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Implicit integration processes with error estimate for
the numerical solution of differential equations

By C. F. Hainest

Numerical integration processes originally suggested by Rosenbrock (1963) are modified and
developed to give a practical method for the solution of sets of stiff differential equations. A
control scheme for these processes is developed and a comparison, based on numerical experiments,
between this method and other commonly used methods is given.

(Received July 1968, revised December 1968)

Numerical methods for solving the set of first order
differential equations

X = (%) ¢))

are considered.* In this paper chief interest lies in those
systems (1) which are termed stiff differential systems.
That is to say, when the equations (1) are linearised the
time constants of the solution have a wide spread in
magnitude. Itis well-known that when certain numerical
integration methods are used to solve this type of system
problems of stability arise in the computation of the
solution. These stability difficulties restrict the size of
step length which may be used during the computation,
thus increasing the computer time required. In extreme
cases the time taken to obtain the solution may become
so large as to restrict the use which can be made of a
model.

Implicit numerical integration methods can be made
completely stable at least for linear sets of equations (1)
although this stability may fail to carry over the non-
linear systems. In practice, integration methods are
developed which are highly stable when applied to linear
systems. It is then hoped that some degree of stability
will still be retained when the methods are applied to
nonlinear systems.

One such method comprises the processes of Rosen-
brock (1963),

Xrp1 =X, + Rik, + Ryl 4+ Rym, + . .. @))

k, = h($(x,) + a;A(x)k,) (3)

I, = h($(x, + bik,) + a,A(x, + ¢ k)I) €))
m, = h($(x, + bk, + dil,)

+ a3A(x, + 2k, + el )m,) )

V.
where A4 = (A,-j) = (sgﬁ) and Rls R2: R3, a;, a, as
J

by, by, ¢y, ¢y, dy, and e; are constants.

These processes, which will be called ‘processes (B)’,
have certain advantages over other integration methods.
One advantage is that because the equations (3), (4) and
(5) may be solved successively to yield k,, /, and m, no

* Time dependent systems may be considered by writing
Xnt1 =t and transforming the n equation system % = ®(x,t)
into the n + 1 equation system x = ¢(x).

iteration scheme is involved in this method. Other
implicit integration methods require iteration at each
step. It has been found (Huckaba and Danley, 1960)
that restrictions as severe as those imposed by stability
in the explicit Runge-Kutta processes may be placed on
the step length, A,, if certain of these iterative methods
are used.

In an ‘s’ stage process (B) the exponentials of the
solution (in linear problems) are replaced by the approxi-
mations

1+ay(Ah) +0(Aik)? + . .. 4 (Ah,) ©
1+ BiAih) + BoAih)* + ... + B(Ah,)e

during one time interval. In the above expression a;
and B; are constants and functions of the process (B)
coefficients and A; are the constants in the exponentials,
e, of the solution. In order to satisfy the conditions
for stiff stability (Gear, 1967) it is necessary to examine
the locus |{(A;h,)] =1 in the complex plane. The
coeflicient «; is made zero to make the method stable
at infinity.

As an example of the function {;(A;,), the function
arising from one of the 3rd order processes (B) (equations
(37) through (43)) is examined. In this case

G(Ahy) =

L3 Oh) + 5O + Sy
Ci(Aihr) =

L3 (k) + SOu)? — 3k, + 2 )
™

Now writing Ak, = o + iw, a plot similar to those
obtained by, for example, Widlund (1967) of the stable
regions of the process (B) in the complex plane is given
in Fig. 1.

It can be seen that this process (B) is unstable only
for a small region of the left half plane and is in fact
stable for the wedge |w| << 4|c|. Many of the problems
arising from distillations or heat exchangers have con-
stants A; which lie near to the negative real axis. For
the purposes of obtaining a general stability condition
it is assumed that A; are real, for although the complex
plane analysis js very useful, a quicker method for
obtaining stability conditions for the process (B) is pre-
ferable. In fact it will be seen that the stability con-
ditions developed using the assumption that A; are real
yield satisfactory results. Writing A, = — k; the
expression (6) becomes
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Fig. 1. Stable region of 3rd order process (B)

1 —oy(kih,) +ay(kih,)? + . . .+ (= 1y (kh,)
1= Bikih,) + Bo(kih, > + . ..+ (—1yBy(k;h,)*

®)

Thus if |{;(k;h,)| <1, for all (k;h,) > 0*, with a, = 0,
stability of the process (B) is ensured in the linear case.
The process (B) coefficients are, therefore, chosen such
that these two conditions are satisfied as well as the
conditions which make the process (B) accurate to same
desired order of %#,. Any other freedom in choice of
process (B) coefficients may then be used to reduce the
computation at each step by eliminating unnecessary
matrix inversions or function evaluations.

Unfortunately the processes (B) require rather a large
amount of calculation per step. Consequently they are
appropriate chiefly for problems where there is an
extreme spread of time constants or where the work per
step can be reduced. Examples are distillation and heat
exchanger problems which are particularly suitable for
solution by processes (B) as the matrices A(x,) are tri-
diagonal and also the time constants generally have a
wide spread in magnitude. Thus, due to the availability
of special matrix techniques the amount of computation
per step is reduced and also full use may be made of
the good stability properties of the method. The other
methods considered do not show as much gain in this
type of problem although the method of Gear (1967)
does appear to possess similar advantages to those of
the processes (B) in such solutions. Gear’s method,
however, has not been tested here.

Another deficiency of the processes (B) is that no esti-
mate of the error at each step is given. However, this is
rectified in the next section where one such estimate is
developed. Also a further necessary improvement is

Ci(kihr) =

* It is quite apparent that this condition is more easily checked
than the complex plane condition.

Haines

some method for evaluating the matrix A(x,) in equa-
tions (3), (4) and (5) other than by analytical means.
This is because the functions ¢ might not be easily
differentiated in general problems and also it is more
convenient to write only the functions ¢ when pro-
gramming problems involving many equation systems.
Finally it is apparent that some reduction in the number
of evaluations of A(x,) at each step would save computing
time. Attempts to effect this have proved unsuccessful
(Haines, 1968) as much less stable methods are obtained
which are not of practical use. An alternative would
seem to lie in the choice of the process (B) coefficients
so as to make, say, ¢; = 0 if this is consistent with other
conditions on the process (B) coefficients.

An error estimate for the processes (B)

An approximation to the matrix A(x,) for a third order
process (B) is:

dilx, + %VA(xj)r) — i(x, — %)’A(xj)r). )
YA(xj)r

A(x;), = (x;), — (x;),— is the jth component of some
suitable small increment of x,. It has been found (Haines,
1968) that it is necessary to include the factor y in the
above approximation in order to improve the accuracy
of the approximation. The most suitable value of v is
obtained experimentally (Haines, 1968) for each process
(B) and is found to be the same for all problems tested.
However, it must be stated that for different processes
(B) the most suitable values does vary to some degree.
The value of y for the process (B) used in the next
section is given there along with the values of the process
(B) coefficients.

It is a simple matter to show that the approximation
(9) maintains the overall order of the third order process
(B) and it can be seen from the numerical experiments of
the next section that the approximation (9) is useful in
practical examples.*

The general third order processes (B) with error
estimate are written

A ij(x ) =

X,o1 =X, 4+ Rk, + Ry, + Rym, + Ryn, (10)
X,11 =X, + Rik, + Ry, + Rym, + Rin, (11)
k,=h(I — a;A(x)h) " $(x,) (12)
l, = h(I—ayA(x, + cik,)h,)~'d(x, + bik,) (13)
m, = h(I — azA(x, + c,k, + el )h,) !
$(x, + bk, +dil,)  (14)
n, = h(I— a,A(x, + csk, + eyl +gm)h,) !
(x, + b3k, +dyl, + fim,) (15)
n, = h(I — a4A(x, + csk, + e3l,
+ gim)h,) " d(x, + bk, +dol, +fim,). (16)
The error estimate is (¢;),4; = K((x;),+1— (X)), 1 1)
a7

where K is some constant depending on the values of the
process (B) coefficients used.

* It is suggested that the Runge-Kutta method be used, with some
suitably small value of A, for the initial step as no value of (x_1);
is available for evaluating the approximation (9).
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The expansions, in powers of 4,, of (10) and (11) may
be compared with the Taylor series. In order to ensure
that the two processes (B), x,, ; and x;,, should agree
with the Taylor series up to and including terms of
O(R3), the following equations must be satisfied.

1=R1+R2+R3+R4 (18)
1=Ri+ R+ Ry + Ry (19)

3= Ria; + Ry(a; + by) + Rs(as + b, + dy)
+ Ryas + by +dy + f)  (20)
3 = Ria; + Ry(a, + by) + Ri(as + b, + dy)
+ Ri(as + b3 +d, +f)) (1)
= R1a% + R, (a§ + (ay + apby)
+ Ry(@3 + ay(a; + by) + a1b,
+dy(a; + by)) + Ry(a3 + ay(bs + d, + 1)
+ biay + dy(a, + by) + fi(a; + by + dy))
(22
% = Riat + R; (a3 + (a, + a)by)
+ Ri(a3 + as(a, + by)
+ a b, + di(a; + by))
+ Ry(ag + ay(bs + d; + fi)
+ biay + dy(a; + by)
+ fi(as + by + dy)) (23)
3 = Ry(aye; + 3bD) + Ry(as(c, + ey)
+ 3(b2 + d1)?)
+ Ry(3(bs 4 d, + £1)?
+ ay(c; + e, + 81) (24)
3 = Ri(aye, +3b1) + Ri(as(c; + e)) + 3(by + dy)?)
+ Ry(3(b3 + a5 + f1)?
+ ai(cs + e; + g1)). (25)
Further restrictions are placed on the process (B) coeffi-
cients when the previously mentioned stability conditions,
which ensure high stability in linear problems, are applied.

For the third order processes (B) with error estimate
these conditions require

0 = a,a,a;a, — Ra,a3a, — Riaszas(a; — by)
— Ry(aya, + diby — ayb, — aydy)a,
— Ry(a1a,a3 — bia,a; — draya3
— fiaa, + fidiay + f1bra,
+ dybiay — fidyby) (26)
0 = a,a,a3a4 — Riayasa, — Riasas(a; — by)
— Ri(aya, + diby — ayb, — a,dy)as
— Ry(a,a,a; — biaya; — dhaa;
— filaa, + fidiay + f1bya, + diba;
—fidiby) @7
and also that the respective functions {;(k;h,) are such
that|{;(k;h,)| < 1 for all (k;h,) > O*.

The error estimate (e;),..; is obtained after the style
of the Kutta-Merson (Merson, 1957) error estimate.

* This condition is found to be satisfied by most sets of process
(B) coefficients even if the coefficients are chosen so that only
equations (18) through (25) are satisfied.

This is effected by subtracting the Taylor series x7,,,
from the expansions of x,.; and x;,.; in turn. The
following equations result:

Xpp1 = X1 = €y = (prx 1D 4 ppx(HED 4
+pr(ri+l,p) )h(ri+l) + O(h'r+2) (28)

X1 —xT1 = ey = (oD opx@HhD
+ O'px(,i+l'p))h(ri+l) +O(h£.+2)- (29)

p; and o; are constants and functions of the process (B)
coefficients. x@+!D js the sole non-zero term of the
(i 4+ Dth time derivative of x, when x, is linear. Other-
wise the terms x(*+1:9 for 1 < g < p are not assumed
to be in a specific order.

From (28) and (29)
Xpp1— X1 = ((py — opxGTHD 4,
+ (pp — T )XGTEPYREL L O(KEF2). (30)
Hence the error estimate for each component of x, ; is

(€oes = (pixG+1D | 4 p xR,
1 (o — o )XTFED 4 (p, — o )XTTLD),

(X1 — X405 @B

Two different error estimates are now possible for the
processes (B). The first is precisely analogous to the
Kutta-Merson estimate. For this estimate it is necessary
to assume that x, is linear over the interval 4,, i.e.
xithad =0 for 1 <g<p. The other estimate
(Haines, 1968) involves no such assumption and is
more accurate but requires more computer time. For
most purposes the first mentioned estimate will be satis-
factory (Haines, 1968) hence it will now be assumed
that x, is linear over the interval, 4,, for the evaluation
of the error estimate.

The coefficient K of equation (17) can now be written

_ Pt
(py —oy)
The general expressions for ¢, and o, are

p1 = Ria} + Ry(a + by(a5 + aja, + a}))

+ Ry(@ + bya? + ay(a;by + a5 + azb))

+ asy(bya, + ayd, + bydy) + ai(b, + dy))

+ Ry(@} + bsa} + dy(ab, + a2 + ayb))

+ fi(ba, + dia, + db, + dj

+ a3(by + dy) + ay(b; + d, + f1) + as(bsa,

- dyay +by) +fi@s +bs + d)) — 5. (33)
o, = Ria} + Ry(a} + by(a} + aja, + a%))

+ Ri(a} + bya} + dy(a\b, + @} + azb))

+ ay(ba; + axd; + bidy) + ai(b, + d)))

+ Ri(as® + bia} + dy(a\b, + a3 + ab))

+ fi(bay + dya, + diby + a5 + as(b, + d)))

+ ag’(bs + d; + f1) + as(bsa, + d(a; + by)

1
+fias + by + d)) — 5. (34)

K= (32)

This completes all that is necessary for the evaluation of
the error estimate (17).
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The control scheme suggested for use in conjunction
with the error estimate (17) is as follows. If 6 is the
maximum error allowed in the solution (@ is specified
by the user) then

if max |(¢),+1] >0 thenh,, ,=13h, (35
j

if max |(g;),+1| < 6/10 then h,, ; = 2h,.  (36)
j

The control scheme (35) and (36) is used in the next
section as indicated.

Experimental results

The solutions to several different nonlinear problems
have been computed using the processes (B). Many of
these were distillation and chemical kinetics problems.
For the purposes of a comparison of different inte-
gration methods a typical distillation example is used.
Some of the solutions of this problem were obtained
using the controlled processes (B) and others result from
the application of the processes (B) with a pre-set scheme
for varying h,. The latter give an indication of the size
of step, h,, which may be used consistent with stability
in each integration method.

First, the solutions using a pre-set scheme for 4, are
considered. The integrations were started at some given
initial point and continued towards equilibrium of the
distillation system. The step length in each solution
was doubled at every fourth step, having started at a
suitable initial value (k, = 1 second).

Total Tire ir necods “lo. soade

Fig. 2. Solution of a binary distillation problem by various
numerical integration methods

Fig. 2 gives a comparison, for a typical component of
the distillation example, of the different solutions
obtained by using various integration methods. As is
to be expected the explicit Kutta-Merson method
becomes unstable after only a few increases of the step
length (at h, = 16sec.). The solution using the pre-
dictor-corrector method FiFi IV (Sumner, 1965) has
only a limited accuracy for steps of up to 64sec., at
which point it too becomes unstable. The Adams-
Moulton predictor-corrector method is seen to be
completely unsuitable for this type of problem as steps
of 8seconds cause the solution to become unstable. The

Haines

third order process (B) solution is sufficiently accurate
(agrees with a Kutta—Merson solution, using a constant
step h, = 1sec., throughout the computation, to five
significant figures) and remains stable although steps of
2,048 seconds are used. For this particular problem, it
can be seen that significantly larger steps are permitted
if process (B) is used.

The third order process (B) with error estimate which
is used in the second set of solutions is

Xpp1 = X, +(19/9)k, — (43/18)/,
+(28/9)m, — (11/6)n, (37)
xrl‘+l =X, + (10/3)kr - lr
+ (7/3)m, — (11/3)n,  (38)
k.= h(I — hA(x)) " $(x,) (39
lr = hr(I - hrA(xr + kr))_l(l)(xr + kr) (40)
m, = hr(I - hrA(xr + _lfkr =+ '%lr))_l
é(x, + 3k, + 1) (41)
n, = h(I — %h,A(x,)) ' $(x, + (2/99)k,

+ 95991, + (2/99)m,) (42)

nt = h(I — 3h,A(x,) = $(x, + (21/44)k,
+ (19/49)1,+ (1/11)m,). (43)

The error estimate is
(ej)r+1 = (29/8)((xj)r+1 — (D 1)- (44)
In the above

A,) = ($i(x, +3yAx))) — di(x, — 3y A(x;),)
ure VA(xj)r

where ')/A(xj)r = 5((xj)r - (xj)r— 1)' (46)

Solutions of the distillation problem using the con-
trolled process (B) and the controlled Kutta-Merson
method have been computed (Haines, 1968). Both
solutions were obtained using a pre-set error bound of
0-0005. In fact the error estimate of the third order
process (B) ensured that this degree of accuracy was
present in the process (B) solution. As expected over
the first few intervals the Kutta-Merson scheme is more
efficient using less computer time. However, the process
(B) becomes increasingly more efficient as the integration
progresses and after a total time of 10,000 seconds the
steps are 500 times larger than those permitted in the
Kutta—Merson method. At this point of the solution
the ratio of computing times for the two methods is
approximately 1 : 1. However, the equilibrium values
are not attained until after 24 hours and not at
10,000 seconds. These results show that the process (B)
is most valuable for obtaining accurate solutions over
long ranges of integration, but that for short ranges of
integration no significant advantage is gained over the
Kutta—Merson scheme as the work per step is much
greater for the process (B).

(45)

Conclusion

The stability conditions applied to the processes (B)
are seen to be effective in practical problems and give
the processes (B) a significant advantage over the other
methods tested in this respect. Also the accuracy of the
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Implicit integration processes 187

third order process (B) is sufficiently good for most
practical purposes and the error estimate (44) is quite
adequate for ensuring some desired degree of accuracy
during the integration. Any type of problem of the
form (1) may be solved using processes (B) but systems
involving many equations require a large amount of
computer time per step. The processes (B) are most
suited to the solution, either (1), of problems in which
the matrix A(x,) is quite sparse (thus allowing the use
of special matrix invertion techniques: the processes (B)
perhaps benefiting more than other methods from these
time saving techniques) and where the time constants
have a wide spread in magnitude, or (2), of problems
having only a few equations in (1) and where the time
constants are as above. Distillation and heat exchanger
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Book Review

Direct Analogue Computers, by V. Paschkis and F. L. Ryder,
1968; 400 pages. (Interscience, 160s.)

It is rather depressing to see the march of time progressively
eroding one’s fundamental tenets. This disillusionment must
have happened to many of today’s engineers. Perhaps the
biggest disappointments of all can be awarded to the one-
time tinkerers, like myself, who enjoyed many happy hours
developing ingenious analogue computers for the solution of
problems in the fields of network analysis, circuit theory,
control systems, fluid flow, etc. One by one, the simple or
complex devices are being, or are claimed to have been,
replaced by digital machines, and the digital graphical display
systems attack the fortress of the rearguard defence, the
special intimacy of the operator and his analogue.

The title Direct Analogue Computers makes a distinction
between two types of analogue computer which I find hard
to appreciate. The demarcation line is claimed to be as
follows: if two fields of phenomena are described by the same
equations, then solution to problems in one field can be
obtained by experiments in the other field. This leads to the
direct analogue computer or simulator. For example, a
resistor capacitor network can be the direct analogue of a
heat conduction system. The other class of analogue com-
puter or ‘equation solver’ is given by noting that certain circuit
elements represent certain mathematical operations. The
original system is described by finite difference equations, and
these equations are represented by appropriate inter-

connections of circuit elements, and this, if I understand the
conclusion, is a clearly distinct method of system analysis.

This book is a spirited plea for the use of a particular class
of analogue machine in a wide class of problems in heat
conduction, fluid flow and structures. The authors have a
wealth of practical experience and this is shown by the many
examples in the text, and the emphasis on practical difficulties
such as scaling and effects which limit the overall accuracy.
It is heartening to learn of the significant applications which
have been and are being made by the electrical circuit analogue
computers.

Nevertheless, a lot of the material seems to belong to the
last generation of analogue computer technology, for good
amplifiers do not drift a few millivolts per hour, and
transistorised power supplies do not normally use thermionic
power devices. As what seems a final fling for direct analogue
computers, the authors devote their last chapter to the
description of an unbuilt machine with an on-line digital
machine connected to a beast with 10° relay contacts.

This volume is not likely to be of much appeal to the
majority of professional computer users. It can be of use to
engineers seriously considering the virtues of special purpose
devices and contains information on the pitfalls as well as
the advantages of this class of computer. I found it
interesting and provocative.

J. L. Douce (Coventry)
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