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The numerical solution of non-singular integral and integro-
differential equations by iteration with Chebyshev series

By M. A. Wolfe*

The method of Clenshaw and Norton for the solution of ordinary differential equations is applied
to certain integral and integrodifferential equations. Some equations considered by other authors

are solved.
(Received July 1968)

1. Introduction
In this paper the numerical solution of the equations

1
¥ = 1) + [ g 15 y(epa (L.1)
YO) = fle, 7o) + [ g, 13 9Ot s (—1) = ¥
(1.2)
Y0) = 1) + [ &lx, 5 (0 (1.3)
and
YO0) = £, Y6 + [ g, 15 9(O)r 5 ¥(—1) = ¥
(1.9

on the interval [—1,1] is considered, where p((x)
denotes the first derivative of y(x). It is assumed that
g(x,t; y(t)) has no singularities in the domain
—1<x <.

Under well known conditions, (1.1) and (1.3) define
operators which are contraction mappings in the Banach
space of functions y(x) (Pogorzelski 1966, Willett 1964,
Saaty 1967). A concise statement of the corresponding
conditions for (1.2) and (1.4) does not seem to be avail-
able in the literature ; however, a simple analysis shows
that the procedures to be described for their solution
are essentially equivalent to Picard iteration. In the
sequel it is assumed that the conditions required for the
operators defined by (1.1), (1.2), (1.3), and (1.4) to be
contraction mappings, are satisfied.

If A4 is the operator defined by any one of (1.1), (1.2),
(1.3) and (1.4), then the convergent sequence {y;(x)} is
generated from

Vi1 = Ay; 1.5
where for (1.1) and (1.3)
Yo =f(x) (1.6)
and for (1.2) and (1.4)
Yo=7Y. (L.7)

As is well known, the above procedure can be applied
at as many points on [— 1, 1] as required, but it is easy
to use the method of Clenshaw and Norton (1963) to
obtain in one iterative procedure a Chebyshev series
representation for y(x), which may be readily evaluated
at as many points as desired on [—1, 1].

The techniques for the construction, evaluation,
differentiation, and integration of Chebyshev series are

well known and the results required for this paper are
given in Clenshaw and Norton (1963).

By means of a simple linear transformation it is easy
to transform equations with arbitrary limits of inte-
gration to the limits exhibited in (1.1), (1.2), (1.3), and
(1.4), and it is assumed that if this is done, the resulting
equations may be solved iteratively according to (1.5).

2. The Fredholm equations

In this section the numerical solution of the Fredholm
equations (1.1) and (1.2) is considered.

For (1.1) the iterative sequence {y;(x)} is defined by
(1.6) and

yini() = f0) + [eCe t syt @)

Suppose that a Chebyshev series representation is
known for y,(x) so that neglecting truncation errors,

$ = ¥ @, T 22)

where the prime denotes that the term corresponding
toj = 0 is to be halved.

Suppose also that a Chebyshev series representation is
known for g(x, t ; y,(¢)), so that

g(x, t 3 yi(1) = kﬁo by (OT(0). @.3)

Then J‘_lgl(x,t; y,-(t))a’t::g:B,-,k(x)[l—(—l)"] 2.4)
where

B 1(x) = (bi, k- 1(X)—bj, 1 41(x))/2k, (k=1..m—1)

B; (x) = b;, ,—1(x)2m (2.5)
B; i 1(x) = b; p(X) [2(m 4 1).

Then an estimate of y; . ;(x) is given by
m+1
Yir1(x) = fx) + P B (x)[1 —(— D (2.6)

If a Chebyshev series is found for y;, {(x) then y;  »(x)
could be estimated and clearly the process could be
indefinitely continued.

These results suggest the following method for the
numerical solution of (1.1).

Assuming that the values of y,(x)) (/ =0,...n) are
given, where

X, = cos (—;11) (I=0...n) X))
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the values of g(x, x; ; y:(x)) (I = .n;k=0...n
are computed and from these the b, k(x,) are computed
as in Clenshaw and Norton (1963) From the b; ,(x)),
the B, ,(x;) are computed using (2. 5), and hence using
(2.6) an estimate of the y;,(x;) is obtained. Using
these values the coefficients a;,,,; of the truncated
Chebyshev series for y; , ;(x) are computed as in Clenshaw
and Norton. The procedure is continued until conver-
gence is reached, and is started by taking for yy(x) the
function f(x).

The method is easily extended to solve (1.2).

Taking the iterative scheme defined by (1.7) and

H400) = %, 3,(6) + j gx £yt (29)
and neglecting truncation errors, an estimate of y{ (x,)
is given by

PG = s, pi(x)))

+ kgoBi,k(xl)[l —(=DHI=0...n) (29)
where it is assumed that y;(x) is given by (2.2) and the
B; (x) are given by (2.5).

From (2.9), the coefficients c; ; are obtained from the
Y, (x)(I=0...n) as in Clenshaw and Norton so that
neglecting truncation errors,

Y x) = 20' i1 Ti(x). (2.10)

Integrating this series as in Clenshaw and Norton, a
Chebyshev series for y;,(x) is obtained, where the
coefficients a;, | ; are given by

4t 1,0 = € 1/2 + 2K;
@ii1,1=(Ci,1-1—¢Ci, 1 D21 (I=1...n—1)
iy 1,n = Cin_1/2n

iy 1,n+1 = Ci,n/2(n + 1).

In (2.11) K; is a constant of integration whose value for
each iteration is fixed by requiring that the value of
Yi+1(—1) obtained from the Chebyshev series is equal to
Y. This method of solving (1.2) is just an extension of
the method of Clenshaw and Norton (1963) for the
numerical solution of nonlinear ordinary differential
equations with boundary conditions and is in this sense
equivalent to Picard iteration.

(2.11)

3. The Volterra equations

In this section the numerical solution of the Volterra
equations (1.3) and (1.4) is considered.

For (1.3) the iterative sequence {y;(x)} is defined by
(1.6) and

Yiui0) =9 + [ g, 13 pi(e)r. 3.1)

The method proposed for the numerical solution of

(1.3) is similar to that proposed for (1.1) except that with

Cy,1 = cos (nkijn)(k,1 =0, ...n) (3.2

the result

[E60 13300 = 3 biatsids @)

Wolfe

where

dO,I = [Cl,l + 1]/2
d, = [Cy, — 1]/4

B.%
dk,l = [{Ck+1,1—(—1)k+1}/(k + 1)
—{Ci— 1, — (=D} /(k — 1)]/2
is used, where the b; ,(x,) are as in (2.3).
Then an estimate of the y;, ,(x,) is given by
Yip1(x) = flx) + kzzobi,k(xl)dk, (I=0...nm. 3.5

A Chebyshev series for y;, 1(x) is obtained as in Clen-
shaw and Norton (1963) and the process repeated until
convergence is reached.

This procedure is easily extended to solve (1.4) defining
the sequence {y;(x)} by (1.7) and

P20 = flx, yix) + j gx, £ 5 yi(e)dt (3.6)

whence an estimate of y{') (x) is given by

PGe) = st 3i) + 3 braldy 1 =0,

(3.7)

A Chebyshev series for y; , 1(x) with coefficients a;, , ;
is then obtained from the values of y{!) (x,) by inte-
gration as for (1.2).

4. Computational procedure

The simplest procedure in implementing the methods
described in Sections 2 and 3 would be to take » in (2.2)
to be the same for all values of i, and to take m in (2.3)
equal to n. This is computationally convenient but is
inefficient because less accuracy is needed in the early
iterations than in the later ones ; also it is not evident
a priori what value of n should be chosen to ensure
adequate representation of (y(x) and g(x, ¢ ; y(z)). A
more computationally economical procedure is not to
iterate to convergence with constant n but to increase »
by unity after each iteration. Starting with a low value
of n the computational labour on the early iterations is
reduced. Computational experiments have shown that
no advantage is obtained by iterating to convergence
before increasing n, and the Chebyshev series obtained on
convergence can be iterated with fixed n to ensure maxi-
mum accuracy with the final value of n obtained. With
m equal to n, this method is not only more efficient than
that with fixed » but also automatically obtains an
adequate value for n. An a posteriori estimate of the
accuracy of the final series is obtained by examining the
magnitudes of the last few coefficients.

A criterion for the convergence of the procedure
which has been found always to give at least the accuracy
required is that convergence is reached when

|yi(x) — yic1(Ge)| < Elyi(x)|(l=0...
where E is the given relative error in y(x).

n) (4.1

5. Numerical examples
(1) Fredholm integral equation

Elliott (1963) has solved Love’s equations and the
Lichtenstein—Gerschgorin equation using Chebyshev
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Non-singular integral equations

series and these are convenient examples to illustrate
the procedure of Section 2, especially as all three equa-
tions are amenable to iterative solution when Aitken
acceleration is used.

In the notation of Section 2, Love’s equations have

Sx)=1;g(x, 1; (1)) = my(@)/[1 + (x — 1)?] (.1
and
S =1;8(x,6y1) = —my@)/[1 +(x—1)?*] (5.2

respectively.
These equations are referred to as L.1 and L.2 in
Table 1. The Lichtenstein-Gerschgorin equation has

f(x) = 2 arctan [k sin 7x/{k? (cos 7x
+ cos? 7x) + sin? mx}]

g(x, 15 (1) = ky(®){(k* + 1)
— (k* — D) cos 7(x + 1)}

This equation is referred to as L.G. in the Table. The
table shows the results obtained for L.1, L.2, and L.G.
using the procedure outlined in Section 2 with m = n
and n increasing by unity after each iteration. The pro-
cedure gives convergence according to (4.1) with the
given value of E in n; iterations. The number of times
g(x, t, ; y (¢)) is evaluated is n,, the number of sets of
Chebyshev coefficients computed is 7., and the number
of evaluations of y(x) using its current Chebyshev series
is n,. The maximum absolute error allowed by the
convergence criterion on [—1, 1] is denoted by e. In
most cases the actual absolute error obtained is less
than e.

(5.3)*

(ii) Fredholm integrodifferential equation

There does not seem to be a suitable example of this
type of equation in the literature. Indeed the occurrence
of nonlinear nonsingular Fredholm integrodifferential
equations in applications is very rare. As an example
to illustrate the use of the method, therefore, an equation
has been constructed which is amenable to iterative
solution, namely the equation for which, in the notation
of (1.2)

Y=1
S(x, y(x)) = y(x) — {¥(x)}?/1500
g(x, t ; (1)) = e2={y(1)}2/3000

The analytical solution is e*+D, With E equal to
0-1 x 10—2 convergence according to (4.1) is obtained
in 8 iterations, the actual maximum absolute error in
y(x) on [— 1, 1] obtained being 0-2 x 10—2; starting
with n equal to 6, n, is 924, n, is 92, and n, is 184.

(5.9
and

* In this paper, k = 1-2
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(iii) Volterra integral equation

A number of equations are readily solved using the
procedure of Section 3, in particular the equation con-
sidered by Laudet and Oules (1960) and by Day (1966),
namely

) = 1 —x + [ (xe =2 4+ e pn)Pdr (5.5)
0

whose analytical solution is y(x) = ¢*, and whose
numerical solution is computed on [0, 1].
On transformation, (5.5) has, in the notation of (1.3),

) =0-x)2
g(x, ;) = [(x + Dexp{(z+1)(x—2t—1)/4}/2
+ exp{— (¢t + D¥2K»()}?

with analytical solution y(x) = exp {(x + 1)?/4}.

With n equal to 6, and E equal to 0-1 x 102, con-
vergence was obtained in 10 iterations, the values of
ns, n,, and n, being 1405, 126, and 115 respectively, and
the actual maximum absolute error in y(x) of (5.5) on
[0,1]is 06 x 10-3.

(5.6)

(iv) Volterra integrodifferential equation

A convenient example to illustrate the procedure of
Section 3 is the equation which has been solved by
several authors, for example Pouzet (1960), Day (1967),
Wolfe and Phillips (1968), namely

YD) =14 2x — p(x) + Ix(l + 2x)e!x-Dy(t)dt
° .7)
with y(0) = 1.
The analytical solution of this equation is y(x) = €*.
On transformation (5.7) has, in the notation of (1.4),
Y=1
Sx, y(x) = (x + 2 — p(x))/2
gx, 15 y(0) = (x + D(x +2)
exp {(t + D)(x — 1)/4}y(1)/8

with analytical solution y(x) = exp {(x + 1)%/4}.

(5.8)

With n equal to 4 and E equal to 0-1 x 10—3 con-
vergence is obtained in 6 iterations, the values of ng,
n,, and n, being 355, 52, and 50 respectively. The actual
maximum absolute error on [0, 1] of y(x) in (5-7) is
0-85 x 103,

The procedure of this paper compares favourably
with the higher accuracy predictor-corrector method
proposed by Wolfe and Phillips (1968), and with the
method of Day (1967).

Table 1
EQUATION n ng ne ny, n; E e
L.1 10 680 61 138 4 0-1x 102 0-2 x 102
L.2 10 920 78 154 5 0-1 x 10—4 0-8 x 104
L.G. 10 1498 116 240 7 0-1 x 102 0-1 x 10-2

¥202 YoJe\ g1 uo 1senb Aq L£02GE/€6L/2/ZL/e1o1e/|ulod/woo dno-olwepeoe//:sdiy woij pepeojumod




196

6. Discussion

From consideration of various examples which have
been tried, and from those given in this paper (which do
not necessarily yield the best results) it is concluded that
equations of the general types given by (1.1), (1.2), (1.3),
and (1.4) are amenable to solution using Chebyshev
series in conjunction with the method of successive
approximations, provided that the conditions on the
functions f'and g are satisfied which makes the operators
corresponding to the equations contraction mappings,
and provided that f and g are capable of representation
by Chebyshev series.

It may be possible to reduce the number of iterations
required for convergence in each case by the application
of some technique such as Aitken acceleration which is
known to succeed for (5.1), (5.2) and (5.3), but the
technique used will in general depend upon the con-
vergence properties of the sequence of unaccelerated
iterates.

The solutions given in this paper can be improved
upon in at least two ways—(i) the solution obtained
could be regarded as the initial iterate in a new sequence
in which # is kept fixed; (ii) the solution obtained could
be regarded as the initial iterate in an iterative procedure
of higher order of convergence. These suggestions have
not been implemented since it is primarily the purpose
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8. Note added in proof

It has been brought to the attention of the author by
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Volterra integral equations in a different way by Sag
(1966). Sag also discusses the special form taken by the
method when applied to linear integral equations and
to some singular equations.
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