A University faculty timetable

By Mary Almond*

215

This paper describes a modification of the author’s simple algorithm for producing a University

faculty timetable,
(Received September 1968)

The timetabling problems at a large University may be
classified into various categories. Very often the
students select their courses from several different depart-
ments for the first year or two so that the basic problem
is to plan a co-ordinated timetable for the whole faculty
allowing the maximum freedom of permutation of
courses. This is a large task involving several hundred
courses. However, the timetable will not change very
much from year to year and is virtually independent of
staff changes. Hence the availability of lecturers need
not be considered directly. A faculty timetable is
discussed in this paper and the algorithm given earlier
(Almond, 1966) is made more general and storage
requirements reduced.

The second task is for each department to superimpose
lectures for older students on these commitments for
earlier years. In this case the lecturer’s time is significant
as his days are becoming fuller and it is necessary to
think of assignments in a three-dimensional array
(Almond, 1966, Yule, 1968).

A third problem might be allocation of lecture rooms
if this were treated independently.

Fourthly on registration day the computer could be
used to check that each student selects compatible
courses, to ensure that classes and laboratories do not
get overfull and to print out an individual timetable for
each student.

Finally an examination timetable could be produced
using the individual student timetables to draw up a
conflict matrix (Wood, 1968).

Production of a faculty timetable

Data

To produce this timetable it is necessary to know the
number and size of lecture theatres, if these are likely to
prove a restriction, and in addition certain information
must be collected from each department involved. The
procedure adopted is to ask departments to complete a
form for each of their courses. The following details
are required:

1. Title of course.

2. Number of students.

3. Whether or not the course can be run in sections,
e.g. it is often very convenient if laboratory periods
can be duplicated.

4. Number of single periods per week.

5. Number and duration of multiple periods.

6. Times of courses which must be fixed, perhaps to
suit the need of another faculty.

7. Preferred times or days in other cases.

* Department of Computer Science, The University, Manchester 13

8. Other courses within the department which must
not conflict with this course owing to the non-
availability of students, lecturers or rooms.

9. Courses in other departments which must not
conflict.

10. Additional courses in other departments which it
possible should not conflict. These should be
listed in order of decreasing importance.

11. Any other special requirements.

The information supplied in answer to the first eight
questions can be immediately used as data for the
program. Unfortunately the requests for non-conflicting
courses are often completely unrealistic and must be
vetted by someone who understands the overall need of
the faculty. In order to check the requests a conflict
matrix was drawn (i.e. a symmetric Boolean matrix of
dimensions ‘number of courses’ X ‘number of courses’
showing which courses should not conflict). The
conflict data could be stored in the computer as a matrix,
but it is more economical to store for each course a list
of all courses with which it must not conflict. Further-
more, if the data is presented in this way then the position
in the list can indicate the priority of the non-conflict.

The main part of the data consisted of a table of the
information relevant to each course printed in a readable
manner. A typical section is shown in Table 1. The
courses are listed in some convenient order and will
appear in the same order in the results. Fixed courses
can be anywhere in the list and are recognised by the
fact that they have no lectures or laboratories to be
allocated. This makes it easy to fix or unfix a course at
any stage.

Fixed or preferred times are indicated by the initial
letter of the day, with R for Thursday to avoid confusion
with Tuesday, and the hours numbered 1 to 7or 1 to 8,
e.g. W3 means the third lecture hour (probably 11.30a.m.)
on a Wednesday. A zero in the time column means
that no particular time is preferred. If necessary extra
data can indicate times to be avoided.

In the no-conflict list courses are referred to by
numbers and the termination of the list is given by a
figure in brackets saying how many of these non-conflicts
(numbered from the left-hand side) are essential. The
rest are desirable but can be relaxed if necessary.

Algorithms

The timetable is a matrix of ‘courses’ X ‘time’ and the
first task is to clear this area and enter the times of the
fixed courses.

¥202 Iudy 61 uo 1senb Aq £zZ£€£9¢/S12/S/Z L/aIoIe/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

216

The algorithm then lists the remaining courses in some
suitable order for allocation. To do this a weight factor
is associated with each course and the courses are then
sorted in order of decreasing weight factor. Possible
items to include in the weight factor are the number of
essential non-conflicting courses, the number of students
and the number of lecture and laboratory hours. These
items can be combined in various ways to produce
suitable weight factors and the different orderings of the
courses for allocation will result in alternative versions
of the timetable.

The allocation procedure passes twice through the list
of courses searching for suitable times first for the
multiple period courses and secondly for the single
period courses. Let us consider a course some way
down in the list which requires say two single periods.
To find a suitable time for the first period the algorithm
takes the first preferred time and looks through the list
of non-conflicting courses to check if any are already
inserted at this time. If this is the case then the second
preferred time is tried in the same way. Let us suppose
that this is successful. Next a time must be found for
the second period. The first preferred time will not be
tried and the second will be found occupied so assuming
there are no more preferred times, the algorithm passes
on to test other times of the week in some specified order.
If Monday lectures are not popular then days can be
tried in the order Tuesday, Thursday, Wednesday,

Mary Almond

Monday, Friday perhaps, and if the 9.30 a.m. lectures
are not popular then the second period can be tried first
and so on. Obviously a three-hour laboratory period
must not start at 4.0 p.m. or just before lunch, so only
certain starting times are acceptable. Lists of possible
starting times in order of preference are included in the
data for single periods and multiple periods of various
lengths. In this way these times can be varied to produce
alternative timetables. The algorithm searches through
the times in the given order until one is found satisfying
all desired conditions such as room restrictions, no-
conflict restrictions and restrictions to spread the course
evenly over the week.

If no suitable time can be found the desirable but not
essential no-conflict restrictions can be relaxed one-by-one
beginning with the least important. After a restriction
is relaxed then the times of the week are again tried in
order, in the hope that a suitable one will be found.
Essential no-conflict restrictions are not relaxed but an
omission message is printed and the program passes on
to the next period. A note is kept of the number of
omissions and neglected no-conflict restrictions for each
course and these numbers can be introduced into the
weight factor for a second attempt. The courses are
relisted in some new order giving priority to those which
proved difficult and a second timetable is produced.
If it is assumed that the optimum timetable is one giving
students the best possible selection of combinations of

Table 1. A section of input data

A B C E F G
76 sCit 100 2 0 O TT RI1
77 CA10 20 2.0 O 0

78 PAI10O 10 2 0 O M2 F2
79 HS70 6 1 0 O T1

80 HS71 6 1 0 O R1

81 CE40 30 2 0 O 0

82 CE41 30 1 0 O 0

83 GYI10 2 2 0 O 0

84 EY70 12 0 O T1 RI
85 EY81 12 0 0O M2

86 FR60 66 0 O M6 F5 T1 T5
87 GL10 9 0 O TI T5 T6 T7

F6 F7

88 GKisl I5 2 0 O M2 F2

89 GK3>2 1S 2 0 O M5 W2

90 AYI0 30 2 0 O T1 RI
91 AY11 30 2 0 O M1 Fl
92 LNS0 22 4 0 O Ml M5 Wi
93 MPO1I 100 O O Wl W2 Fl
94 MUS0 30 0 1 2 F1

95 MuUsl 30 0 1 2 M2

. Course number.

Course title.

Number of students.

. Number of single periods.
Number of multiple periods.

moow>

H I

5,6,7,8,9, 16, 18, 19, 20, 21, 23, 54,
62, 63, 86
36, 37, 39, 40, 41, 42, 43, 44, 54, 55,

(14)

56, 57, 58, 64, 84, 85, 88, 89, 90, 91 (20)
82, 83, 84, 85, 87, 90, 91 N
30, 31, 32, 33, 34, 35, 45, 46, 80, 86, (10)
99, 100
30, 31, 32, 33, 34, 35, 45, 79, 86, 99,
100 (10)
37, 44, 82, 84, 85 (5)
37, 44, 78, 81, 84, 85 (6)
78, 88, 89, 92 @)
T6 T7
R3 F5
83, 84, 85, 89, 90, 91, 10, 11, 13, 14,
41, 77 (8)
83,84, 85, 89, 90, 91, 10, 11, 13, 14,
41,77 ®)
42,77, 78, 88, 89, 91, 92 0]
42, 77, 78, 88, 89, 90, 92 0!
R5 10, 11, 13, 14, 16, 40, 42, 83, 84, 85,
88, 89, 90, 91 (14)
44, 45, 46, 86, 95, 96 (6)
44, 45, 46, 86, 94, 96 (6)

F. Length of multiple periods.

G. Times.

H. Courses which must not conflict.
I. Number of essential non-conflicts.

¥202 Iudy 61 uo 1senb Aq £zZ£€£9¢/S12/S/Z L/aIoIe/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

Faculty timetable 217

courses then this technique will improve the solution.
The actual best solution is rather subjective and not
easy to define for the computer hence in practice several
alternative versions of the timetable can be produced
and the final choice left to the human beings involved.

Results

A section of the printed timetable is shown in Table 2.
This layout seems convenient when a very large number
of courses is involved.

In addition to the timetable it seems useful to print
out for each course a complete list of all courses which
do not conflict. These lists will include as many as
possible of the no-conflict courses and several other
besides which may or may not provide suitable combina-
tions for the student.

This algorithm is being tried in Arts or Science
Faculties at three different Universities. The timetable
produced for Liverpool Arts Faculty involved over a
hundred courses given to first-year students. The
storage required for the data arrays was about 7000 words
(iie. 70 X number of courses). The program was
written in Atlas Autocode and the execution time on
Atlas was about 24 seconds or 0-24 seconds per course.
For a science faculty having more laboratory classes the
time was about 0-3 seconds per course.

Acknowledgements

The author wishes to acknowledge the assistance of
many people in various registrar’s departments especially
F. T. Mattison of the Liverpool University Arts Faculty.

Table 2. A section of the results

MONDAY
1234567

SC11 *
CA10 *
PA10
HS70 *
HS71
CE40 *
CEA4l
GY10 * :
EL70 *
EL8I *
FR60 % * * k¥
GL10 * R
GKS1
GKS2 *
AY10 *
AY11 *
LNS50 * *
MPO1 *
MU50
MUSI * x

TUESDAY
1234567

References

WEDNESDAY
1234567 1234567i1234567

THURSDAY FRIDAY

* |)

ALMOND, M. (1966). An Algorithm for Constructing University Timetables, The Computer Journal, Vol. 8, p. 331.
Woob, D. C. (1968). A system for computing University Examination Timetables, The Computer Journal, Vol. 11, p. 41.
YULE, M. P. (1968). Extensions to the Heuristic Algorithm for University Timetables, The Computer Journal, Vol. 10, p. 360.

20z 1udy 61 U0 }sanb Aq LZE€9E/S L 2/€/Z 1 /9191e/|ulwod/Ww oD dnoolwepeoe//:sdjy Woly papeojumod

