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Previously published algorithms

The following algorithms have recently appeared in the
Algorithms Sections of the specified journals.

(a) Communications of the ACM (October-December 1968)

333 ALGOL PROCEDURES FOR THE FAST
FOURIER TRANSFORM

Two procedures, based on the Cooley-Tukey algorithm, are
given. The first computes either the complex Fourier transform
or its inverse. The second either computes the Fourier coeffi-
cients of a sequence of real data points or evaluates a Fourier
series with given cosine and sine coefficients.

339 AN ALGOL PROCEDURE FOR THE FAST
FOURIER TRANSFORM WITH ARBITRARY
FACTORS

Computes the finite Fourier transform for one variate of
dimension nv within a multivariate transform of n complex
data values.

340 ROOTS OF POLYNOMIALS BY A ROOT-
SQUARING AND RESULTANT ROUTINE

Finds simultaneously zeros of a polynomial of degree n with
real coefficients by a root-squaring and resultant routine. It
supersedes Algorithm 59.

341 SOLUTION OF LINEAR PROGRAMS IN 0-1
VARIABLES BY IMPLICIT ENUMERATION

Solves the integer linear program

minimise A[0, 1] X x[1]1 + ... + A[0, n] X x[n]
subject to A[i, 11 X x[1] + ... + A[i, n] x x[n]
+ Ali,01>0G=1,...,m)
and x[j1=00r1(G=1,2,...n).

342 GENERATOR OF RANDOM NUMBERS SATIS-
FYING THE POISSON DISTRIBUTION

Generates a pseudo-random number in the interval 0,1 and
finds the number px such that

random < (probability that the number is px or less)
and
random > (probability that the number is px — 1 or less).

343 EIGENVALUES AND EIGENVECTORS OF A
REAL GENERAL MATRIX

Finds all the eigenvalues and eigenvectors of a real general
matrix. The eigenvalues are computed by the QR double-step
method and the eigenvectors by inverse iteration.

(b) Applied Statistics (March 1969)

AS8 MAIN EFFECTS FROM A MULTI-WAY TABLE

Calculates the general mean and main effects from a multi-
way table stored in standard order and stores them end to end
in another array. Algorithm AS9 performs the inverse
operation.
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AS9 CONSTRUCTION OF ADDITIVE TABLE

Produces a multi-way table from a general mean and set of
additive main effects supplied in a 1-way array. Algorithm
ASS8 performs the inverse operation.

AS10 THE USE OF ORTHOGONAL POLYNOMIALS

Computes the values of successive polynomials Py, Py, . . ., P,_
orthogonal to a given set of n x-values. The subroutine pro-
duces the polynomial values one set at a time, successive calls
yielding successive polynomials.

ASI1 NORMALISING A SYMMETRIC MATRIX

Given a symmetric matrix X, stored in lower triangular form,
the subroutine computes the diagonal matrix Y whose values are

0 if X@G,iH=0
[X(i,)]~ Y2 otherwise.
It then overwrites X by the normalised form YXY.
AS12 SUMS OF SQUARES AND PRODUCTS MATRIX

Accumulates the weighted or unweighted means and corrected
sums of squares and products matrix for variate values pre-
sented unit by unit. An auxiliary subroutine must be supplied
by the user to get the data values for successive units.

(¢) Numerische Mathematik (September-November 1968)

RATIONAL CHEBYSHEV APPROXIMATION USING
LINEAR EQUATIONS

Generates best, in the Chebyshev sense, weighted rational
approximations to continuous functions.

The following papers, containing useful algorithms, have
recently appeared in the specified journals.

(a) Numerische Mathematik (November 1968)

TRIDIAGONALISATION OF A SYMMETRIC BAND
MATRIX (Band 12, Heft 4, pp. 231-241)

(b) BIT (July 1968)

ON THE PRIME ZETA FUNCTION (Bind 8, Hefte Nr. 3,
pp. 187-202)

New algorithms

Algorithm 39

AREAS UNDER THE NORMAL CURVE
A. G. Adams
Glaxo Research Ltd.
Greenford

Author’s Note:
The procedure normaltails evaluates

t= V%TLZXp(—u—;)du

using two different approximations.
The first approximation is valid for z << 1:28 and takes the
form
t=05—zf(z?)

where f'is a rational function.
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The second approximation is valid for z> 1-28 and takes
the form

= ﬁexp(— %Z)f(z)

where f is again a rational function. Both approximations
minimax the relative error in 7.

The procedure was tested on an ICL1903. The results
were compared with tables, Abramowitz and Stegun (1964),
and with the algorithm by Hill and Joyce (1967). The
observed errors were within the limits stated in the comment.

Although no timings have been made, it is expected that
the procedure will be fast when z << 1-28 and at least as fast
as an iterative method in other cases.
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procedure normaltails (z, Iltail, rtail); value z;
real z, ltail, rtail;
comment normaltails calculates the areas under the normal
curve. On exit ltail equals the area from — infinity to z and
rtail equals the area from z to infinity. The smaller of the two
areas has relative error <<1:0;9 — 10 and the larger has
absolute error < 1-0;9 — 11;
if z = 0-0 then ltail := rtail := 0-5 else

begin real ¢, y; Boolean s;

s :=2>0-0; z := abs(2);

y:=05X%x2zXz

if z << 1-28 then

t:=0-5— z x (0-398942280444 — 0-399903438504

X y[(y + 5-75885480458 — 29-8213557808/

(y + 2-62433121679 + 48-6959930692 /(y +

5-92885724438))))

else

begin
y = 0-398942280385 X exp (— y);
t:=if y/z=0-0then 0-0 else
y [ (z — 0-000000038052 + 1-00000615302 /
(z + 0-000398064794 + 1-98615381364 /
(z — 0-151679116635 + 5-29330324926 /
(z + 4-83859128080 — 15-1508972451 /
(z + 0-742380924027 + 30-7899330340 /
(z + 3-99019417011))))))
end;

if s then
begin
Itail := 1-0 — ¢t; rtail :=t
end

else
begin
ltail := t; rtail :=1-0 — ¢
end

end normaltails

Algorithm 40
SPLINE INTERPOLATION OF DEGREE THREFE

H. Spith

Institut fiir Neutronenphysik

und Reaktortechnik
Kernforschungszentrum Karlsruhe
Germany

Author’s Note:

If we consider the problem of interpolating between given
data points (x;, y;), i =1,2,...,nwith x; < x, <...<x,
by means of a function s that is smooth in the sense that

Xn
s € C?[xy, x,] and J [s”(x))?dx is a minimum, we know that
X1

there is a unique s with these properties, see Greville (1967),
and that s consists in each interval [x;, x; ],i=1,2,...,
n — 1 of a third degree polynomial with s”(x;) = s”(x,) = 0.
It is clear that s is completely determined by the conditions
s(x;)=y;,i=1,2,...,nand the values s”(x,), i = 2,3, .. .,
n—1.

The values s”(x;), i =2,3,...,n — 1 are obtained by
solving the tridiagonal system of linear equations

Ax;_18"(x;_)) + 2(Ax; + Ax;_)s"(x;) + Ax;s”(x; 4 )

=6(§%:_2§z—:1) i=2,...,n—1

The matrix of coefficients in this system is symmetric and
strictly diagonally dominant. Varga (1962) has shown that
such a matrix is positive definite and Martin et al. (1963) have
shown that in this case the elimination method does not
need pivoting and is numerically stable.

As s” is a linear function in each interval [x;, x; ],
i=1,2,...,n—1 it is easy to calculate s”(¢) for any ¢
with x; < < x,. Thus in order to integrate s over [4, B]
with x; < 4 < B< x, one makes use of the formula

g
[[sdx = 38 — axst@) + s(B)
1 " "
- 2—4(/3 — a)3(s"() + 5”(B))
which is valid for x; < a < B< x;,,i=1,2,.. .,
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procedure splinefit (n, x, y, f2, kenn, der, m, t, f, EXIT);
value n, m, kenn, der; integer n, m, kenn; Boolean der;
array x, y, f2, t, f; label EXIT;

comment For ngiven data points (xy, ¥1), (X2, ¥2)s « « «s (X0, ¥)
this procedure calculates for kenn < 0 the values f2[i] = s”(x;),
i=1, 2,..,n that characterise the natural spline function of

degree three through the given points. If kenn = 0 the pro-
cedure also gives at the m abscissae t[j] with x; < t; < ...
< t, < x, the interpolated values f[j1 = s(t;) and further if
der = true the values flm + j1 = s'(t;). For kenn >0 the
array f2 is an input parameter and the interpolation and
optionally the differentiation at the given values t; is performed.
The formal label EXIT is used if either n <3 or t; < x;
orty, > X,;
begin integer i, j, nl, n2, k; real z, hl, h2, h3, h4;
array h, dy[l :n)], s[1 :n — 1), e[l : n — 2];
if n < 3 then goto EXIT;,
nl:=n—1;,n2:=n-2;
for i := 1 step 1 until #1 do
begin
h[ig 1= x[i + 1] — x[i]; dyli] := (li + 11 — yliD / Ali]
end;
if kenn > 0 then goto CALCULATE;
f2[1] := f2[n] := 0;
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for i := 2 step 1 until n1 do f2[i] := 6-0 X (dy[i] — dy[i—1]); for j := 1 step 1 until m do
z:=0-5/([1] + A[2D); s[1] := — A[2] X z; begin
ell] :=f2[2] X z; k :=1; LABEL: if 1[j] > x[i] then
for i := 2 step 1 until n2 do begin
begin . . ' ki=ijii=i+1;
Ji=i+1;z2:=1-0/(2-0 x (Ali] + A[j] + Ali] X slk]); goto LABEL
s[i] = — hlj1 X z; eli] := (f2[71 — Ali] x elk]) x z; end
=1 else
end; begin
f2[n1] := eln2]; . Al := 1[j] — x[k]; K2 := 1[j] — x[il;
fOIi)l := n2 step —1 until 2 do h3 := hl X h2; h4 := f2[k] + hl x s[k];
egin . . z := (f2[i] + f2[k] + h4) [ 6-0;
k:=1i—1;f2[i] := slk] x f2[i + 1] + e[k] fLi1:= ylk] + k1 X dylk] + b3 X z;
end; if der then f[m + j1 := dylk] + z x (hl + h2)
if kenn < O then goto FINALE; + h3 X s[k]/6-0
CALCULATE: end
if 7[1]1 < x[1]V #[m] > x[n] then goto EXIT; end;
for i := 1step 1 until #1 do s[i] := (f2[i + 1] — f2[i]) / Alil; FINALE:
i:=2k:=1; end splinefit

Contributions for the Algorithms Supplement should be sent to

Mrs. M. O. Mutch
University Mathematical Laboratory
Corn Exchange Street
Cambridge
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