208

Mini-COBOL

By P. Giles*

A detailed specification of a subset of COBOL for teaching use with all compilers is described in
a format similar to the COBOL 1965 report. The subset has been designed so that it will compile

on almost all existing compilers with the very minimum of alterations.

It has also been biased,

where possible, towards the inclusion of features demonstrating the basic principles of COBOL
and of clear and well structured programs. A test program and further details are available on
request from U.K. Giro Account 13 493 0002, for a transfer of five shillings.

(Received January 1969)

The major problem in the efficient utilisation of compu-
ters in commercial and administrative areas lies in the
inability to state the detailed application in such a way
that computer programs are developed and maintained
with a minimum of time and programming effort
(Harder, 1968). Besides ameliorating this problem,
COBOL was intended to speed up the training of
personnel in the design of data processing systems, and
in the development of computer programs for such
systems. At first, the running time of an object program
was naturally compared unfavourably with that of the
corresponding program coded directly in assembly
language. As a result, efficiency in the compiled object
code took a high place in the order of priorities of
the compiler writers. The natural development of the
language was therefore somewhat biased towards the
efficiency requirements of users and a wide variety of
options was provided, thus increasing the points of
difference between machines and making the practical
application of compatibility more difficult. If basic
COBOL can be taught to systems people as well as to
programmers, the communication gap between the two
will be much reduced and file structures will be more
precisely defined in terms of the problem to be solved.

The national bodies that examine students are con-
cerned with the problem of compatibility between
colleges. A completely compatible language—even at a
very low level—would ease some of the problems of
teaching and make COBOL appear to the novice to be
much easier to learn. It would also establish a standard
by which competency in elementary programming could
be measured. This subset has been designed with these
aims in view, and after considerable discussion and
criticism within the COBOL Specialist Group of the
British Computer Society.

Documentation and ease of understanding

Data description at the elementary level has been
restricted to the use of the PICTURE clause (COBOL 65
Manual), but the COPY clause has been dropped
because it is not available in several small compilers and
is of little value where students are writing many short
disconnected programs. The frequent use of NOTE
should ensure that all programs are readily understood
and should buttress the reduction in readability caused
by limiting data-names to six characters for very small

machines. For the same reason, qualification and
sections have been dropped, although they are valuable
aids to understanding. The problem of compatible
printer format was incapable of a complete solution,
except by an insistence on uniform spacing for every
WRITE verb. By permitting spacing from 0 to 2 lines
the impression is given that any desired number could be
obtained in a large configuration.

Compatibility

One of the main aims of Mini-COBOL is compati-
bility across all existing compilers, subject only to the
restriction that every feature included must be good
COBOL. For this reason, research started with two
existing small compilers and discussion centred round
the highest common factor of these two. Anything that
exemplified points of principle in programming practice
was retained wherever possible—for example the label-
ling of magnetic tape, or other files. Features that add
polish, or permit the programmer to write less well-
structured programs more easily, as does ALTER, were
dropped. Arithmetic expressions and condition names
were left out with regret. This resulted in a simple and
straightforward structure in the Procedure Division,
entirely compatible except for the verb WRITE. In the
Data Division some difficulty was experienced with
LABEL RECORDS STANDARD, because COBOL 65
makes provision for greater operating flexibility by
permitting the label to be specified directly to the
operating system, without appearing in the program
itself anywhere. However, it was found that in practice,
in one large much-used compiler, the use of VALUE OF,
although not required, did not prevent a successful
compilation. The caution diagnostic produced could
be ignored with safety. For good documentation, it
would seem helpful to specify the contents of the label
record within the program; and it seemed a pity to omit
the whole subject of file labels just because of a more
advanced development in the flexibility of operation of
large machines. For the same reason, it was thought to
to be good documentation practice to insist on a state-
ment of the memory size required, expressed in a standard
unit, within the Configuration Section. In any case,
this section must be rewritten on any change of machine,
so a conversion from CHARACTERS to WORDS can
then be carried out if necessary.

* Scottish Amicable Life Assurance Society, P.O. Box 13 Craigforth, Stirling

20z UoJe € Uo 1senB Aq 0ZE£9E/80Z/E/Z | /o101ME/|UfLO9/Woo dNo"dlWapEeoe)/:SARY WOy POPECIUMOQ

Mini-COBOL 209

Any remaining incompatibilities have been listed in
the Appendix together with details of the machines and
compilers concerned.

Specification

The following specification has been drawn from the
COBOL, Edition 1965, Report published by the U.S.
Government Printing Office.

Chapter 1—Notation used in Format

A General Format is the specific arrangement of the
elements of a clause, a statement, or a paragraph.

Elements, which make up a clause or a statement,
consist of upper-case words, lower-case words, level
numbers, brackets, braces and special characters.

Lower-case words must conform to the rules for the
formation of COBOL words, except for statement
(Chapter 2) and character-string (Chapter 6 under
PICTURE).

Level numbers, appearing within the framework of
Data Division entries, are required when that entry is
used.

When a portion of a general format is enclosed in
square brackets, [], that portion may be included or
omitted at the user’s choice. Braces, { }, enclosing a
portion of a general format, mean that a selection of
one of the options contained within the braces must be
made. In both cases, a choice is indicated by vertically
stacking the possibilities.

In the general format, the ellipsis represents where
repetition may occur at the user’s option. The portion
of the format that may be repeated is determined as
follows. Given ... in a clause or statement format,
scanning from right to left, determine the] immediately
to the left of the . . . ; continue scanning right to left and
determine the logically matching [; the ... applies to
the words between the determined pair of delimiters.

Chapter 2— Definitions that differ from those of COBOL 65
Character Set The complete character set consists of

the 41 characters described as numeric, alphabetic,
editing, or punctuation characters.

EDITING CHARACTER
FUNCTION GRAPHIC PURPOSE
Sign control - Fixed insertion in numeric
symbol edited items or literals.
Zero suppression V4 Suppression of leading

zeros by substitution for
9 but only to the left of
the decimal point.
Special insertion in numeric
edited items serving both
alignment and physical

Decimal point

representation.
PUNCTUATION CHARACTER
FUNCTION GRAPHIC PURPOSE
Period or full To terminate a source pro-
stop gram entry.
Quotation mark » To bound a nonnumeric

literal.

To bound subscripts, or
repetition in the Picture
clause.

To act as the word separator.

Left parenthesis (
Right parenthesis)

Space

Condition A simple condition only, that is, any single
relation condition.

Constant, Figurative Fither the reserved word that
represents a numeric value (ZERO), or the reserved
word that represents a string of one or more blank
characters (SPACES).

Data-Name, Subscripted An identifier that is composed
of a data-name followed by one subscript enclosed in
parentheses.

Level Number A number composed of two digits that
must have one of the values from 01 to 05 inclusive.
Literal A string of not more than 30 characters bounded
by quotation marks; or composed of not more than ten
numeric characters, that may contain either or both a
decimal point, that cannot be the rightmost character,
and a unary operator that must be the leftmost character.
Operator, Unary A minus (—) sign that is prefixed to
a literal. A plus sign is implied in the absence of a
minus sign,

Paragraph A sentence containing an EXIT statement
must form a paragraph on its own.

Sentence A sequence of one or more statements, the
last of which is terminated by a period followed by a
space. A compiler directing statement, or the statement
EXIT must each form a sentence on its own.

Statement A compiler directing statement begins with
the verb NOTE. A conditional statement is either an
IF statement, a READ statement, or a statement which
specifies a SIZE ERROR option.

Table There must not be more than 30 tables in one
program and no one table must require more than
4,000 characters.

Word A string of not more than six characters, of
which the first is alphabetic, from the set of 37.

Word, Reserved Besides the words listed in the
COBOL 65 Manual, those listed by each implementor
should also be avoided.

Chapter 3—Language concepts

The complete character set for Mini-COBOL consists
of the 41 characters defined in Chapter 2. Where
necessary character substitutions may be made, such as
apostrophe for quotation mark. Similarly, imple-
mentors may provide for words exceeding six characters
in length, but all words used in a Mini-COBOL program
must be limited to the definition given in Chapter 2, in
order to ensure that all compilers distinguish between
different words by the same criteria. Consecutive spaces
may be used to improve readability.

A figurative constant may be used wherever a literal
appears in a format, except that numeric literals do not
permit the insertion of SPACES. The figurative con-
stant consists of one character, when it is the operand of
a DISPLAY or STOP verb; elsewhere it consists of a
string of characters equal in length to the operand with
which the statement associates it.

Chapter 4—Identification Division

The program-name must conform to the rules for a
word and must not include hyphen. In some imple-
mentations, the last two characters must be numeric and
will then form a priority number.

20z UoJe € Uo 1senB Aq 0ZE£9E/80Z/E/Z | /o101ME/|UfLO9/Woo dNo"dlWapEeoe)/:SARY WOy POPECIUMOQ

210 P. Giles

Chapter 5—Environment Division

In this division, which is composed of two sections,
all names other than file-names must be specified by the
implementor. In the Configuration Section, CHARAC-
TERS should be used in preference to WORDS where
the implementor permits, since this provides a more
accurate measure of the memory size required by the
object program. The size should not make provision
for the executive or supervisor, unless the implementor
specifies otherwise. Either or both of these may require
to be altered whenever the Environment Division is
rewritten for a different configuration. In the Input-
Output Section, all files named must bear a one-to-one
correspondence to the files described in the Data Divi-
sion. The number of files must not exceed six, and each
must be assigned to a different hardware unit. If more
than one format is to be handled by one hardware unit,
then each must be described as a separate DATA
RECORD within the file assigned to that unit.

Chapter 6— Data Division

This division is subdivided into the File Section and
the Working-Storage Section. The File Section defines
the contents of data files stored on an external medium.
Each file is defined by a file description followed by a
record description or a series of record descriptions.
The file description entry consists of the level indicator
FD followed by a data-name and a set of independent
clauses. These clauses specify the relation between
logical and physical records, the name of the label
record contained in the file, and the names of the data
records which comprise the file.

A record description has hierarchical structure and
therefore the clauses used with an entry may vary
considerably, depending whether or not it is followed
by subordinate entries. Every entry of file or data
description is terminated by a period. Any clauses
used must be present in the order specified.

The Working-Storage Section describes records which
are not part of external data files but are developed and
processed internally. They include constants whose
value is assigned in the source program but does not
change during the execution of the object program.

BLOCK integer RECORDS must be omitted for a
file that is assigned to a card reader, punch, or printer,
or when integer takes the value 1. The implementor
must specify when it may be used and when LABEL
RECORDS STANDARD may be used. The literal
must be nonnumeric and composed of not more than
eight characters. Both a LABEL RECORD clause and
a DATA RECORDS clause are required for every file-
name. Every record-name must appear in a data
description entry under level 01 and the order of appear-
ance should be the same as in the preceding file descrip-
tion. The presence of more than one record-name
indicates that the file contains more than one type of data
record and that they all share the same area of memory.
Any input operation on the file will overwrite data in all
record descriptions for that file.

Level number may have any value from 01 to 05
inclusive and the following clauses must occur in the
order given. FILLER, REDEFINES, and OCCURS
are not permitted at level 01. Neither REDEFINES
nor OCCURS are permitted in an entry which is sub-
ordinate to an entry containing an OCCURS clause, and

they must not both be present in the same entry-
PICTURE must be used for every elementary item and
nowhere else. VALUE must be used for every constant
elementary item within the Working-Storage Section and
nowhere else. No VALUE clause may form part of an
entry subordinate to an entry containing REDEFINES
or OCCURS. The literal in a VALUE clause must
satisfy the rules for a MOVE into the item in which it is
used.

When a REDEFINES clause is used, the entries
describing data-name must immediately follow the
entries describing previous-data-name, and the level of
the first entry for each must be the same. Previous-
data-name may not be subscripted nor subject to RE-
DEFINES. The memory areas described by previous-
data-name and by data-name must be the same, and any
sub-division into elementary items must subdivide the
area in the same way. Redefinition starts at previous-
data-name and ends when the same level number is
encountered in the entry containing REDEFINES.
Every OCCURS clause must specify an integer larger
than zero as a numeric literal. The OCCURS clause is
used to define tables which are described in Chapter 3.
The data-name which is the subject of an entry containing
OCCURS must be subscripted whenever it is used as an
operand, as must any subordinate data-name.

The PICTURE clause must not contain more than
15 characters in the 'string. The size of the data item
thus defined must not exceed 10 characters and sign if
numeric or 30 characters in any other case. There are
three categories of data that can be described with a
PICTURE clause—alphanumeric (X), numeric (9 S V),
and numeric edited (Z9.V-). Apart from these
characters specified no other may appear in the character
string except a digit within parentheses specifying
recurrence of the previous character a stated number of
times. S indicating the presence of an operational sign
and V indicating the assumed decimal point may not
occur more than once each in any PICTURE. In a
numeric edited PICTURE any of the editing characters
may appear but X or S must not appear. Only one
decimal point—either V or - — may be present and the
sign symbol ~ must be either the first or last character
of the PICTURE if it is present. The size of a data
item defined by a PICTURE consists of the number of
characters present, or implied by recurrence, in the
PICTURE excluding S or V. Every PICTURE must be
terminated by a period which indicates the completion
of that entry.

Chapter T—Procedure Division

This division is composed of paragraphs, sentences,
and statements. An imperative sentence is a sequence
of one or more imperative statements, terminated by a
period and a space. Wherever an imperative statement
is permitted in a format, a series of imperative statements
is also permitted. Wherever a literal appears in a
format, a figurative constant may be used. Every word
in this division of the source program must be either a
reserved word, a word defined in the Environment or
Data Division, a paragraph-name not used in any other
division, a literal, or a figurative constant.

A condition causes the object program to select
between alternate paths of control, depending upon the
truth value of a test. Conditions are used in IF state-

20z UoJe € Uo 1senB Aq 0ZE£9E/80Z/E/Z | /o101ME/|UfLO9/Woo dNo"dlWapEeoe)/:SARY WOy POPECIUMOQ

Mini-COBOL 211

ments and cause a comparison of two operands, which
must be either both numeric or both alphabetic. They
can be literals composed of the corresponding characters
and bounded by quotation marks only if alphabetic, or
an appropriate figurative constant. For numeric oper-
ands the algebraic values are compared. Zero is
considered a umique value regardless of the sign.
Unsigned numeric operands are treated as positive for
purposes of comparison. Alphabetic operands must be
of the same length. Z is at the high end of the alphabet
and space is lower than A.

The ROUNDED option and the SIZE ERROR
option may either or both be used in any of the five
arithmetic statements. The resultant is that identifier
associated with the result of an arithmetic statement.
When rounding is requested the absolute value of the
resultant is increased by one in the least significant digit
whenever the most significant truncated digit is greater
than or equal to five. If, after decimal point alignment,
the value of a result exceeds the largest value that can be
contained in the resultant, then a size error condition
exists. Rounding takes place before checking for size
error. Division by zero always causes this condition.
If SIZE ERROR is specified, then the resultant is not
altered by the statement but the imperative statement in
the option is executed. Otherwise the resultant is
unpredictable.

The READ statement makes available the next logical
record from an input file and specifies performance of
imperative statement(s) when end of file is detected.
Only one area is allocated to each file, even if the file
contains more than one type of record. Each READ
statement causes a new record to replace the one read by
the previous READ statement. An OPEN statement
must be executed for a file prior to the execution of the
first READ statement for that file. After the execution
of the imperative statement of the AT END phrase, a
READ statement for that file must not be given without
prior execution of a CLOSE statement and an OPEN
statement for that file.

In the five ADD, SUBTRACT, MULTIPLY, and
DIVIDE statements every identifier must refer to a
numeric elementary item, except that the identifier
immediately following GIVING may refer to a numeric
edited elementary item. Each literal must be numeric
and ZERO must not be used. Decimal point alignment
is automatic and truncation of digits at either end
of the resultant may occur. The SIZE ERROR and
ROUNDED options are provided for such a con-
tingency. Truncation at the most significant end may
otherwise produce an unpredictable resultant. The
operational sign may be truncated.

Any MOVE statement in which the sending and
receiving items are both elementary items is an ele-
mentary MOVE. Both such items must have the same
category specified in their PICTURE clause, except that
where the receiving item is numeric edited the sending
item must not be other than numeric, and where the
receiving item is alphanumeric the sending item may
have any category other than numeric. Where the
sending item is numeric, alignment by decimal point and
any necessary zero filling takes place except where zeros
are replaced because of editing requirements. If the
sending item has more digits to the left or right of the
decimal point than the receiving item can contain, the

excess digits are truncated. If the receiving item has no
operational sign, the absolute value of the sending item
is used. Where the sending item is not numeric, its
characters are successively transferred to those of the
receiving field starting with the leftmost. The remainder
of the receiving item, if any, is filled with spaces. The
receiving field must not be too small, since truncation
would occur. A numeric literal or ZERO belongs to
the category numeric. A nonnumeric literal or SPACES
belongs to the category alphanumeric. In any MOVE
that is not an elementary MOVE, both the sending and
receiving items must be composed of corresponding
elementary items specified in the same order in the
PICTURE of each group item. Each pair of corre-
sponding elementary items must be equal in size and
must be alphanumeric. The sending and receiving items
of each pair must satisfy the rules for an elementary
MOVE.

DISPLAY may operate on an elementary item, a
group item, or a literal provided that its length does not
exceed 30 characters. Ifa figurative constant is specified
only one character will be displayed.

A WRITE statement cannot be executed for a file
unless the file is open. The record-name is the name of
a logical record in that file, which is no longer available
after the WRITE statement has been executed. All output
records for a single file occupy the same area of storage.
Vertical spacing of a record on the printed page is
specified by integer, which may only take the value
0, 1o0r2.

The OPEN statement for a file must be executed prior
to the first READ or WRITE statement for that file.
A second OPEN statement for a file cannot be executed
prior to the execution of a CLOSE statement for that
file. The OPEN statement initiates the processing of
both input and output files. It performs checking and/or
writing of labels and other input-output operations. It
does not obtain or release the first data record.

If a CLOSE statement has been executed for a file, a
READ or WRITE statement for that file must not be
executed unless an intervening OPEN statement for that
file is executed. A file must be opened before it can be
closed. Only one CLOSE can be given for a file for
each time that it has been opened. When a file is closed,
the data area reserved for the file is released, the reel is
rewound if the file is on magnetic tape, and other closing
conventions specified by the implementor are performed.
If LABEL RECORDS STANDARD is specified and if
ending labels have been implemented, then they are
written on output files, but only checked on input files if
the imperative statement in the AT END phrase has
been executed since the preceding OPEN statement.

The GO TO statement must be the only or the last
statement in a sentence. An automatic return to the
statement following a PERFORM statement is estab-
lished after the specified exit-paragraph, or after the last
statement of the performed paragraph, if the THRU
option has not been employed. This last statement
must not be a GO TO statement. If control passes to
these paragraphs by means other than a PERFORM
statement, control passes through the last statement of
the procedure to the following statement, as if no
PERFORM statement mentioned this procedure. There
is no necessary relationship between paragraph-name
and exit-paragraph-name except that a consecutive

20z UoJe € Uo 1senB Aq 0ZE£9E/80Z/E/Z | /o101ME/|UfLO9/Woo dNo"dlWapEeoe)/:SARY WOy POPECIUMOQ

212 P. Giles

sequence of operations is to be executed commencing
with the first and terminating with the EXIT. A pro-
cedure to be performed may include GO TO and/or
PERFORM statements except as stated above. If it is
possible to replace two GO TO statements by a PER-
FORM statement this should be done in order to
simplify and clarify the logical sequence of operations
thus defined. If a procedure referred to by a PERFORM
statement includes another PERFORM statement, the
procedures specified by the included PERFORM must
each either be totally included in, or totally excluded
from any procedure specified by the including PER-

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.

computer-name.

OBJECT-COMPUTER. computer-name MEMORY integer {

INPUT-OUTPUT SECTION.

FORM. Thus, if two or more procedures, each called
by a separate PERFORM, have both commenced their
execution but not reached their corresponding exit
paragraphs at any point of their execution, then any
procedure that commences within another procedure
must not contain or specify the exit paragraph of that
other procedure.

The single word statement EXIT must appear in a
paragraph by itself. The NOTE statement alone must
form the last sentence of the paragraph in which a
commentary is required. The commentary will be pro-
duced on the listing, but will not be compiled. Any

CHARACTERS}
WORDS

FILE-CONTROL. SELECT file-name-1 ASSIGN implementor-name-1.
[SELECT file-name-2 ASSIGN implementor-name-2.] . . .

DATA DIVISION.

FILE SECTION.

FD file-name [BLOCK integer RECORDS]

{LABEL RECORDS OMITTED

LABEL RECORDS STANDARD VALUE OF IDENTIFICATION IS literal}

DATA RECORDS record-name-1 [record-name-21]...

data-name

Jlevel-number { FILLER

} [REDEFINES previous-data-name]

[OCCURS integer TIMES] PICTURE character string.

T WORKING-STORAGE SECTION.

data-name

Jevel-number { FILLER

} [REDEFINES previous-data-name]

[OCCURS integer TIMES] PICTURE character string [VALUE literal | .]

PROCEDURE DIVISION.

paragraph-name.

sentence. [sentence.]. . .
[exit-paragraph-name.

EXIT.]
[paragraph-name.

[[imperative-statement [imperative-statement }. .. .]. ..

[conditional-statement. }. . . 1...

[NOTE character string-]1]. . .

Format 1

20z UoJe € Uo 1senB Aq 0ZE£9E/80Z/E/Z | /o101ME/|UfLO9/Woo dNo"dlWapEeoe)/:SARY WOy POPECIUMOQ

Mini-COBOL 213

combination of the characters from the allowable
character set, excluding only the period, may be included
in the character string.

STOP literal displays the literal to the operator and
halts the program temporarily. The program may be
restarted at the next statement. STOP RUN institutes
the program ending procedure specified by the imple-
mentor.

Chapter 8—Reference Format
This is the standard method of describing COBOL
source programs in terms of character positions within

GREATER THAN

literal
identifier

[ON SIZE ERROR imperative-statements.-]

a line on an input or output medium. Six positions
from the leftmost margin L are allocated to a sequence
number, if required. Division and section names, level
indicators, level 01 and paragraph names must begin
at the eighth position—margin A—and each must
occupy a line by itself, except for level indicators and
numbers which form part of the following entry. This
following entry, and every sentence in the Procedure
Division must begin at the twelfth position—margin B—
as must any continuation of an entry or sentence from
the previous line. Words must not be broken and
hyphenated to make continuation lines. No text may

literal . vestat t
identifier imperative-statements.

} GIVING identifier [ROUNDED]

identifier [ROUNDED]
[ON SIZE ERROR imperative-statements.]

literal

IF identifier [NOT] LESS THAN
EQUAL TO
READ file-name AT END imperative-statements.
literal
ADD {1dent|ﬁer}
ADD literal
identifier
literal
SUBTRACT { dentlﬁe}

identifier

} [GIVING identifier]l ROUNDED]

[ON SIZE ERROR imperative-statements.]

identifier

identifier

} GIVING identifier [ROUNDED]

[ON SIZE ERROR imperative-statements.]

DIVIDE literal
e identifier

literal
identifier

lit
MU LTIPLY { literal } { iteral

} GIVING identifier [ROUNDED]

[ON SIZE ERROR imperative-statements.]

identifier

MOVE { ieral } TO identifier

DISPLAY {“Onﬂumeric literal}

identifier

BEFORE
WRITE print-record-name {———} integer

AFTER
WRITE nonprint-record-name
OPEN { INPUT
OUTPUT
CLOSE file-name
@ T_O paragraph-name .

} file-name

PERFORM paragraph-name [THRU exit-paragraph-name }

EXIT.

NOTE character string.

literal
stor {351

Format 2

20z UoJe € Uo 1senB Aq 0ZE£9E/80Z/E/Z | /o101ME/|UfLO9/Woo dNo"dlWapEeoe)/:SARY WOy POPECIUMOQ

214

continue beyond the rightmost position—margin R. It
is preferable that each elementary statement should
occupy a line by itself. This will simplify corrections.
The preferred positions for indentation of subordinate
level numbers are positions 12, 14, 16, and 18. The
preferred position for PICTURE clause is position 30.

Acknowledgements and requests for additions to the
Appendix

Grateful acknowledgement is made to the consider-
able assistance provided by many friends, too numerous
to mention individually, and often contacted through
the COBOL Study Group and for much assistance with
typing. All readers are earnestly requested to supply
any further entries for the Appendix for compilers for
new or old machines. Teachers do not always have
access to modern machines, so entries for old compilers
may be valuable to them. Any other comments on
clarification or alteration in these specifications will be
welcome and will be taken into account in future work
in this field.

Conclusion

This Mini-COBOL specification has demonstrated
that a complete standardisation of COBOL at a level
useful for teaching purposes is practicable. The com-
pilers which are already available demonstrate that it can
be implemented on machines with a core store of about
8,000 characters, provided that some form of backing
store such as discs or magnetic tape is available. The
Appendix shows some of the non-standard features
present in existing compilers and should assist other
work at present being carried out towards a minimum
common standard of COBOL implementation by the
Nationalised Industries E.D.P. Committee. This Mini-
COBOL specification, however, does not aim at providing
an efficient object program, but rather at providing a
tool for teaching a basic understanding of the main
principles of COBOL.

References
HARDER, E. L. (1968).

P. Giles

Appendix

Compilers requiring changes to be made in:a
Mini-COBOL program

{a) Compilers with no requirements for alterations—

®

(c)

except for the Environment Division and possibly
for interchange between BEFORE and AFTER for
the WRITE verb or deletion of the VALUE OF
IDENTIFICATION clause.

* Bull Gamma 30. { GE 400 and GE 115.

Alterations compatible with COBOL 65.

ICT 1300 compilers—the use of REDEFINES is
restricted and only GO TO is permitted following
AT END or SIZE ERROR. Input files may require
TYPE.

ICT Rapidwrite—Words are restricted to five
characters.

Honeywell B and C—Replace SPACES by SPACE—
otherwise fatal.

ICT Compact—Replace ZERO by ZEROS—other-
wise fatal.

ICT Compilers—A record count Word must be
inserted in all magnetic tape files.

IBM 360/30 (DOS)—RECORDING MODE is
required for unit record files and card record de-
scriptions must be padded up to 80 bytes.

Alterations incompatible with COBOL 65.

ICT 1300 and 1900—all compilers—insert V adjacent
to decimal point in all numeric edited items—other-
wise handled as integer.

Honeywell L—Division by zero produces a fatal
object time diagnostic.

*

T

Tested by user.
Tested by supplier.

The Expanding World of Computers, Comm. Assoc. Comp. Mach., Vol. 11, p. 234.

COBOL Report, Edition 1965—Department of Defence, Government Printing Office, Washington, D.C. 20402, $1.75.
Formal Definition of the Syntax of COBOL, European Computer Manufacturers Association, 114 Rue du Rhone, 1204 Geneva.

20z UoJe € Uo 1senB Aq 0ZE£9E/80Z/E/Z | /o101ME/|UfLO9/Woo dNo"dlWapEeoe)/:SARY WOy POPECIUMOQ

