
218

Towards FORTRAN VI? Part 2. FORTRAN in the modern world

By D. F. Hendry* and P. A. Sametf

The previous paper (Healy, 1968) made several suggestions for improving FORTRAN from the
user's point of view, mainly by removing irksome and unnecessary restrictions as well as by pointing
out valuable extensions to the language. We now make further suggestions, based on efficiency
considerations as seen by the software writer and the machine manager.
(Received February 1969)

Although FORTRAN has received many additions
and improvements since it was first introduced about
12 years ago, basically it still presents the user with the
same type of machine environment as in the beginning.
Machine hardware, however, has changed very con-
siderably and so have the ways of using this hardware.
Multiprogramming (batch) machines, time-sharing
(conversational) machines, random access backing
stores and similar devices are now in common use, yet
FORTRAN has remained blissfully unaware of these.
In our view it is necessary for FORTRAN to take note
of these developments if it is to remain a machine
language of wide application.

1. Multiprogramming and conversational systems
The distinguishing feature of the new generation of

machines is their ability to have several programs resident
simultaneously and swapping control between them. It
does not matter at this stage whether the operating system
is a batch-processor running several streams, a conver-
sational system with interactive terminals or some mixture
of the two, neither does it matter whether the programs
are entirely in the core store or partly in a backing store,
possibly with a (paged) virtual memory device. The
competition is for store and a program that takes more
than it needs is a liability. FORTRAN is a major
culprit in this sense because of the absolute dimensioning
of arrays. This means that space is reserved for a large
matrix although any particular run may require only a
fraction of this amount. Dynamic arrays, in the ALGOL
sense, have much to commend them, are not difficult to
implement and are no more inefficient than the present
absolute dimensions. Fully dynamic array bounds,
where the dimensions—and hence the space required
—can vary during the program run are perfectly feasible
but could play havoc with the location of COMMON
variables. A simpler step towards the economical use
of space would be a parameter facility, which would
allow insertion of dimensions at load time. What is
required is a special way of indicating that an array's
dimensions will be supplied later. A possible method
is by setting dimensions to zero in the source text, thereby
specifying the number of subscripts, and then, at load
time, giving the name of the array (perhaps also the
subprogram in which the array occurs) and its actual

dimensions. This would be especially convenient in a
conversational system, where the loader could be made to
request actual dimensions when 'zero dimensions' are
encountered. An alternative method is to give the master
program a 'privileged subroutine status' and then using
the adjustable dimension facility of subprograms. The
first method is probably simpler. Something very like
it has been implemented in the FORTRAN compiler
written for the Atlas at the Chilton Laboratory.

As well as multiprogramming systems where several
independent programs compete for the processor's
facilities, it is now becoming possible to have systems
where several parts of the same job can be run in parallel.
Sometimes this is done by use of a computer with several
processing units sharing the same store, sometimes by
extensions of the more common multiprogramming
facilities. It would seem desirable to have facilities
within a programming language to indicate that certain
phases of a process may be done simultaneously, if this
allows better use of machine resources. The program
structure, showing which parts could be obeyed simul-
taneously, could be made available in a manner akin to
the way an overlay structure is usually specified, although
it is a graph rather than a tree that is necessary. PL/1
includes multi-tasking facilities. The extension should
be such that it is ignored if the program is presented to
a computer that does not allow such multi-tasking.

A program that hoards peripherals is as much of a
liability as one that acquires more space than it needs.
All operating systems will require the user to state which
peripheral devices he needs (although often a card reader
and printer are allocated without explicit request), in
particular which private files will be required. Only the
user is in a position to know when a device is no longer
needed by his program and he should be able to RELEASE
it, i.e., to hand it back to the supervisory program for
reallocation to another user program. The allocation
of peripherals is a function of the operating system, not
of the program, and a wise system delays allocation as
long as possible.

2. Effect of new hardware
Here we comment on two features: random access

stores and character sets.
The normal FORTRAN input/output statements are

* Institute of Computer Science, 44 Gordon Square, London WC 1
t Computer Centre, University College London, 19 Gordon Street, London WC 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/218/363334 by guest on 13 M
arch 2024

Towards FORTRAN VII

intended only for sequential media like magnetic tapes.*
Newer devices, like disks, drums, magnetic card file
units, however, allow access to information in other
ways determined more by the inter-relationships between
items than by their physical placing in the store. Some
methods for non-sequential access to files would seem to
be necessary, t We readily admit that it is possible, and
also very efficient in the right circumstances, to use
disks, etc., as if they were tapes.

Character sets are of rather less significance than some
of our other points, but we notice that extended 64-
character sets are now becoming more usual. It would
appear reasonable to allow a statement of the form:

IF (A >0.0) . . .,

instead of insisting on

IF (A .GT. 0.0) . . .,

if such characters are available. The advantage for the
user is greater legibility of his program as it is in a more
natural form, and the compiler writer—and his compiler
—have a slightly easier task. In passing we note that
if the use of such additional characters became wide-
spread there would be considerable user-pressure on the
manufacturers to agree on a standard card code, to the
benefit of the whole community.

3. Further suggestions
The remaining points stem from present-day know-

ledge of how to implement programming languages and
observation of user habits.

The first two are direct consequences of the fact that
very few users, especially users of large machines, write
programs in an assembly code. This implies that very
large programs will be written in a high-level language
and that debugging information has to be made available
in the high-level context.

For programs that are too large for the main store,
some form of overlay structure is essential. The person
who writes in assembly code is able to control such
overlays but usually such facilities are denied to the
high-level programmer. Several software systems in
current use do allow such an extension, but it would be
useful to have a unified way of implementation. It
might be worthwhile to notice that really two kinds of
overlay are required, for program and for data. We
mentioned earlier that efficient operation of multi-
programming systems demands that programs use as
little space as possible. Overlays are important also in
this respect, since the amount of core store available to a
program may be severely limited, whereas backing store
is often more readily available. There are many imple-
mentations of overlays, e.g., on IBM 360, ICL 1900,
CDC 6600 to name a few. In some cases the working of
the overlay structure is explicit in the user's program,
other implementations move it 'behind the scenes'
and the specification of the overlay structure is given as a
series of control statements. A rather simpler device of
the same general kind was the CHAIN facility available
on the IBM 7090. Intelligent use of segmentation

* And even then 'read-backward' facilities are not used,
f Direct access facilities are available in the compilers on the

IBM System/360.

facilities may well increase the total throughput of the:
system.

Debugging and program tracing may be thought of
as belonging to the operating environment, not to the-
programming language. To a certain extent this is.
true but not entirely. When testing programs, it is.
highly desirable to have trace information made available
only when a particular event occurs. This means that
statements to control tracing have to be inserted into the
program, and so they become part of the language.
(The information that is extracted must refer to the-
source text, not to the compiled code, a matter we da
not pursue here, as this is a compiler facility and has
nothing to do with the language.) Although there
should be an agreed form for these debugging statements,
they could probably be made optional, so that they are
ignored by a compiler without trace facilities.

Tracing facilities are available on many machines but
often they have been implemented locally and are not
part of the standard software, let alone part of the
language. In many cases the information given is
almost totally oriented towards the assembly language
programmer. The FORTRAN G compiler on IBM 360
includes a DEBUG facility, which is absent from the
other compilers, the compiler on the London Atlas has.
some facilities of this kind, there is a simple TRACE in
the ICL 1900 compilers and a rudimentary facility exists,
on the CDC 6600.

A possible way of signalling where such tracing is to-
take place is the letter T (or the word TRACE) in
column 1, rather like a comment, followed by some-
appropriate syntax. Use of column 1 has two advantages :•
it is easily seen by the programmer and it is also easier
for recognition by a compiler. A system without tracing;
facilities could then regard this information in the same
way as it does a comment, i.e., it is ignored in the
compilation.

Increased efficiency of the compiled program can also-
be achieved by having some form of co-operation be-
tween the user and the compiler. There are many things,
about his program that are known to the programmer
but which may be extremely difficult or even impossible-
to discover during compilation. In particular, it is only
the user who knows about the expected flow of control,
the relative number of times various parts of the program
will be executed, or the use of peripherals (which we have
already mentioned). We put forward the idea of hints.
These would be in the form of comments that could be
acted on by the compiler.

Examples of such hints could be the information that
a particular subroutine is called with the same parameters,
as on a previous occasion, that a particular subroutine
does not change COMMON variables, and another
would be the indication that a loop was the innermost
loop of a program so that optimisation here would be
worthwhile whereas another part of the program is.
traversed so seldom that optimisation gains nothing.
Incidentally, such hints would also improve the docu-.
mentation of a program.

As hints are a type of 'super-comment', we suggest
that these, too, should start in column 1 with H (or the
word HINT). There would have to be a limited
vocabulary and appropriate syntax for such hints. A
step in this direction has been taken by PL/1 with the-
introduction of the attribute 'ABNORMAL'. It is-.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/218/363334 by guest on 13 M
arch 2024

220 D. F. Hendry and P. A. Samet

worth noticing that FORTRAN I had a FREQUENCY
statement, which allowed the programmer to give the
probabilities associated with the paths followed after an
IF statement. This facility allowed some optimisation
of the use of index registers. For some obscure reason,
FREQUENCY did not survive into later versions of
FORTRAN.

A possible extension concerned entirely with user
convenience is more flexibility about numerical constants
at input. We suggest that input routines should accept
whatever number of digits is offered and arrange the
conversion to internal form so as to ignore (truncate or
round) insignificant digits, rather than signal a fault. It
is annoying and baffling to the average user to discover
that the single precision value of -n is 3-141593 on one
machine and 3-1415926535 on another and that the
first machine refuses to accept the accurate version, even
if it cannot store it. It is also a totally unnecessary
restriction that can easily be removed.

Conclusion
It has always been the claim of FORTRAN supporters,

when arguing for the merits of the language against the
virtues of its competitors, that it makes efficient use of a
computer. It is in this spirit that we have drawn atten-
tion to several areas where agreed extensions are likely
to be of value in the modern machine environment.
Several of our suggestions presuppose particular forms
of hardware facilities: compilers on more restricted
machines should simply ignore statements intended to
make better use of sophisticated equipment, rather than
throw out the program as 'containing errors'.

We know that many of our proposals have, in fact,
been implemented in some form or another on a variety
of machines. Often, however, these extensions have been
done in incompatible ways or else they have remained
purely local. It is our hope that some action will be
taken to ensure that those language extensions that are
thought to be generally desirable are made in an agreed
manner. Only if this is done will FORTRAN remain a
viable language in general use among a wide and varied
body of users.

We are grateful to Mr. M. J. R. Healy for permission
to use the title of his article and also for his helpful
comments.

Reference
HEALY, M. J. R. (1968). Towards FORTRAN VI? Comp. J., Vol. 11, pp. 169-172.

Book Review

Mathematical Theory of Switching Circuits and Automata, by
Sze-Tzen Hu, 1968; 253 pages. (University of Cali-
fornia Press, $9.)

The development of switching theory over three decades has
reached a point at which this book is particularly welcome.
As Dr. Hu writes in his preface, most of the major problems
have now been solved, and it is time to organise these results
as a branch of pure mathematics in a way which will reveal
their basic simplicity to both mathematician and engineer.

Rather than attempt to cover the entire field, the author
prefers to take a few important topics and demonstrate the
possibility and the value of carrying out such formalisation
and simplification. The outcome is a structure of ideas
which certainly have implications outside switching theory as
such. A relationship is clearly visible, for instance, between
the theory of prime implicants and that of 'resolvents' in
logical calculi. Much of this book may be regarded as a
valuable contribution to the study of finite Boolean Algebras.

After an introduction to switching functions and their
various representatives, we are given a very thorough dis-
cussion of methods for finding the most economical disjunctive
or conjunctive canonical forms for arbitrarily given functions.
Here the terminology follows the topological approach of
Mueller and Roth. This leads us to the more general problem
of realising functions with a given set of logical devices. The
notion of decomposition of a function in terms of simple
decompositions develops the ideas of R. L. Ashenhurst, and

this section culminates in a minimisation algorithm, described
and illustrated with typical care.

In the last chapter the reader may perhaps consider himself
to be taken on an unnecessary detour. Dr. Hu had decided
to deduce the properties of finite-state machines as special
cases by first setting up a theory of sequential machines with
possibly infinite sets of states. If this is the hardest part of
the book to assimilate, it is not unnecessarily so, once one
accepts the worthwhileness of the approach; the author's
explanations are always painstakingly clear. An automaton
is defined as a function from the set of all input tapes into
[0, 1], an n-input sequential machine as a function from
S x [0, 1]" into S, where S is a possibly infinite state-set.
That every automaton is realisable by some sequential machine
is almost trivial. That for each automaton there exists a
(finite or infinite) 'minimal' machine which realises it is a
result of some depth, and it receives a notably elegant treat-
ment from Dr. Hu.

One might hesitate to recommend this volume to anyone
completely unfamiliar with switching functions, but to those
with at least slight experience of the practical problems
involved and consequent motivations it should prove highly
stimulating. A set of well chosen exercises consists in part
of straightforward applications of the text, in part of develop-
ments of the theory that tie up with references in the de-
liberately concise bibliography. The book is pleasantly
produced, and printing errors have been minimised.

MICHAEL BELL (London)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/218/363334 by guest on 13 M
arch 2024

