221

Software to translate TELCOMP programs into KDF9 ALGOL

By K. A. Mulholland*

A translator has been written that enables programs written in TELCOMP and dumped onto
paper tape to be translated into KDF9 ALGOL programs also on paper tape. The paper describes
the methods adopted in dealing with the various syntax analysis and translation problems that
were encountered in writing the translator.

(Received January 1969)

This paper describes a program written almost entirely
in KDF9 ALGOL that will translate a source program
written in one of the currently operational conversational
languages TELCOMP into an object program in ALGOL
text on paper tape ready for running. This allows the
preparation of fauit-free programs by means of conversa-
tional mode programming which may then be run on a
larger, faster machine capable of accepting ALGOL.

The translator is a two pass translator. In the first
pass the standard functions are rendered into their
equivalent ALGOL form or, if no equivalent exists, a
procedure body is output on paper tape for inclusion in
the object program.

The various declarations real or array required by the
object program are detected in the first pass and stored
in a numerical form ready for output to the object
program when the first pass is complete. To avoid
overfilling the core store when a long program is to be
translated each line of the source program is dealt with
individually and then stored on magnetic tape.

Aims of the program

The primary object of the program was to accept any
source program in TELCOMP 1 or 2 without restriction.

The second aim was that the resulting ALGOL object
program should be as close to normal ALGOL usage
as would be consistent with the primary aim.

The read procedure

The TELCOMP programs are run using a TELE-
TYPE terminal, these terminals produce non-fixed
parity ISO code 8 hole paper tape. The English Electric
KDF9 ALGOL compilers do not provide facilities to
read mixed parity paper tape, and consequently input
procedures were written in “‘USERCODE’ which is a low
level language for the KDF9 computer. The input
TELETYPE character code is translated to the internal
KDF9 ALGOL basic symbol code by a directly address-
able look-up table, operating during the transfer process.
The look-up table is accessed by using the arbitrary
numeric value of the input characters as a modifier
address acting on the base address of the look-up table.
Any odd characters, line feeds, carriage returns and
erases are removed. The TELETYPE ‘Control §
character is used to identify the end of a TELCOMP
line of program.

The TELETYPE paper tape character code has
variations between the directly keyed program and that

* Department of Building Science, University of Liverpool

dumped up the line from the computer. Both codes
have been made to produce a common sequence of basic
symbols.

The read in process is terminated by the presence
of the word ‘DUMPED’ after a ‘Control S’ character
which is the standard TELCOMP program terminating
instruction.

Types of instruction available in TELCOMP

Each line of a TELCOMP program has a label. This
is called a step number and it can lie in the range 1 to
99-99999. This step number is followed by one instruc-
tion only. The instructions allowed are described in
the TELCOMP manual (1967).

Most of these instructions can be followed by a list of
expressions separated by commas which are controlled
by the instruction. These are explained as follows:

SET
SET A=B, C=1 x SIN(TH), D=LN(1+E)

These are assignment statements that when written in
ALGOL 60 would appear thus:

A:=B; C:=1+sin(TH); D:=In (1+E);

DEMAND and READ

The operation of the instructions DEMAND and
READ are similar. DEMAND interrogates the user for
the value of a variable, READ reads the variable off
paper tape.

The instruction:

DEMAND A, B, C
would appear in the object program as:
A:=read(20); B:=read(20); C:=read(20);

TYPE, PRINT, PLOT and SEND

The instructions TYPE and PRINT are output
instructions that have a high degree of flexibility via a
FORM (or Format) statement that controls the layout
of a line of information output via the TYPE or PRINT
instruction. PLOT is similar although the output is in
graphical form. And SEND is a tape punching instruc-
tion that can punch any binary number in the range 0-255
on paper tape. These instructions can be matched by
suitable ALGOL write commands except for the SEND
facility which needs special treatment.

¥20¢ I4dy 0z uo 1senb Ag 05££9¢/122/€/Z L/a1oIe/|ulwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq



222 K. A. Mulholland

DO and TO .

The instructions DO and TO are jump instructions.
As previously stated a TELCOMP program is divided
into steps. A group of step numbers each having the
same whole number part is called a PART. A DO
instruction can call either a whole PART or a part of a
PART or a single STEP.

The TO instruction is simpler in that control is not
returned to the point at which the TO instruction
occurred. Thus a TO statement can have only one
expression following it and it is analogous to a goto
statement in ALGOL 60.

DONE and STOP

DONE is an instruction that deems the current part
number to have been done. Control is thus returned to
the point at which the last DO statement occurred.

The instruction STOP stops the action of the program
entirely irrespective of the nesting of DO statements that
may be current.

Any of these instructions can be controlled by as many
FOR or IF clauses as can be placed on one line. (Except
that FOR cannot modify a TO instruction.)

For example, the TELCOMP instruction

TYPE A[I] IF A[I]> 1 FOR I=1:1:10, 20
would appear as in KDF9 ALGOL as

for 1:=1 step 1 until 10, 20 do
begin
if A01{7] > 1 then
begin
write (device number, format statement, A01[1])
end
end

Standard functions

The standard functions are detected by searching
along each line for the particular group of basic symbols
that is required. For example detecting the group SIN
without adjacent alphanumeric symbols would indicate
a sine and the group would be replaced by sin. The
group SINFUL would not cause any action because the
N was immediately followed by the alphanumeric
character ‘F’. It is not advisable to translate all letters
directly into lower case letters because of the existence
of certain ALGOL reserved identifiers such as ‘arctan’
‘sign’ etc. If one of these were used in the source
program their presence in the declaration at the outer
block level would preclude their use within the pro-
cedure blocks (also declared at outer block level) used
for including the TELCOMP facilities, ATN, SGN, etc.

Forms

Forms are included in the object program at this stage
by declaring them as procedure bodies with the relevant
number of formal parameters.

Output of declarations

Before commencing the second pass the necessary
declarations are made. This is done by decoding the
numbers that represent the identifiers used. For one
dimensional arrays and real quantities these names can

be declared straight forwardly but for higher dimensional
arrays such a straightforward declaration would call for
an excessive amount of core store. However, it is not
necessary to have a large area of store available because
in the source program, although any combination of
subscripts can be called whether by name or by value, it
is very unlikely that more than a couple of hundred such
combinations will be called for any given array. There-
fore source program higher dimensional arrays can be
declared as procedures instead.

For each two-dimensional array two procedures will
be necessary:

(1) The first with two parameters is a real procedure:

SET A = A[A, B]
A = A02(a, b)

(2) The second procedure has three parameters and
handles assignments to array positions:

SET A[l, 1] = A[1]
DEMAND B[l, 1]
AO5(1, 1, AO1[1])
BO5(1, 1, read(20))

Similar procedures are used for the three and four
dimensional arrays.

Both these procedures act on common areas of core
store, each assignment produces an ‘address’ and a value.
The address is a unique combination of the array
position called and is used to denote that the corre-
sponding value is associated with a particular higher
array position. When a value is called, the real pro-
cedure searches for the corresponding address and is
assigned the relevant value.

Source program
Object program

Source program

Object program

Second pass

In the second pass the lines of the program are brought
down into core store, processed and output to the object
program.

Each line is given a label ‘Lndd’ where ‘ndd’ is a
consecutive set of integers independent of the numbering
of rows in the source program. When a change in part
number is detected in a row of the source program an
extra row is output to the object program:

goto end;

The whole object program is in the form of a pro-
cedure: procedure pari(x); (or part (x, bool);) real x;
Boolean bool; the Boolean bool is included if a statement
DO STEP is found in the source program and in this case
each line is terminated by the statement

if bool then goto end;

When a statement DO PART N is used in the source
program this is written as:

part(N, false);

in the object program. The procedure is thus re-entered.
The first line of the program is a statement:

switch L := L1, L2, ..., Lndd;
enter: for i := 1 step 1 until LabN do
begin if x < label [i] and x > label [i — 1] then
goto L [i]

¥20¢ I4dy 0z uo 1senb Ag 05££9¢/122/€/Z L/a1oIe/|ulwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq



TELCOMP and KDF9 ALGOL 223

The switch is capable of sending control to any line
of the object program within the current call. A TO
statement is translated as

TO PART M

X := M ; goto enter;
The DO STEP statement is identical with the DO PART
except that the Boolean value is put true;

DO STEP 2
part(2, true);

Source program
Object program

The object program will look like this:

begin open (20); open (30); L[0] = ddd; L[1] = 1-01;
L[2]=1-02; L[ddd] :=9-1:

begin procedure part (x); real x;
begin switch L := L001, 1002, . . ., Lddd;

enter: for . . .
L001:
L£002:
L003:

goto end;
L004:
L005:

goto end;
Lddd:

end:

end; part (1) end; stop: close (20); close (30)
end—

If a DO STEP statement occurs in the source program
the modifications indicated above are included.

An individual line is output in the following manner:

A comment introduced by a semicolon that is not
included in string quotes is output first and the line
length reduced to eliminate the comment from the source
program.

Output of IF and FOR statements

The line is then scanned for IF and FOR statements.
The symbols are scanned in reverse order until the group
of symbols IF or FOR is detected (once again care is
taken to avoid scanning within string quotes).

The IF statement can be output

1F ...
if . . . then begin . . . end;

The Boolean expression following the if statement
cannot be directly output symbol by symbol because
some of the relational operations have to be changed:

Source Object
>i= = >
<= =< <
< > >< 7+

Also the delimeters AND, OR and NOT must be
searched for and changed to and or not. This is all
achieved by straightforward syntax analysis using a
number of if statements controlled by a for statement.
The fact that the final end will be needed is noted by
increasing the value of an integer nend by onc from its

initial value of zero. The FOR statement can be dealt
with similarly:

SOURCE PROGRAM
FOR 1=1:1:100,200,300
OBJECT PROGRAM
for i := 1 step 1 until 100,200,300 do begin . . . end;
i:= 300;

There is no difficulty here, the difficulty arises with the
multiple increment FOR statement

FOR 1=1:1:10:2:20

this has no direct equivalent in ALGOL but can be
reduced indirectly thus:

for I := 1 step 1 until 10, 10 4 (2) step 2 until 20 do

It is seen that to output this to the object program
it is necessary to output two of the elements in the
TELCOMP FOR statement twice. The FOR state-
ment elements could be compound arithmetic statements
of unknown length. The step by step output of for
statement bodies is thus carried out as usual but as an
arithmetic element is output each of its basic symbols is
stored as successive terms in an integer array. If a
third colon is found a comma is output followed by the
third element which is reoutput by reference to the
storage array. The symbols - (followed by the next
FOR statement element followed by the symbol) step.

(The brackets are necessary in case the relevant
element is signed negative), the fourth element is then
output followed by ‘until’ in place of the TELCOMP “:’.

This process can be repeated indefinitely.

Besides IF and FOR clauses there is another optional
clause controlling the action of the PLOT instruction.

For example:

PLOT A,B,1,0,1 ON F

values of F for the particular line of plotting are output
in the left-hand margin of the display. Thus if the ON
clause is found in a PLOT instruction a write instruction
must be output to the object program.

DONE and STOP

The action of a DONE statement is to terminate the
execution of the current PART of the source program.
In the object program this is matched by transferring
control to the end of the current call of the procedure
‘part’. The instruction DONE is thus translated as
goto end; the instruction STOP stops execution of the
program absolutely. In the object program this is
achieved by transferring control beyond the end of the
procedure.

DO
If the first word is DO then the following translation
is necessary:
DO PART 1, PART 2
part (1); part (2);
This recursive call of the program is adequate provided

the instruction DO .. STEP does not appear anywhere
within the program. If it does then the translation is:

¥20¢ I4dy 0z uo 1senb Ag 05££9¢/122/€/Z L/a1oIe/|ulwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq



224 K. A. Mulholland

DO PART 1, STEP 2-0
part (1, false); part (2, true);

This has been explained before. The main difficulty
here is recognising the commas that separate the suc-
cessive PART or STEP clauses. After the words PART
or STEP have been recognised the program outputs all
the source program up to an unbracketed comma or the
end of the line. The test for an unbracketed comma is
similar to that used in the first pass.

TYPE and PRINT
There are three sorts of TYPE instruction, vis:

TYPE A,B,C
TYPE A,B,C IN FORM N
TYPE FORM M

and there are three corresponding PRINT instructions.
The second sort is recognised by scanning along the
line and finding the symbol ‘IN’, the third sort by finding
‘FORM’. Separate routines are required to deal with
each of the three sorts of type instruction.
The first sort requires that any expression in the list
A,B,C ... be output. These can be

(1) Arithmetic expressions.
(2) # indicating a newline.
(3) Text (contained in string quotes).

These can be distinguished by examining the printing
symbol following successive commas (or the initial
TYPE). If it is a # the instruction ‘newline(30,1);” is
output to the object program. If the symbol is a string
quote the string is output as part of the instruction
‘writetext(30, );’. If neither of these symbols is found
then the symbols up to the next unbracketed comma is
output in part of a write instruction

write (30,1, . . .);

When the instruction is TYPE a carriage return
‘newline(30,1);” instruction is output at the end of the
TYPE sequence. If the instruction is PRINT no such
instruction is output.

DEMAND and READ

Here the list of symbols are output individually each
followed by the statement ‘:=read(20);’. The exception
is the higher dimensional array. This is recognised by
finding an ‘C symbol unnested in square brackets the
instruction output is then:

A05(a,b,read(20)); for a two-dimensional array.

References

(1963).

(1967). TELCOMP 2 Manual, Time Sharing Ltd., London.

TO statements

When a TO statement is found it is translated by a
goto statement. This avoids unnecessary nesting of
procedure calls that could lead to a run time failure if
carried to excess.

TO PART N
x:=N; goto enter;

Source program
Object program

Ultimate control routine

Here the rest of the row is output making sure that
unbracketed commas are translated into semicolons.
Any necessary end’s are added and the instruction ‘if
bool then goto end;’ is added if it is needed.

The next line of source program is then read in. If the
work ‘DUMPED?’ is found the action of the translator
is terminated by outputting the final statement. These
are:

end:end;part (1); stop:
close(20); close(30)
end—

Here the statement part (1 ) is a call to the procedure that
contains the program proper and is virtually the only
program instruction not a procedure. It is assumed that
programs are to be initiated by means of the instruction
DO PART 1. If this is not so the 1 can be replaced by
the relevant PART (or STEP) number. The labels end
and szop are used in conjunction with the DONE and
STOP statements.

Conclusions

Experience with running the program has been most
successful. The trouble that has been encountered has
been due to the attempt to implement the SEND facility.
This has revealed inadequacies in the Kidsgrove
ALGOL compiler which hitherto had been used at
Liverpool when USERCODE subroutines were included
in the object program which have so far proved difficult
to overcome. The Kidsgrove compiler has been
found to be unable to deal with statements of the form
‘for L:=1 do’ and, of course, cannot deal with switches
having more than 63 labels. The Whetstone compiler
has none of these inadequacies but because of a local
modification of doubtful value it cannot be used with
USERCODE subroutines at Liverpool. However, it is
hoped that shortly the EGDON program system will be
implemented and the subroutines can then be kept
permanently stored on disc and called by the main
program compiled using the more flexible Whetstone
compiler. Program translation time (at the moment
about one line of TELCOMP source program per
second) should also be improved.

Revised Report on the Algorithmic Language ALGOL 60, The Computer Journal, Vol. 5, pp. 349-367.

¥20¢ I4dy 0z uo 1senb Ag 05££9¢/122/€/Z L/a1oIe/|ulwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq





