidentally
small. Similar results were obtained by comparing the
root-mean-square errors. We also compare the quad-
ratures in Table 1 by giving the coefficient o, of the
Davis—Rabinowitz (1954) error estimate:

|E| < ozl Sl

where || f]| is the norm of f{(z) over the region R in the
complex plane within which f{(z) is assumed analytic; in
the table R is taken as an ellipse with semi-major axis
a = 1-2. Similar results were found for other values
of a.

From the table it is clear that the Clenshaw—Curtis
and Romberg formulas are the most accurate. They
also have many abscissas in common, so it is not sur-
prising that when they are combined in one algorithm
they yield a very efficient method for evaluating integrals.

4. Application to the algorithm

We tested the previous quadratures in our algorithm
by evaluating large numbers of integrals and comparing
the results. The test integrals were as follows:
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where
x) = e, x<1;

=e! = x>1

These were evaluated first by changing the variable so
that

b b 1 ab
Jfwax= [ G j(}, G —5) @

@.1)

and by evaluating the right-hand integral for values of
o in the range 0 < o << 255. This distorted the inte-
grands considerably for the extreme values of o and
made the corresponding integrals very difficult to
evaluate. We tested the algorithm in each case for five
different accuracies € between =110-3 and 110-7.

We concluded that the following combination of
quadrature formulas is the most reliable and efficient.
The 9-point Romberg is used in each subinterval and its
accuracy tested by comparing it with two 5-point
Newton-Cotes formulas (using the same 9 abscissas).
The interval is subdivided until the difference between
these two is less than the tolerated error (no function
evaluations have been lost up to this stage). We next
compare the 9-point Romberg quadrature with the sum
of two 7-point Clenshaw—Curtis quadratures over each
half of the interval; this requires the evaluation of the
integrand at four additional points in each subinterval.
If this check is also satisfied, we use in addition the sum
of the absolute error estimates for the 7-point Clenshaw—
Curtis quadratures (O’Hara and Smith, 1968) based on
the formula for the interval (— 1, +1)

32 6 s
(@ 1) —
EP = g —oe =1 .5  DF(cosg)
4.2)
If this is less than the tolerated error then we adopt the
sum of the two 7-point Clenshaw-Curtis quadratures as

the result. In all, this result is checked by three inde-
pendent error estimates and it should be very reliable.

We found that amongst the approximately 6,000 appli-
cations of our algorithm to the extreme examples quoted,
we had only 21 failures (by a failure we mean that the
actual error is greater than the tolerated error).

We call the above method the CCR-method (Clen-
shaw—Curtis—-Romberg-method).

Even greater reliability can be obtained by requesting
an error € less than the error actually required; for
example there would have been only 4 failures in the
above tests if we had requested an error equal to half
that required, and no failures if we had requested an
error one tenth that required. Alternatively we can
check the final result in each subinterval with one 7-point
Clenshaw—Curtis quadrature over the whole subinterval
and in addition use the error estimate (4.2), and so
introduce two extra checks at the expense of only 2
function evaluations. In the above tests this would
have eliminated all 21 failures with about 459, more
work.

We illustrate the efficiency of our CCR-method in
Table 2 where we compare it with two other methods,
one based on Simpson’s rule from the Atlas subroutine
library and the other based on interval subdivision as
in §2 but using the 4-point Gauss formula. (We illus-
trate only two of a large number of other comparisons
we made.) In our tests the Gauss method was as reliable
as the CCR-method, but much less efficient; the Atlas
routine was much less reliable, it failed 59 times and in
more than 1 in 5 of the test integrals it did not converge
to any answer with single length arithmetic. The CCR-
method converged to a result in all 6,000 integrals.

5. Conclusion

We have outlined an algorithm which will evaluate
an integral to any required accuracy. It is efficient and
reliable: out of several thousands of badly behaved
integrals it failed only a few times, and it is easy to
increase its reliability further as required.

A limited number of copies of a program in
FORTRAN 1V, based on the above algorithm are
available on request.

Table 1

Comparison of low order quadrature formula; in the table are given maximum errors
(as defined in the text) for integration of f(x) over (0, 1); n is the number of abscissas
and o is the Davis—Rabinowitz error coefficient for a = 1-2

fx)
FORMULA n OR
(1 4 100x2)~1 SINH (x)
2 X 7 pt Clenshaw—Curtis 13 0-15(—2) 0-007 (—4)| 0-406 (—3)
2 X 5 pt Lobatto 9 0-94 (—2) 0-11 (—4) 0-399 (—2)
Clenshaw—Curtis 7 1-19 (—2) 0-37(—4) 0-722 (—2)
Romberg 9 0-96 (—2) 1-54 (—4) 0-177 (—1)
2 X 5 pt Newton—Cotes 9 0-93(—2) 2-08 (—4) 0-180 (—1)
Lobatto 5 1-82(—2) 4-35(—4) 0-468 (—1)
5 pt Newton-Cotes 5 7:26 (—2) 35-90 (—4) 0-122 (0)
2 X 3 pt Simpson 5 8:54 (—2) 59-37 (—4) 0-127 (0)
3 pt Simpson 3 | 2774 (—2) 498-62 (—4) 0-502 (0)
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Appendix

Relative errors

We wish to evaluate the integral to a relative accuracy
e; that is, if F is the error in the quadrature and 7 is the
integral then we require |E/I| to be less than e. If the
integrand always has the same sign the problem is
straightforward; we adopt the same principle in §2 and
require that in each subinterval (p, q)

E,
I,

This allows |E,,/I,,| to be as large as possible while
still keeping |ZE,,/I| < e. When the integrand changes
sign the problem is more difficult because I may be
small and because I,, may be close to zero. This last
problem can usually be overcome by jumping to the
next subinterval if I,, is found to be small. On the
other hand if any I,, is negative then R = X|E, |/|ZL,,]|
may be larger than e. In this case the calculation can be
repeated after replacing e in (A.1) by €?/R.

The use of (A.1) has been found to be satisfactory in
practice.

1
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Book Review

Information Theory for Systems Engineers, by L. P. Hyvirinen,
1968; 205 pages. (No. 5 in Lecture Notes in Operations
Research and Mathematical Economics.)  (Berlin:
Springer-Verlag, $3.80.)

Being based on lectures given at the IBM European Systems
Research Institute, this book is composed in terms of the
interests of computer users and computer designers. Its level
is very well within the scope of a modern undergraduate
course in computer science or communication engineering,
since it assumes only a basic knowledge of calculus and of
the theory of probability and statistics. The author points
out that information may be syntactic (commonly known to
communication engineers as selective), semantic or pragmatic.
Any process which does not destroy syntactic information is
reversible: this is a formulation which, incidentally, could be
shown to be parallel with reversible operations in thermo-
dynamics which do not increase entropy. But data-processing

is often concerned with reducing the quantity of data in order
to make it easier to grasp what remains, a process of reducing
the syntactic information in order to increase the pragmatic
information.

The treatment of coding is rather sketchy: it is largely
confined to the types of parity check which are used within
the structure of computer systems and barely mentions data
transmission. The types of burst-correcting codes most
suitable for transmission are not mentioned, but k-out-of-m
codes (e.g. 2 out of 5 and 4 out of 8) are recommended for
protection against bursts of errors. There are also more
sophisticated methods of coding decimal inventory numbers
than the simple complement digit described in this book.

In summary, the book is useful to a computer user who
wishes to understand the customary parity check procedures
but is not sufficient for a computer designer or programmer
who wishes to devise more sophisticated error-protection.

D. A. BeLL (Hull)
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