
225

Implementation of a syntax-driven interpreter for data retrieval?

By A. J. Fox and P. W. Edwards*

An account is given of the design and implementation of a syntax-driven interpreter. The
application of this interpreter to various facets of a data retrieval project is discussed. Particular
emphasis is placed on the role of syntax descriptions both for specifying the retrieval language and
also for classifying the data. The main features of the retrieval language, CL1C, are presented.
(Received November 1968)

1. Introduction
Whilst syntax techniques have been widely employed for
specifying and translating general purpose programming
languages, less attention has been paid in this country to
the use of these methods for other purposes, such as
on-line interrogation or even the systematic description
and processing of data. (For a comprehensive review,
the reader is referred to Feldman and Gries, 1968.) In
the present paper, we describe a program currently used
at RRE to retrieve data on the attributes of integrated
circuits (their names, makers, function, place of origin,
type of packaging, cost, etc.) This program stemmed
from a very early foray into conversational programming
techniques by J. M. Foster (1967), which was probably
the first query language program to embody the tech-
nique of 'lambda interpretation' described in this paper.

In summary, the data on integrated circuits is prepared
by circuit engineers on a pre-printed form, punching
onto tape is performed directly from the form, and
thence, via a syntax directed input routine, the data is
accepted by the computer and filed on magnetic tape to
form the data base for the program. The computer,
RREAC, is used primarily for the batch-processing
computing service to the Establishment as a whole, but
core-swapping arrangements have been made to enable
users of the retrieval system to obtain immediate access
to RREAC using an on-line teleprinter. We do not
propose to discuss this side of things any further.

The interrogation program consists of a syntax
analyser which accepts queries satisfying grammar rules
appropriate to our particular fields of application. The
grammar rules are data to the analyser, and may there-
fore be changed readily (see Section 2). The output
from the analyser consists of a lambda-expression, which
embodies substitution operators and calls of 'primitive
procedures' which have already been incorporated in the
ALGOL program (see Sections 3 and 4). The lambda
expression corresponding to any input query is 'evalua-
ted' by the lambda interpreter and results in the perform-
ance of the task demanded.

2. Actions embedded in syntax
For most computer applications of syntax techniques

it is inadequate merely to recognise a sentence as being
grammatically correct: it is necessary to associate with
the analysed sentence a set of actions which one wishes
to be obeyed. In our implementation the names of the

t Crown copyright. Reproduced by permission of the
Controller of H. M. Stationery Office.

* Ministry of Technology, Royal Radar Establishment, Malvern

requisite actions are embedded amongst the productions
in the syntax specification.

Consider the example:

bfl

dS

where the Greek letters denote the names of actions.
The desired aim is that when a sentence a c bis analysed
as an example of the class </4> then the actions a y /?
will be obeyed. Similarly b should give rise to the
action jS and a d give rise to a S. For the moment it
will be assumed that actions will be stacked up for
obeying as program at a later stage. The algorithm for
a predictive analyser written to achieve these effects is
outlined in Appendix 1.

It should be noted that this algorithm pursues all
successful matches in an expansion with alternatives. It
also avoids the necessity for back-tracking on the input
stream when a terminal symbol mismatch occurs.
Another feature of this system is the ability to embed
the actions at any point in the syntax productions. This
is more flexible than allowing actions to be placed only
at the end of a production or with a phrase marker in
an analysis tree. Even so further manipulation of the
actions is necessary and will be described in the section
on the interpreter.

The analysis algorithm as already described could prove
slow in analysis and so the basic scheme was enhanced.
Following standard compiler writing practice, identifiers
and numbers are read in and assembled into complete
words by a separate procedure. These input words are
then passed through a vocabulary lookup process to
link them with terminal symbols. The words in the
vocabulary are all allowed to have an associated meaning
which is treated in an analogous way to actions. The
alterations to the basic analyser to incorporate these
features are indicated in Appendix 2. The syntax itself
was also optimised using the program SID (Foster, 1968)
into a form which reduced multitracking.

3. Lambda interpreter
The actions produced by the syntax analyser are taken

as a program stream to be interpreted. As the problem
was initially envisaged, the output to the analyser could
be arranged, by suitable positioning of the actions in
the syntax, to be a reverse polish string. In practice the
output string requires macro manipulation of both the
data and the subroutine calls to achieve the correct

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/225/363357 by guest on 19 April 2024

226 A. J. Fox and P. W. Edwards

sequencing. This simple task is accomplished by making
the action commands in A-calculus (Landin, 1964). The
stack manipulation facilities offered by this language are
illustrated in Fig. 1. Here a complete syntax and
interpreter specification is given for converting from
cash expressed in £ s d into pennies. In this trivial
example the primitive subroutines could have been
embedded directly in the syntax to produce a reverse
polish output stream. This rendering of the example
also provides the opportunity to display the exact input
conventions used on RREAC. A natural bracketting
notation was adopted for the actions with a comma
separating the bound variables from the body of a
A-expression. The metasymbols chosen are: for A and *
for the apply symbol.

Vocabulary
stop = . ;
sla = / ;

Primitive subroutines
mult
add

Actions
alsd = ((: Is d, 240 I mult * 12 s mult * adddadd *) *)
asd = ((: s d, 12 s mult * d add*) •)

Syntax
sentence=cash stop;
cash = integer sla integer sla integer alsd,

integer sla integer asd,
integer;

Fig. 1. Specification of syntax map. In the syntax and
vocabulary specification comma separates alternatives, semi-
colon terminates productions.

An initial set of primitive subroutines was provided
whose actions are concerned with the interpretive system
itself. The syntax analyser is the most important
member of this set. The requisite primitives for the
data retrieval tasks were then added. The primitives
together with the interpreter were all programmed in
ALGOL with list processing extensions.

The A-calculus has certainly provided a convenient
way of stack manipulation. It also has the advantage
that the interpreter is a short and simple program to
implement. However the action language has taken on
a more important role than was originally conceived for
it. The use of functional parameters, recursion and
also the setting of identifiers in the environment of the
A-calculus have all been found useful, though this
greater use of an intermediate language has emphasised
the inherent difficulties in programming in an obscure
functional language. The situation has been slightly
alleviated by providing useful primitives for use in the
A-calculus itself. Thus the intermediate language bears
a strong resemblance to LISP S-expressions. In future
work in this field we shall use an expanded intermediate
language. The major features which this should have
are declarations and sequential statements. The extent
to which fragments of the intermediate language itself
can be precompiled will be investigated.

4. System organisation
The three basic ingredients of the programming

system are the interpreter, the analyser and the primi-

tives. The two major types of data are the various
vocabulary and syntax specifications and search data.
The total system organisation is indicated in Fig. 2.

The control of the system is deemed to lie with the
interpreter except when it calls up a primitive. Each
primitive must return control to the interpreter. All
primitives take their input parameters from the evalua-
tion stack of the interpreter. Most primitives plant
output back on the evaluation stack. The analyser is
unique in that it alone can plant further actions on the
control stack of the interpreter.

Return of control from the analyser to the interpreter
is achieved by one special action. This allows the
system writer the choice as to whether the actions should
be evaluated as they are encountered or alternatively
whether they should be stacked up until the end of the
sentence. Return during the analysis of a sentence can
be used to introduce a measure of context dependence.
This is achieved during the recall period by assigning a
value to a variable within the environment stack of the
interpreter and then recalling the analyser within the
environmental scope of that variable. The effect of the
latter technique is to plant information for use in
subsequent actions generated within the scope of that
call of the analyser. In practice return is performed
only at a few places during the analysis of a sentence.
When such a return is made the state of all the prediction
piles in the analyser is maintained between activations.
The interpreter itself, however, does not allow parallel
processing; thus the return from analyser to interpreter
can only be performed when there is a unique action
stream.

Ideally all the primitives should be pure procedures.
However the lack of declaration and explicit assignments
within A-calculus has meant that communication via

PROGRAM (list ALGOL) DATA

INTER-
PRETER

SYSTEM
PRIMITIVES

ANALYSER

FILE
ACCESS

SET
OPERA-
TIONS

GRAMMAR B

SYNTAX —
ACTIONS —

—BACKUS
—A CALCU-

LUS

GRAMMAR A

SYNTAX
ACTIONS

DATA
RETRIEVAL
PRIMITIVES

Fig. 2. Interpreter scheme

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/225/363357 by guest on 19 April 2024

Syntax-driven interpreter 227

globals within ALGOL has often been preferred. Again,
a more convenient intermediate language will overcome
this difficulty.

5. The data retrieval task
Let us now consider the data retrieval task to which

the interpreter was applied. The design aim was to pro-
vide an on-line retrieval system, a decision which deeply
affected the organisation of the data files. A commonly
used format for storing data is a set of separate records
with each record containing a list of properties about a
single item (in this context a property is considered to
be an attribute name together with a value). With this
format it is necessary to search all the records in the data
base in order to answer any query. This is an inefficient
process whenever the number of properties in the enquiry
is significantly less than the number of properties in the
record. In such a case, economical use of the computer
can only be achieved by batching enquiries and answering
them all in a single sweep through the file. Naturally
this implies an off-line retrieval system. In an on-line
retrieval system, where a rapid servicing of enquiries is
necessary, a series of inverse files must be constructed,
with each file applying to one particular attribute. Such
a file consists of the values pertaining to that particular
attribute together with the references to the records in
the main file where they are contained; the complete file
is sorted in order of the value. It still remains necessary,
however, to retain the serial record file so that informa-
tion may be presented about the records selected from
the inverse files.

The program for creating and maintaining both types
of files was written using the interpreter scheme. The
input language for this program is syntax specified but
is trivial. In essence it consists of one of the commands
enter, delete or amend, together with sufficient informa-
tion to identify the data item being altered. In the case
of enter or amend, there then follows the value of the
new data item which is itself syntax specified. If
necessary any such data value can be annotated by
means of a free text footnote. The form in which the
data is organised within a record leans heavily on
syntax techniques as will be described in the following
section.

The retrieval program also makes extensive use of
syntax techniques both for translating the query language
and for directing the print-out of the more complex
values. The query language is described in Section 7,
followed in Section 8 by brief details of the actions used
in the interpretation. It would have been quite possible
to write a single program with a comprehensive language
to embrace both the updating and retrieval tasks. How-
ever the nature of the data capture fits naturally into an
off-line system with a batched set of updating com-
mands, so the two tasks were programmed separately
on RREAC. The data input and the data retrieval
program are of comparable size, each one being approxi-
mately 20,000 compiled orders in length. In addition
each program has a set of syntax maps and action details
associated with it.

6. The description of data
The concept of a record as a list of properties has

already been introduced. Often, attribute names are
common to a large sequence of records and, in such

cases, they may be held separately from the values.
The records are thus reduced to a list of values in a
contiguous area of store. A system must then be
developed for describing attribute names and linking
them with the values. The syntax techniques already
described provide a way of accomplishing this task.
We shall now enlarge on this observation and, in order
to bring out the main features, we shall compare it with
the well known COBOL system.

Let us first consider how attribute names may be
introduced. In COBOL basic attributes are listed
together with a description of their associated type of
value. These basic attributes may then be collected
under generic attribute names to give a tree-like grouping.
Such a mapping of attribute names on to values can be
trivially represented by a context free phrase structure
grammar (CFPSG). In this grammatical (or syntactic)
description, class names fulfill the role of generic attribute
names and terminal symbols correspond to value
descriptions. The data description in COBOL also
allows one to repeat an attribute a fixed number of times
using the OCCURS clause. There is no elegant way
of achieving this effect in a syntax description, one must
simply list the attribute name the requisite number of
times.

However, the very simple recursive definition

(repeated name} ::= (name} (repeated name} \

will allow an indefinite number of repetitions. As a
consequence of the variable repetition feature, the
record size will expand or contract according to the
volume of data.

The recursive definition of a list of names is just one
example of how the use of an empty alternative may be
used to form a compact record. This must be con-
trasted with the COBOL practice of filling out the record
to a fixed length, using dummy values if necessary.

A COBOL record may be compacted to a limited
extent by means of the DEPENDS ON clause, though
this device may only be used at the end of a record.
This limitation must be contrasted with the flexibility
of the recursive syntax definition which may be used at
any point in the description of a record and can be
nested to an arbitrary depth. The syntax definition
given above is of course not a precise analogue of the
DEPENDS ON clause because the latter uses semantic
information. To achieve exactly the same effect it is
necessary to embed a special action in the syntax which
would cause exit from the analyser on a count condition.

Let us now consider how the attribute names are
linked with the values in the record. In COBOL this is
a straightforward task since each attribute name delineates
a fixed data area within the record area and this is the
same for all records. The availability of alternative
productions in a syntax scheme precludes the use of a
fixed storage map. One may however analyse the data
as it is read in and build up a separate storage map for
each record. This was done for the more frequently
accessed attributes in the integrated circuit records.
For the other attributes, the storage map was in effect
re-created by syntax analysis every time an access was
required. The speed of this process was enhanced by
holding tags at intervals throughout the record and by

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/225/363357 by guest on 19 April 2024

228 A. J. Fox and P. W. Edwards

performing a full analysis only between the markers
which spanned the requisite value. With a data descrip-
tion as general as that provided by a CFPSG, the
possibility of introducing ambiguities must always be
guarded against. The program SID was of assistance
here and as a by-product it produced a mapping of the
data that was optimal in terms of the analysis speed.

Attribute grouping is not the only data activity for
which the syntax approach proved helpful. A CFPSG
also assisted in the formation of a data value for storing
in a record such as a string or number. Many attributes
have values which are directly represented by either one
of these types.
e.g. stock level = 10 or place of manufacture is France.
Nevertheless there are many cases where the value is not
so simple. Therefore, to avoid imposing rigid standardi-
sation on the user or having to employ a rather hit or
miss technique of string matching when searching, it is
highly desirable to transform an external representation
of a value into a canonical stored form. Where values
may be represented by a single word the conversion of
synonyms into a canonical form can be achieved using
the vocabulary alone. For more complex cases it is
necessary to use a syntax description with appropriate
actions to achieve the conversion; such a syntax will be
called a value syntax.

This technique was used in several places in the
integrated circuit data base. One such conversion has
already been indicated in Fig. 1. A more complex
example is provided by the syntax necessary to describe
the logical function performed by an integrated circuit.
One such function is a gate, and in its simplest form, the
number of inputs to a gate and its logical function have
to be specified. A typical example is

3 input nand. (1)

However, inside one integrated circuit the inputs to one
gate may be outputs from other gates which have to be
specified. If the three inputs to a nand gate are the
outputs from a three input or gate and two two input or
gates, the specification of the function is

(3 input or, 2 input or, 2 input or) nand. (2)

Since there can be any number of gates in this sequence,
the syntax must be recursive. A value string is made up
by associating symbols with various parts of the syntax,
so that when a function has been syntax analysed a
sequence of symbols is left on the action stack, each
distinct function leaving a different sequence of symbols.
Another action then forms a single string from the
symbols on the action stack.

Part of the syntax for function is

ifunctiony : := '#' (gate) | ' / ' (flipflop) | . . .
(gate) : := (inparty (logicwordy
(logicwordy : := and 'a' \ or V | nand '«' | nor V
(inparty : := (integer} input

(V (gatelisty) V
(gatelisty ::= (gatey \

(gatey , ' / (gatelisty

The examples (1) and (2) will yield the strings g3n and
go3oy2oy2ocn.

The use of syntax techniques to produce a canonical
representation of a data item implies that a converse

mechanism is required for printing values. Here again
the analyser may be used with its input taken as a stream
of single characters from the canonical representation
and its output going directly to the printing device. Yet
another syntax map is required for this process though
it obviously bears a strong resemblance to the corre-
sponding input syntax. For example: the syntax map
used for printing functions is almost identical with the
one used for reading in functions, but with the terminal
symbols and the actions or meanings reversed. The
analysis is followed by the call of a subroutine which
prints out the items on the action stack.

It is also possible for a value to take the form of a
reference pointer to another record. Reference values
are not explicitly catered for in COBOL, nor were they
used in the integrated circuits scheme, nevertheless it is
interesting to see how they fit into a syntax scheme.
Consider the standard example of a family record in the
following simplified form:

(personlisiy
(persony
(father)/
(mothery
(namey

= (persony (personlisty | (persony
= (namey (agey (fathery (mother}
= (persony
= (persony
= identifier
= integer

One interpretation of this syntax could be a world
genealogy listing back to Adam and Eve within the
single record (like the families of integrated circuits
above). Alternatively we may regard (fathery and
(mothery both as references of type person and then
each record will be limited to four entries. In large
scale data retrieval schemes there will be several distinct
files with different syntax descriptions. There is no
reason in principle why references should not be allowed
between such files by cross linking the distinct syntaxes
by use of reference classnames.

So far the syntax which describes attribute grouping
and the syntax used to form values have been considered
separately. However the same formal method of specify-
ing the syntax is used in each case so it is quite feasable,
and in certain cases profitable, to merge the two distinct
syntaxes into one comprehensive syntax. The possession
of the unified syntax then allows a more flexible approach
to attribute grouping since appropriate values may be
resolved into finer substructure at search time. Consider
the case of the logical function value for integrated
circuits described above. It is possible to pass the
canonical representation, treated as a character stream,
through a further stage of analysis at search time. This
re-constructed sub-structure may then be examined for
any of its component values such as a particular logic-
word on a given level of the gate tree.

Summarising, we have found that the technique of
syntax description can be consistently applied to the
input, accessing and output of data. This technique
has the advantage that the design of the program as a
whole is more clearly separated from the detailed form
of the data in a particular application, and a single
analysis procedure is all that is required to achieve this
end.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/225/363357 by guest on 19 April 2024

Syntax-driven interpreter 229

7. The retrieval language
The Command Language for Interrogating Computers

(CLIC) which is described in this section is a simple
language for data retrieval. The formal syntax is given
in Appendix 3 and full details are given in a users'
manual (Fox and Edwards 1968a, available on applica-
tion from the authors). However a more discursive
approach is adopted here in order to bring out the design
features. The examples are all drawn from the RREAC
implementation and reflect the vocabulary appropriate
to integrated circuits. It must therefore be explicitly
stated that CLIC itself is completely general and could
be applied to searching any type of data simply by
changing the search items and selection criteria.

Basic CLIC
The basic design aim was to provide a simple way of

asking for information about items which satisfy a given
set of selection criteria. The following example shows
a typical CLIC command which incorporates these basic
features.

print names of all circuits with cost <2/0/0.

This command is built up from three phrases, viz.

request phrase subject phrase choice phrase
print names of all circuits with cost <2/0/0.

These three phrases are the basic building blocks of any
sentence in CLIC. The subject phrase, as the name
implies, indicates which circuits are to be considered
when making a choice so naturally it must always be
present in a command. The choice phrase considers the
circuits given by the subject phrase and selects from
amongst them any which satisfy the listed criteria.
Finally, the request phrase prints out any desired property
of the chosen circuits.

The choice phrase contains choice terms which are
typically in the form of the name of a property, a relation
operator and a value, as in:

place of manufacture equal usa
cost <5/0/0

propagation delay = unknown

(Note the use of the word unknown which is a perfectly
acceptable value.) Alternatively, if the required property
has a numerical value, then choice terms like

greatest stock level
smallest propagation delay

are available. Usually selection will be on the basis of
more than one property. This can be expressed by
linking up the choice terms into choice expressions using
the connectives and or or, e.g.:

propagation delay <10 or greatest value of maximum
counting rate

Following the usual convention the and operator binds
more tightly than the or operator, though any order of
evaluation may be achieved by using round brackets as in

place of manufacture equal usa and (maximum counting
rate") 1000 or propagation delay <5)

The request phrase may also be elaborated to enquire
about several properties at once by linking the desired
properties with the word also, for example:

print name also stock level of all circuits with
propagation delay <20.

Frequently it is useful to be able to ask for details
about specific circuits whose names are known. To
cater for this requirement an alternative subject phrase
of the form

circuits name, name . . .

is allowed. It is also permissible to drop the choice
phrase to give queries of the type

print stock level of circuit ferranti micronori zss&3a.

If any of the data items being printed out have been
annotated then the user will be informed of the reference
numbers of the relevant footnotes. The contents of the
notes can then be examined using a request phrase like
the one in the command

print notes 1, 3, 5 of circuit ferranti micronorl zssS3a.

On-line aids
It is expected that the enquirer will approach his

selection by a series of commands. Initially the condi-
tions will cast the net widely and each subsequent
command will apply successively more stringent condi-
tions. To avoid the tedious repetition of previous
selection criteria with each new question an alternative
subject phrase,

above circuits

is provided. This has the effect of making the selection
process given in the command apply only to the list of
circuits derived in the previous sentence, e.g.

print total number of all circuits with place of
manufacture equal usa.

print names of above circuits with smallest cost.

This facility may be generalised to allow the user to
refer back to any stage in the selection process by
allowing one to incorporate a remember phrase in any
command between the request phrase and the subject
phrase. The remember phrase has the simple form

also dub name

and has the effect of attaching a name devised by the
user to the list of circuits chosen in that command, e.g.

request
print names

of

remember
also dub
usmade

subject
all

circuits

choice
with place of
manufacture
equal usa.

Thereafter the name which has been given to a list of
circuits may be used in a subsequent subject phrase
instead of above or all, e.g.:

print names of usmade circuits with stock level} 20.

The above circuit facility is in fact provided by auto-
matically dubbing the name above on to the list of
circuits generated by each command, whether or not a

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/225/363357 by guest on 19 April 2024

230 A. J. Fox and P. W. Edwards
remember phrase is used. Thereafter the word above
appears to the next subject phrase just like any other
dubbed name.

The following sequence of commands illustrates
typical uses of a remember phrase:

Q\ print names of also dub usmade all circuits with
place of manufacture equal usa.

Q2 print names of also dub ukmade all circuits with
place of manufacture equal uk.

Q3 print smallest price of usmade circuits.

Here let us assume that the printed result is 1/0/0. The
user might now continue with

Q4 dub cheap ukmade circuits with price < 1 /0/0.
Q5 print names of cheap circuits with can type equal

flatpack.

In order to make comparisons between the costs of
the two groups of circuits it was necessary to retype the
answer to one question (23) back into a later one (Q4)
even though the value itself was uninteresting. To
avoid this situation the language allows the value in any
choice term to be replaced by a command to provide that
value, e.g.:

print names of ukmade circuits with price (smallest
price of usmade circuits and can type equal flatpack.

In general the property used in the choice phrase and
the property demanded of the inner sentence will be the
same. To avoid needless repetition the use of the
pronoun that is permitted in the inner sentence, e.g.:

. . . propagation delay (that of. . .

The interpretive system used to implement CLIC
holds both the vocabulary and the syntax as data to the
analyser. Thus either may be modified on-line under
the actions generated by specific commands.

Alteration of the vocabulary to allow the user to define
synonyms is trivial. A typical synonym definition is
illustrated by the command

define synonyms
tifor texasinstruments,
mfr for manufacturer,
hot for temperature.

which may appear at any point in a CLIC dialogue.
Provision for the on-line modification of the syntax rules
themselves was more complex. Consider the example,

define choice expression
temperature range at least x to y
where x is tempval, y is tempval

to mean
operating temperature minimum <x and
operating temperature maximum)) y.

Here a new alternative production for choice expression
is introduced. First a new action is constructed from
the actions developed by the phrase expressed in the old
syntax. Then the new production and action are merged
into the old syntax map. This facility is powerful but
has operational difficulties which prevented it from being
generally released.

The immediate difficulty is that the user needs to know
the identifiers for the class names (in second example
they are choice expression and tempval). If the syntax
has been optimised using SID (Foster, 1968), as it was
in the RREAC implementation, there will probably be
few distinct and meaningful classnames left. Indeed it
might be necessary in some cases to return to the original
syntax in order to express a definition readily. This
extended syntax could then be re-optimised before use;
this process would have the advantage of revealing
ambiguities introduced into the new syntax. Even so,
in a system which was released to the general user, it
would be preferable to allow additional definitions to be
made for only a few well-chosen class names. The
additional safety precaution of providing each user with
his distinct copy of the syntax map would also have to
be made.

The interrogation language described above has proved
easy to learn and to use. In addition, for the designers
of the system as a whole, the syntax approach enabled
the structure of CLIC to be enhanced with very little
difficulty in the course of its development.

8. Implementation
It has already been remarked that the language is

appropriate to a data base which possesses some structure.
Nevertheless within this loosely defined requirement,
CLIC could be applied to a variety of data bases since
the exact nature of the actions is an implementation
choice. The RREAC scheme uses the data base in the
form described in Section 6. Here the actions invoke
procedures of two main groups. First there are the file
access procedures which search appropriate files (either
serial or inverse) in the data base. In addition there are
the procedures which operate on the results of the file
access procedures, e.g. set union or intersection on lists
of circuits, count of number of items in a list, or print-out
of values in a list. All these procedures and the file
structures they act on, are detailed in the paper 'The
Implementation of a Data Retrieval Scheme on RREAC
using Syntax Techniques' (Fox and Edwards, 1968b).
The manner in which CLIC phrases are translated into
calls of these procedures bears a strong resemblance to
that used for implementing general purpose computer
languages by means of a syntax specified translator
system. Since this is a well understood task it does not
seem necessary to present here precise details of the
actions and the way in which they are incorporated into
the CLIC syntax.

9. Discussion
The foregoing account describes the present state of

the RRE retrieval scheme. The implementation has
used a syntax driven interpreter throughout and this has
conferred substantial advantages over ad hoc methods.
For the syntax description is easy to understand, and
the actions are distinct and have well defined side effects.
Thus it has been possible to use a data base which is
non-trivial in scale and complex in structure. Further-
more it has aided the design and implementation of the
retrieval language which is powerful and yet easy to
assimilate.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/225/363357 by guest on 19 April 2024

Syntax-driven interpreter 231

Two developments are at present under consideration
for the CLIC system. The first is greatly to extend the
range of procedures which may be applied to the retrieved
data. In the present scheme these are limited to calcula-
tions of total, maximum or minimum values, but for
many applications it would be useful to be able to apply
a full range of statistical calculations. The use of
infixed operators to allow simple arithmetical operations
on data values can also be readily incorporated. The
fact that these operations must be obeyed interpretively
would not perceptibly alter the speed of response since
'programs' of the CLIC type are so trivially short. The
second development is to allow certain names of subjects
or criteria to be generic and to make the analyser perform
the necessary treeing down to the level of the constituent
terminal items.

Finally we would like to suggest that syntax specified
languages should be considered for use in driving a wide
range of application packages. Within these special
'problem' areas no single all-embracing language can be
designed. The need is to be able to develop special
one-off languages in as painless a manner as possible and
to avoid the irksome restrictions and clumsy input
formats of some present-day commercial packages.
Translator writing systems appear to provide the mecha-
nism for achieving this aim.

Appendix 1
Algorithm: A predictive analyser for syntax with embedded

actions
consider the given initial classname.
replace that classname by a set of predictive stacks

where each stack corresponds to an alternative
expansion prescribed by the relevant syntax rule.

associate an action stack with each of the prediction
stacks.

SCAN INPUT
read in the next symbol from the input sentence

SCAN STACKS
examine the first item in the first of the prediction

stacks
if the first item is a terminal symbol

then

TERMINAL MATCH
begin

if it matches the input symbol
then remove that item from the stack and move

the remainder of that stack together with its
associated action stack from the set of pre-
diction stacks into a set of accepted stacks

otherwise discard that prediction stack and also
its associated action stack

end
otherwise if the first item is a classname

then replace it with the set of alternatives prescribed
by the syntax. In each case the remainder of
the original prediction stack is associated with
each of the new alternatives. (In our system
this remainder was a common sublist and not
a fresh copy.)

otherwise if the first item is the name of an action

then transfer the actions corresponding to that name
from that prediction stack into the associated
action stack.

The examination of the prediction stack is repeated,,
from the point marked SCAN STACKS, until all the
prediction stacks are either eliminated or transferred to-
the accepted stacks.

If there are no prediction parts left in the accepted
stacks then the process is complete and the action stacks,
if any, are transferred to the interpreter. Otherwise,
the accepted stacks are treated as prediction stacks and
the whole process repeated from the point marked
SCAN INPUT.

Appendix 2
Algorithm: Incorporation of vocabulary in analyser

Two sections of the original analyser are expanded.
1. The line labelled SCAN INPUT now becomes:

SCAN INPUT
use an input routine to read the next word from the

input sentence
search the vocabulary for that word
if present

then replace the incoming word with the list of
terminal classes to which it may belong. In
each case any possible meaning is associated
with the relevant terminal symbol

otherwise examine incoming word and place in
appropriate terminal class of identifier,
real or integer with itself as meaning

2. The section labelled TERMINAL MATCH is-
changed to be:

TERMINAL MATCH
begin
take the next possible terminal symbol and meaning:
from the list given by the vocabulary
if this matches the first item in the prediction stack

then remove that item from the stack and move the
remainder of that stack together with its
associated action stack from the set of pre-
diction stacks into a set of accepted stacks

otherwise
begin
discard that possible terminal symbol and mean-
ing.
if further interpretation of the incoming word is

possible
then return to TERMINAL MATCH
otherwise discard that prediction stack and also-

its associated action stack
end

end

Appendix 3
CLIC Syntax

The Syntax of CLIC is given here in Backus Normal
Form, with the following additional conventions:

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/225/363357 by guest on 19 April 2024

232 A. J. Fox and P. W. Edwards

(1) a terminal symbol in quotes means that any
identifier is acceptable at that place;

(2) the symbol j> at the end of a word (e.g. circuit^)
means that either singular or plural form of the
word is allowed;

(3) 0 as an alternative for a syntactic class means that
class need not be present.

(command) : := (retrieval command}. \ (other
command},

(retrieval command)) : := (request} (remember}
(subject} (choice}

(subject} : := all circuits \ above circuits \ 'dubname'
circuits | circuits (namelist}

(namelist} :: = (circname} \ (circname}, (namelist}
(circname} :: = 'manufacturer' 'series no' 'order no'
(choice} ::= with (choice expression} | 0
(choice expression} : := (eel} \ (eel} or (choice

expression}
(eel} : := (choice term} \ (choice term} and (eel}
(choice term} :: = ((choice expression}) \ (word

property} (EO) (value} \ (number
property} (RO) (value} \ (qualifier}
(number property}

(word property} ::= name \ can type \ logical function |
. . . etc.

(number property} :: = cost \ stock level \ propagation
delay | . . . etc.

(EO) : := equal \ not equal
(RO} ::= = | =£ | < | < | > | >
(qualifier) :: = smallest \ smallest value of | greatest \

greatest value of
(value) ::= (embedded command) \ (value syntax) \

unknown
(value syntax) depends on the property being considered
e.g. (value syntax for cost) ::= integer / integer /

integer | integer / integer
(request) : := print (pplist) of\ select | 0
(pplist) ::= (pp) | (pp) also (pplist)
(pp) ::= total number | (wordproperty) \ (number

property) \ (qualifier) (number property) \ that

(remember) :: = also dub 'dubname' \ dub 'dubname' | 0

(embedded command) ::= (requestI) (remember)
(subject) (choicel)

(requestl) : := (pp) of\ print (pp) of
(choicel) : := with (choice term) | 0
(other command) ::= (forget) \ (synonyms) \ (directive)
(forget) :: = forget (dubnamelist)
(dubnamelist) ::= 'dubname' \ 'dubname', (dubnamelist)
(synonyms) :: = define synonyms (synonym list)
(synonym list) :: = 'new' for 'old' \ 'new' for 'old',

(synonym list)
(directive) various commands to select input and output

channels, and anything else required by a
particular implementation.

References
FELDMAN, J., and GRIES, D. (1968). Translator Writing Systems, Comm. ACM, Vol. 11, No. 2, p. 77.
FOSTER, J. M. (1967). Interrogation Languages, Machine Intelligence 1, p. 267. Edinburgh and London: Oliver and Boyd.
FOSTER, J. M. (1968). A Syntax Improving Program, Computer Journal, Vol. 11, No. 1, p. 31.
Fox, A. J., and EDWARDS, P. W. (1968a). The Selection of Integrated Circuits using RREAC—Language Manual. Ministry

of Technology unpublished work.
Fox, A. J., and EDWARDS, P. W. (1968b). The Implementation of a Data Retrieval Scheme on RREAC using Syntax Techniques.

Ministry of Technology unpublished work.
LANDIN, P. J. (1964). The Mechanical Evaluation of Expressions, Computer Journal, Vol. 6, No. 4, p. 308.

Book Review
Advanced Linear-Programming Computing Techniques, by

William Orchard-Hays, 1968; 355 pages. (McGraw-Hill,
£5 17s. Od.)

This is an ideal reference book for those involved in using,
writing, or amending programs for linear programming.
The application theory, and the detailed interpretation of the
results are not examined. One objective of the book is that
it will establish a notation and nomenclature to promote
easier communication. It is not considered that the notation
satisfies this aim.

The introductory chapters define the problem and discuss
the simplex methods of solution. Although the book is
claimed not to provide a mathematical background, it should
be pointed out that it is largely concerned with mathematics
and suggested algorithms for the writing of computer pro-
grams, and it is therefore advisable that readers are well
versed in algebraic techniques. An excellent illustrative
example of a 'widget' manufacturer is included, this continues
through the book, which shows how these programs can
be applied. For those assisting management in the formu-
lation of company models, these sections will be of con-
siderable assistance.

Another example, for the manual solving of simultaneous
equations is rather unfortunate in that it makes an easy
problem difficult. This is, however, a minor criticism.

The procedures for the ranging of coefficients in the
modification, extension, and combination of company models
are of particular interest. In certain sections mnemonics
come thick and fast, PARROW, PARCOL, PARRHS, etc.,
as detailed computer programs are investigated. The
development of decomposition techniques, including the
Dantzig-Wolfe Algorithm, are well documented. The
Appendices on Elementary Transformation and the Mathema-
tical Programming System are excellent and there is also a
useful index.

In conclusion, the author comments that the techniques
developed over the last ten years have automated Linear
Programming computational runs; but with the increased
power of program systems and algorithms, it is likely that it
will again be necessary for the analyst to direct the procedures.

This book can be recommended both for Scientific Com-
puter Programmers and for Operational Research personnel
who are involved in the application of linear programming.

G. P. D. MORRIS (Coventry)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/225/363357 by guest on 19 April 2024

