
233

A compact form of one-track syntax analysert

By H. R. Simpson*

This paper describes a technique for automatically generating a one-track syntax analyser and
discusses its use in a number of examples. A method of effecting semantic control over syntax
is introduced.
(Received January 1969)

1. Introduction

J. M. Foster (1968) has described a program called SID
(Syntax Improving Device) which can take in a syntax
rule set containing embedded actions, automatically
produce an equivalent one-track form, and then output
a syntax analyser to run on a given object machine. The
form of the analyser is ideally a code program which
checks the syntactic legality of the input data and
arranges the calling of embedded actions as and when
required; it does not produce a formal parsing of the
input data, although the actions could be programmed
to perform this function. SID has proved to be a
valuable aid in compiler writing over a wide range of
practical applications, extending from simple assembly
languages through to quite complicated high level
languages (Currie and Griffiths, 1967).

The work described in this paper is based on a program
called SAG (Syntax Analyser Generator, Simpson, 1968).
SAG and SID require similar forms of input data and can
produce similar forms of output analyser. However,
SAG does not undertake automatic rule transformation;
instead it checks the syntax for one-track properties and
outputs data to assist in the process of manual trans-
formation into an equivalent one-track set. SAG is a
simpler program than SID and can be quickly and easily
implemented on quite small computers with limited
software facilities. Nonetheless it provides a powerful
and flexible aid, particularly when writing compilers to a
given specification.

Early versions of SAG produced syntax analyser pro-
grams in code which were identical in form to analysers
produced by SID. However, for certain machines, this
led to a rather lengthy analyser, and so an alternative
interpretive form of output was developed. In this case
SAG produces data which can be operated on by a
simple interpreter program. The resulting analyser can
be made extremely compact with very little penalty in
terms of running time. This paper concerns itself
entirely with the interpretive form.

The principal elements of the technique are illustrated
in Fig. 1. Syntax rules containing actions are processed
by SAG; SAG may reject the results if they do not
correspond to an acceptable one-track form. If the
rules are one-track, then SAG produces a data set which
can be operated on by a simple interpreter program.
This data set represents a close-packed form of the rules,
and includes additional information to assist in the
process of syntax analysis. The data set and the inter-

preter program together form a syntax analyser which
can operate on basic symbols generated by a preproces-
sor. The preprocessor derives the basic symbols from
the syntactic content of the input data. The analyser
matches the basic symbols against the data set representing
the syntax rules and generates a stream of action calls.
These action calls control the sequence and timing of
the actions which must be programmed to effect the
required transformation between input and output. The
actions may require value data associated with the input;
the preprocessor derives this value data from the semantic
content of the input. Also the actions may need global
workspace for intercommunication purposes and the
storage of intermediate results. This is a very condensed
summary of the technique; the various component parts
are fully discussed in the paper and a number of examples
illustrate how the method might be used in practice.

This paper shows how syntax directed techniques can
be applied in a direct and straightforward manner. The
content of the paper covers four main areas:

(a) Detailed description of a simple application as it
would finally appear in the object machine. This
breaks down into four parts: preprocessor (Sec-
tion 2), SAG output (Section 5), interpreter
(Section 6), and actions (Section 7).

(b) Brief description of the way in which SAG pro-
duces the data for the interpreter (Sections 3, 4, 5).

(c) Discussion of embedded actions, and the way in
which these communicate with one another via a
global data structure (Sections 7, 8, 9).

(d) Discussion of the way in which semantics can be
incorporated into the analyser (Sections 10, 11).

Sections 2-9 use examples that are quite close to those
given in a paper by Foxley and King (1968) which
discussed Compiler-Compiler type techniques. These
examples have been chosen so that the reader can
compare the Compiler-Compiler approach with the
methods described in this paper.

2. The preprocessor
The input stream is passed through a 'preprocessor'

before being fed to the analyser in the form of basic
symbols for analysis. The preprocessor can make use
of several techniques to condense the input data. It can:

t Crown copyright. Reproduced by permission of the Controller of H.M. Stationery Office.
* Ministry of Technology, Royal Radar Establishment, Malvern. Now at Bukit Gombak, RAF Tengah, Singapore

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/233/363368 by guest on 19 April 2024

234 H. R. Simpson

(a) Ignore certain characters (e.g. layout characters,
blank tape, etc.).

(b) Combine characters in a serial fashion (e.g. reduce
language words such as BEGIN, END, CODE to
single symbols).

(c) Combine characters in a parallel fashion (e.g. treat
all lower case letters as the same symbol).

The preprocessor produces two distinct outputs, shown
as 'basic symbols' and 'values' in Fig. 1. The first of
these outputs, which represents the syntactic content of
the input data, is passed to the analyser in two logically
equivalent forms. For each basic symbol we pass over:

(a) An integer representing the basic symbol. This is
the basic symbol reference number {rn), and con-
ventionally these numbers run from zero upwards.

ib) A bit pattern, all Os except for a 1 in a position
which uniquely characterises the basic symbol.
This bit pattern is known as a single bit boolean
word (bw); a boolean word may occupy one or
more computer words.

Both means of representing the basic symbols are neces-
sary since either form may be required by the analyser
for the purposes of rule alternative selection and terminal
symbol matching.

The value output from the preprocessor represents the
semantic content of the input data. Some basic symbols
may have a value associated with them (e.g. digits,
letters, etc., but not usually BEGIN, END, etc.) which

is required for use by the actions embedded in the
syntax rules. In this case the preprocessor outputs a
value (tO) in addition to the basic symbol described
above. It is convenient if the preprocessor also remem-
bers the value (/I) associated with the previous basic
symbol read—this enables the actions to operate on value
data associated with the terms on either side of the
actions.

Table 1 gives the correspondence between input charac-
ters, values and basic symbols for Examples 1 and 2 of
this paper. The words START, FINISH are examples
of characters being condensed in a serial fashion, and
digits 0-9 and lower case letters a-j are examples of
characters being condensed in a parallel fashion. The
value associated with an input character corresponds to
the internal representation used in the computer. The
boolean words are given in binary and each occupies a
single computer word (assumed >11 bits). In more
realistic practical applications many more basic symbols
would be needed, and this would result in several com-
puter words for each boolean word. The preprocessor
is a fairly trivial piece of program and can be readily
altered to allow new sets of language words, different
groupings of input characters, etc.

In this paper a clear distinction is made between 'basic'
symbols and 'terminal' symbols. Basic symbols have
been adequately described above. Terminal symbols are
those terms (excluding actions) in the syntax rules which
are not expanded any further. Terminal symbols are
fully described in the next section.

rules

Syntax
Analyser
Generator

rules
--•rejected

input

basic

symbols

Interpreter

I

Data for
Interpreter

ANALYSER

action
calls

Preprocessor
values

Actions

Global
Workspace

output

Object Machine

Fig. 1. Principal elements of the technique

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/233/363368 by guest on 19 April 2024

3. SAG input, illustrated by Example 1
Three types of term appear in the syntax rule input

to SAG, and a special convention for writing the identi-
fiers of each type will be adopted to avoid the necessity
for separate type declarations.

(a) class names—identifiers consist of italic letters
and digits.

(b) terminal symbols—identifiers consist of upper case
letters (thus all characters required in a syntax rule
set must be represented by a name in upper case
letters).

(c) actions—identifiers consist of bold lower case
letters and digits.

Strictly speaking the actions are not part of the syntax
rule definition, but they indicate the point at which some
semantic function would need to be carried out. Each
syntax rule is defined in terms of one or more alternatives.
Each alternative is enclosed in round brackets and con-
sists of either a void or a single term, or a list of terms.
Individual terms in a list of terms are separated by
commas. The following set of syntax rules for a
restricted arithmetic expression (Foxley and King, 1968)
is written using this convention.

rae =(term, PLUS, rae) (1)
. (term)

term =(primary, TIMES, term)
(primary)

primary =(LETDIG)
(ORB, rae, CRB)

The terminal symbol names PLUS, TIMES, ORB, CRB,
stand for the characters + * (). LETDIG is used to
denote a letter or digit.

This syntax rule set would not be acceptable to SAG
because it is not one-track. Also it does not specify
the correspondence between terminal symbols in the
syntax rules and basic symbols produced by the prepro-
cessor. Further, the rule set is not of much practical
use since it contains no embedded actions. Consider
now rewriting the results in a form which

(a) is one-track.
(b) specifies the correspondence between terminal sym-

bols and the preprocessor output.
(c) requires the start and finish of the input stream

to be the symbols START, FINISH.
(d) contains actions to produce the reverse Polish

form of the input.

The rules in this new form are given below and will be
used as the first example in this paper. It is seen that
there are two distinct parts (2a, 2b) to the rules.

Rules for Example 1

One-track syntax analyser

input
rae
rae\
term
terml

primary

D

=(START, rae, stop, FINISH)
=(term, rael)

=(PLUS, rae, punchplus)
=(primary, terml)

=(TIMES, term, punchtimes)
()

=(LETDIG, outoperand)
(ORB, rae, CRB)

(2a)

LETDIG
START
FINISH
ORB
CRB
PLUS
TIMES

=(0, 1)
=(2)
=(3)
=(4)
=(5)
=(6)
=(7)

235

(2b)

The first part of this rule set (2a) consists of syntax
rules containing embedded actions. Each action name
has been chosen to correspond with the semantic function
which it performs (see Section 7 for a full definition of
the actions).

The second part of the rule set (2b) defines terminal
symbols in terms of basic symbols. Each terminal
symbol (as named on the left-hand side) is equivalent to
a set of one or more basic symbols (as represented by the
list of reference numbers enclosed in brackets on the
right-hand side). For example, LETDIG embraces all
the input characters which produce basic symbols with
reference numbers 0 or 1. If desired, terminal symbol
definitions can overlap in the sense that they can contain
common basic symbols. This method of defining ter-
minal symbols gives useful flexibility in practical
applications.

4. SAG processing
The SAG program is able to accept data punched in

a form similar to that of rule set (2). SAG uses the
terminal symbol definitions to set up its own internal
form of the corresponding boolean words. SAG uses
the syntax rules to set up a representation of the syntax
in a form which gives convenient access on a rule-by-rule,
alternative-by-alternative and term-by-term basis. The
first syntax rule is assumed to be the starting rule for the
syntax. The SAG program is fully described elsewhere
(Simpson, 1968); a bare outline is given below.

The aim of the SAG program is to determine the set
of all basic symbols which can be expected by the inter-
preter when it comes to examine the leading term of
every alternative for all rules. Terms which are actions
can be entirely ignored in this process. If the leading
term is a class name which has a void alternative then
the basic symbols for the following term must be added
into the set. This process must be repeated for a given
alternative until a solid term (i.e. a terminal symbol or a
class name with no void alternatives) is reached, or until
the end of the alternative is reached. If the end of the
alternative is reached by this process, then we must
include the basic symbols for the leading terms of all
rules which can follow the rule in which the given alter-
native occurs. The process can be regarded as the
computation of the set of symbols which can be seen by
looking at, or if necessary through, each alternative.
Boolean words are used to express the various sets of
basic symbols which are relevant to the computation.

SAG includes checks on the syntax rule set. It detects
the various forms of cyclic conditions which can exist, e.g.:

(a) single cycle
a = (a, . . .)

(b) multiple cycle

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/233/363368 by guest on 19 April 2024

236 H. R. Simpson

(c) masked cycle
a = (b,a, . . .)
b = O

(. . .)
It detects non one-track conditions, e.g.:

a = (b, . . .)
(B, . . •)

b = (B, . . .)

If the syntax is completely non-cyclic and one-track then
SAG will go on to produce the data to be operated on
by an interpreter; otherwise it indicates where the trouble
lies and manual adjustments must be made to transform
the rules into an equivalent one-track set. The form of
the final SAG output can vary to suit particular applica-
tions; an example is given in Section 5.

The initial input of a syntax rule set into SAG should
be in a form which reduces the number of cyclic and non
one-track rules to a bare minimum. Much trouble is
saved if a pair of rules is always used to express the
syntax of a list of items:

list = (item, list!)
listl = (item, listl)

which input basic symbols are allowed to match against
a given syntax terminal symbol. The boolarray data is
used to specify multiple bit boolean words required to
perform 'one against many' checks with the single bit
boolean words coming from the preprocessor. This
section describes the contents of boolarray and rulearray,
using Example 1 as an illustration. The reason for
setting up the data in the form described can be under-
stood by examining the interpreter program (Section 6).

The boolarray data produced by SAG for Example 1
is given in Table 2. The boolean words in boolarray
are formed by taking the 'logical or' of single bit boolean
words for basic symbols (Table 1), and as such represent
sets of basic symbols. Thus word 0 in Table 2 denotes

Table 1

Correspondence between input characters and basic
symbols for Examples 1 and 2

Actions can be inserted at various positions in this pair
of rules:

list = (actO, item, actl, listl, act6)
listl = (act2, item, act3, listl, act5)

(act4)

These actions are called at the following times:

actO before first item in list
actl after first item in list
act2 before every item except first
act3 after every item except first
act4 after last item (but before act5)
act5 called n — 1 times at end of list, where n is the

number of items in the list
act6 after last item (and after act5)

When all actions required in a particular application
have been inserted, it may be possible to simplify the
syntax by substituting the expansion for 'list' in the first
alternative of 'listV. Syntax rule set (2) shows sub-
stitutions of this nature.

The procedure outlined in the previous paragraph will
usually prevent the occurrence of any cyclic rules, but
rules which are non one-track may still exist. These
are brought to light by a 'clash' between the symbols
(represented by boolean words) associated with different
alternatives in a rule, i.e. there are common legal starters
for more than one alternative in the rule. Non one-
track rules can be removed by a process of substitution
and rearrangement (Foster, 1968).

5. SAG output, illustrated by Example 1
When SAG has checked that the syntax rules are one-

track, it outputs data specifying the contents of two
arrays, 'boolarray' and 'rulearray'. The rulearray data
controls the selection of alternatives and gives the list of
terms forming all alternative expansions; it also specifies

INPUT

0
1
2
3
4

6
7
8
9

a
b
c
d
e

fg
h
i
j

START
FINISH

)

*

X

OUTPUT FROM PREPROCESSOR

VALUE

CO)

0
1
2
3
4
<;
6
7
8
9

32
33
34
35
36
37
38
39
40
41

18
19
12
24
11
15

55

REFERENCE
NUMBER

- 0

• 1

2
3

4
5
6
7
8
9

10

BOOLEAN WORD
(bw)

100000 000000...

010000 000000...

001000 000000...
000100 000000...

000010 000000...
000001 000000...
000000 100000...
000000 010000...
000000 001000...
000000 000100...

000000 000010...

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/233/363368 by guest on 19 April 2024

One-track syntax analyser 237

basic symbol number 0 or 1 (input characters 0-9 or
a-j), and word 3 in Table 2 denotes basic symbol number
3 or 5 or 6 (input word FINISH or input character')' or
'+'). Most practical applications will require more than
one computer word in boolarray for each boolean word.

The individual words in rulearray are partitioned into
four fields /0, / I , / 2 , / 3 ; / 0 and/I are single bit fields,
but the size of / 2 and / 3 can vary to suit individual
applications.

Field/2 in rulearray is used to specify a basic symbol
set {bss); bss can have two alternative forms. Where
the basic symbol set consists of a single symbol, then
bss is a basic symbol reference number (rn in Table 1).
Where the basic symbol set consists of more than one
symbol, then bss is the index (bx) for a multiple bit
boolean word in boolarray. The two forms for bss are
distinguished by using a marker bit in /2. The data in
/2 is used by procedure boolmatch (see Section 6). SAG
can compute appropriate values of bss to output in
rulearray from previously assembled boolean word data.

There is one word in rulearray for each terminal symbol
definition in the SAG input data. In this case the various
fields have the following meanings:

/0—set to 1 (denotes that this is data for a terminal
symbol).

/I—not used.
/2—bss (specifies basic symbols corresponding to the

given terminal symbol).
/3—fault number.

There is a block of words in rulearray for each syntax
rule. The first word in this block has/0 set to 0 (to
discriminate between syntax rule and terminal symbol
data). The block divides into two parts: data for the
selection of alternatives and data specifying the alter-
native expansions. The fields in the alternative selection
are used as follows:

/0—set to 0.
/I—set to 1 if the alternative consists of a void or a

single class name or terminal symbol.
/2—bss (specifies basic symbols which are legal starters

for the alternative).
/3—if the alternative is a void then / 3 is set to zero; if

the alternative is a single class name or terminal
symbol then/3 gives the appropriate entry point
in rulearray; otherwise/"3 locates (using a pointer
pa) the data for the expansion of the alternative in
rulearray.

Table 2

SAG boolarray output for Example 1

INDEX

(bx)

0
1
2
3

WORD CONTENTS

110000 000000...
110010 000000...
000101 000000...
000101 100000...

There is one word of alternative selection data for each
alternative. These words are consecutive in rulearray
and are terminated by a word in which fO is set to one
and a fault number is packed into f3. The fields in the
alternative expansion data are used as follows:

Table 3

Description of SAG output for rule set (2)

ASSOCIATED
NAME

input

rae

rael

term

terml

primary

LETDIG
START
FINISH
ORB
CRB
PLUS
TIMES

DATA FOR INTERPRETER

/0 /I

0
0
1
1
1
1

0

0
1
1
0
0
0
1
1
1

0

0
1
1
0
0
0
1
1
1
0

0
0
1
1
0
1
1
0

1
1
1
1
1
1
1

1
0

1
1
0
1

1
1

0
1

1
1
0

1
1

0
1

1
1
0

0
0

1
0
1
1
1

rn = 2

bx= 1

rn
bx

= 6
= 2

bx= 1

rn
bx

rn = 4

bx = 0
771 = 2
r« = 3
rn = 4
rw = 5
rn = 6
rn = 7

/ 3

input
pa
faultno
START
rae
stop
FINISH

pa —
faultno
term
rael

pa
0
faultno
PLUS
rae
punchplus

pa
faultno
primary
terml

pa
0
faultno
TIMES
term
punchtimes

pa
pa
faultno
LETDIG
outoperand
ORB
rae
CRB

faultno
faultno
faultno
faultno
faultno
faultno
faultno

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/233/363368 by guest on 19 April 2024

238 H. R. Simpson
/O—set to 1 if term is not the last term.
/I—set to 1 if term is a class name or terminal symbol
/2—not used.
/3—switch element number if term is in action (see

Section 7); otherwise / 3 is an entry point in
rulearray.

It is clear that there is a close correspondence between
the rulearray data and the SAG input rule set. Table 3
shows a breakdown of the rulearray data for Example 1.
Names appearing in the/3 column must be replaced by
either switch element numbers (actions) or rulearray entry
points (class names or terminal symbols). Arrows down
the right-hand side locate expansion data for alternatives.
, Word 0 in rulearray is used Xo determine the start-up
conditions for the analysis, and it arranges the calling
of the first syntax rule. Its effect can be understood by
studying the interpreter program.

SAG generates the rulearray and boolarray data in a
fairly straightforward manner and this data gives all the
information required to carry out a syntax analysis.
The data emerges from SAG in a purely numeric form.
rulearray and boolarray can either be embodied in the
object machine program in the form of constants, or be
read in as data at the start of an analysis. The way in
which rulearray and boolarray are used by the interpreter
is described below.

6. The^interpreter
The interpreter takes in data from the preprocessor

and performs the analysis in conjunction with the syntax
specification contained in rulearray. The interpreter
program is quite short and is given below; first we need
to define the various variables and procedures used in
the program:

value associated with last basic symbol read,

see Table 1.

preprocess a procedure which takes in the input stream
and sets up values of tO, rn, bw as given in
Table 1.

stack a one-dimensional array used for remember-
ing re-entry points in rulearray.
points to next available word in stack,
entry point in rulearray.
contents of a word in rulearray.

names of the four fields subdividing d.

a boolean procedure which unpacks the value
of bss contained in d and has the value true
if data specified by bss matches either rn or
bw (whichever is appropriate),
a procedure which unpacks and prints a fault
number from d; normally this procedure
would allow the analysis to continue from a
suitable point after skipping part of the input
stream; actions concerned with outputting
data would usually be inhibited after a fault,
switch name (see Section 7).

fault

action

The complete interpreter program, written in an ALGOL-
like form, is as follows:

startup:
/0<-0;
stack [Oj-s-O;

read:
rl<-/0;
preprocess;

interpreter:
q<-q- 1;
p <- stack [q];

a\: d <- rulearray [p];
if/0 = 0 then go to a2;
stack [q] •<- p + 1;

pp;
if / I = 0 then go to action [p];

a3: d-<r-rulearray [p];
if/0 = 1 then go to 06;

a4: if boolmatch then go to o5;
p-^p + 1;
d <- rulearray [p];
if/0 = 1 then go to fault else go to a4;

a5:P4-f3;
if p = 0 then go to interpreter;
if f\ = 1 then go to a 3 else go to <r/l;

a6: if boolmatch then go to read else go to fault;
The stack is used to store the rulearray re-entry points

within the expansions for alternatives. No check on
stack overflow is included above, but would be needed
to give a completely safe interpreter. The analysis
process is initiated by going to the label 'startup1, and
continues until it is stopped by an action (see Section 7).

In practice, the above interpreter program would
normally be written in code to give maximum efficiency.
Also action calls would be performed by inserting the
addresses of the actions into rulearray, rather than by
using a subsidiary switch.

7. Actions for Example 1
The switch declaration for the action calls required in

Example 1 would have the following form:

switch action<-punchplus, punchtimes, outoperand, stop.
The actions are programmed as follows:
punchplus:

punch (12);
go to interpreter;

punchtimes:
punch (24);
go to interpreter;

outoperand:
punch (/I);
go to interpreter;

stop:
go to finish;

The procedure puncHi) has the effect of punching out
the character which has internal representation i using
the correspondence given in the first two columns of
Table 1. All actions except the last return control to

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/233/363368 by guest on 19 April 2024

One-track syntax analyser 239

the interpreter on completion. The last action terminates
the program.

The complete program in the object machine has the
following main components:

(a) Declarations of procedures, variables, arrays,
switch required in (b)-(e) below.

(b) A preprocessor to effect the transformation speci-
fied by Table 1.

(c) rulearray and boolword data as specified by
Tables 2 and 3 (produced by SAG).

(d) The interpreter (Section 6).
(e) The actions (defined above).

The program is extremely short for this particular
example. In general the length of the program depends
directly on the complexity of the problem in hand, and
the interpreter is the only program overhead which is
problem independent.

A typical input to this program might be:

START a + b*(c + d*e)*f FINISH

This produces the following output:

abcde* +/** +

It is quite instructive to perform a manual analysis of
this input data using the interpreter program and data
described previously.

8. Variations on Example 1
This section outlines three simple variations to

Example 1 (as defined by rule set (2)). These illustrate
the importance of the positioning of an action, the ease
with which minor additions to the syntax can be made,
and the use of global variables for handling intermediate
results. Firstly consider the effect of the punchplus and
punchtimes actions as they appear in rule set (2). In
their present position they produce a 'right associative'
form of reverse Polish; i.e.

a + b + c
is treated as:

a + (b + c)

and the reverse Polish form is:

abc+ +
To achieve a 'left associative' form of reverse Polish,
the rules rael, terml in rule set(2) must be replaced by
the following:

rael =(PLUS, term, punchplus, rael) (3)

terml =(TIMES, primary, punchtimes, terml)

In this case
a + b + c

is treated as:
(a + b) + c

and the reverse Polish form is

ab + c +
The left or right associative property of the syntax can
be expressed by writing a single non one-track or cyclic

(4)

(5)

rule. The right associative form of rae is:

rae =(term, PLUS, rae, punchplus)

(term)

The left associative form of rae is:

rae —(rae, PLUS, term, punchplus)
(term)

Rules (4) and (5) clearly indicate the associative properties
of the syntax, and would form an acceptable input to
a program like SID (Foster, 1968). The one-track form
of rules required by SAG does not express the associative
properties of the syntax particularly well, but it is none-
theless possible to see that rule set (2) will delay the
output of'an operator for as long as possible, whereas
rules (3) will output the operator as soon as possible.

For the second variation on Example 1, consider
introducing subtraction and division to have equal bind-
ing with addition and multiplication respectively. The
most straightforward way of doing this is to replace the
rules rael, terml in rule set (2) by the following:

rael =(PLUS, rae, punchplus)
(MINUS, rae, punchminus)

terml = (TIMES, term, punchtimes)
(SLASH, term, punchslash)

and add two new terminal symbols to rule set (2):

(6a)

(6b)MINUS =(9)
SLASH =(10)

Changes of this type are very easily introduced.
None of the examples considered so far has required

the use of global variables for the purposes of inter-
communication between actions. For the final variation
on Example 1 consider an alternative way of handling
the problem posed by syntax rule set (2) as modified by
(6a, b) above. Rules input, rael, terml in rule set (2)
are replaced by the following:

input =(START, setup, rae, stop, FINISH) (la)
rael =(PLUSMINUS, stkoperator, rae, out-

() operator)
terml =(SLASHTIMES, stkoperator, term, out-

operator)

Terminal symbols PLUS, MINUS in rule set (2) are
replaced by two new definitions:

PLUSMINUS =(7, 9) (7b)
SLASHTIMES =(8, 10)
The actions punchplus, punchtimes, punchminus, punch-
slash are replaced by setup, stkoperator, outoperator
which are defined as follows:
setup:

i«-0;
go to interpreter;

stkoperator:

go to interpreter;
outoperator:

i<- i — 1;
punch (s[i\);
go to interpreter;

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/233/363368 by guest on 19 April 2024

240 H. R. Simpson

These three actions communicate with one another via
the push-down stack s which is controlled by the pointer i.
This final variation on Example 1 shows the syntax can
be simplified at the expense of introducing more com-
plicated actions. In practice there is always some choice
to be made as to the distribution of work between syntax
and actions.

9. Example 2
The second example which will be discussed in

detail is that of algebraic differentiation (Foxley and
King, 1968). This turns out to be a substantially more
complicated problem than Example 1. Efficient com-
munication between actions is only achieved if a global
data structure containing lists is used. Furthermore,
since the basic technique only caters for the memory of
a single input symbol, the actions must be programmed
to remember those parts of the input stream which will
be required for later use.

The SAG form of the syntax rule set for this problem
is as follows:

input = (START, setup, termlist,sto\>, (8a)
FINISH)

termlist =(term, out, termlistl)
termlistl =(PLUS, punchplus, termlist)

rae ={term, rael)
rael =(PLUS, push, rae, pull, formrae)

()
term =(primary, terml)
terml = (TIMES, push, term, pull, formterm)
primary =(INDEPTVBLE, formpriml)

(DEPTVBLE, formprim2)
(CONSTANT, formprim3)
(ORB, rae, CRB, formprim4)

CONSTANT
DEPTVBLE
START
FINISH
ORB
CRB
PLUS
TIMES

=(1)
=(2)
=(3)
=(4)
=(5)
=(6)
= (7)
=(8)

INDEPTVBLE =(11)

The actions are given in an abbreviated form below.
Before describing them certain global variables, proce-
dures, special conventions, etc., must be denned:

/
50, s 1
zO
zl
wO, wl

outlist(l)
c(l)
{/, m, . . .}

stack pointer.
push down stacks of list pointers.
a list used to build up list of input characters.
a list used to build up derivative of zO.
lists used for temporary storage of top stacks
sO, si.
output the list 1.
form copy of list 1.
form a single list of the items l,m . . . (which
may be lists, characters or the variable tl)
by joining lists end to end, and inserting the
internal representation of characters or the
value of tl as indicated by their position.

setup:
i«-0;
go to interpreter;

push:
sO [i]«-20;
si [i]«-*l;
i<-i+ 1;
go to interpreter;

pull:
i<— i — 1;
w0<-s0 [/];
wl^sl [i];
sO [i] *- si [i]«- nil;
go to interpreter;

out:
out list (zl);
go to interpreter;

punchplus:
punch (12);
go to interpreter;

formrae:
Z0<-{H>0, + , Z 0 } ;

go to interpreter;
formterm:

zO^{c(wO), *,c(zO)};
2l«-{Gw0, *,zl, +,
go to interpreter;

formprim 1:

go to interpreter;
formpriml.:

*, zO,

{}
go to interpreter;

formprimh:

{}
go to interpreter;

formprim&t:

{
go to interpreter;

stop:
go to finish;

This example has been programmed using the RRE
list pack. In its present form it is apt to produce a
lengthy and not particularly readable output which con-
tains superfluous brackets, terms multiplied by zero, etc.
This problem can be solved by carrying type data
assocated with every list. Actions would be made con-
ditional depending on the type of the operand lists and
insertion of brackets would be delayed for as long as
possible. Alternatively, the selector actions and seman-
tically controlled syntax rules described in Section 10
could be used.

10. Context dependence
Consider the syntax for a very simple form of assign-

ment statement:

assign = (id, BECOMES, id) (9)

i

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/233/363368 by guest on 19 April 2024

One-track syntax analyser 241

If id can be of two types, real or int, then a compiler
for this rule would have to include an action to perform
any necessary type changing. This action would be
positioned as follows:

assign = {id, BECOMES, id, typechange) (10)

The particular function performed by typechange will
depend on the types of the two id terms, and this is a
semantic choice. It will now be shown how such a
semantic decision can be expressed within the syntax
rule set.

Two new types of term are introduced into the syntax
rule set:

(a) Selector Actions. These are actions which com-
pute and stack the data which will later be inter-
preted to effect a semantic decision. Identifiers for
these actions will be as for normal actions but
enclosed in primes.

(b) Semantically Controlled Syntax Rules. These are
rules in which the choice of alternative does not
depend on the basic symbol produced by the pre-
processor, but is decided by the data stacked by a
previous selector action. Identifiers for these rules
will be as for normal rules but enclosed in primes.

The data stacked by a selector action is in fact an alter-
native number in a semantically controlled syntax rule.

Syntax rule (10) can now be rewritten using these new
types of term:

assign =(id, 'realint', BECOMES, id, 'realint'
'typechange') (11)

'typechange' ==('rhsreal')
('rhsint')

'rhsreal' =()
(realtoint)

'rhsinf =(inttoreal)
()

In this form of the roles, the only conditional statements
occur in 'realint'. This action would be called in the
normal way by the interpreter, and would be of the
following form:

realint:
if typeid — unset then go to idfault;
altno <- if typeid = real then 1 else 2;
go to interpreterx;

typeid is a procedure which is able to examine the type
of the last identifier read. The action exits to interpre-
terx which stacks altno. When the interpreter comes
across a semantically controlled syntax, it unstacks altno
and uses it to select the corresponding alternative. This
type of facility introduces considerable additional flexi-
bility into the syntax rule set.

In many cases the semantically controlled syntax rule
will be the more natural way of implementing the decision-
making process which is carried out during the analysis
of the input data. Consider the following syntax in
which xxx is a class allowing several alternative
expansions:

xxx =(id) (12)
(id, par part)
(id, OSB, exlist, CSB)
(id, OSB, ex, CSB)
(id)

parpart =(ORB, parlist, CRB)

exlist
()

=(ex, exlist)
(ex)

The definition for xxx could occur in the syntax for a
high level language in which the five alternative expan-
sions for xxx are used for the following purposes:

alternative 1—real or integer
2—procedure call
3—array element
4—switch element
5—label

Syntax rule (12) gives rise to awkward clashes between
the various alternative expansions. The syntax cannot
determine whether an identifier on its own is a real or
integer (alternative 1), a procedure call with no para-
meters (alternative 2), or a label (alternative 5). There
is also a clash between alternatives 3 and 4. The syntax
rule can be rewritten to enable one-tracking to take place,
but this would complicate the functions of the actions
which must be inserted in the rules. A more straight-
forward solution is obtained if we use a 'selector action'
together with a 'semantically controlled syntax rule' :

xxx =(id, 'idtype', 'xxxl') (13)
'xxxV = ()

(parpart)
(OSB, exlist, CSB)
(OSB, ex, CSB)
()

It is seen that context dependence has been introduced
since different routes through the syntax can now be
made to depend on the semantics of the input data. The
practical implementation of this is easily arranged using
a program of the SAG type.

11. Implementation of context dependence
Surprisingly few changes need be made in order to

incorporate context dependence. Both the SAG pro-
gram and the interpreter must be slightly extended to
cope with the two new types of term. The selector
actions are called by the interpreter in precisely the same
way as the normal actions. However, the semantically
controlled syntax rules must be specially marked in the
SAG output to enable the interpreter to replace the
normal selection process based on the input symbol.
These rules are marked by making/"0 = 1 and/I = 1 in
the first word of the data for the rule; a fault number
for the rule is also packed into the first word. The
remainder of the data for the semantically controlled
syntax rule is identical to the data for a normal syntax
rule, except that no word is required to mark the end
of the available alternatives. To illustrate this point,
Table 4 describes the SAG output which would be
produced for syntax rule set (11) (BECOMES has been
included for completeness). Table 4 uses the same
conventions as Table 3.

The changes to the interpreter can be discussed in
terms of additions to the interpreter program given in
Section 6. A stack is required to remember the values
of altno computed by the selector actions. This stack
can be conveniently located at the other end of the
stack used for rulearray re-entry points. If qmax + 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/233/363368 by guest on 19 April 2024

242 H. R. Simpson

is the size of this stack and V is the stack pointer for
the selector actions, then the following statement must
be added to the start up sequence:

r <— qmax;

In order to take special action for a semantically con-
trolled syntax rule, the following statement must be
added at label ad in the interpreter:

if/I = l then go to a7;

At label al the following piece of program must be
included:

al: r+-r + 1;
p^p + stack [/•];
d\ *- d;
d <r- rulearray [p];
if boolmatch then go to aS;
d^dl;
go to fault;

All selector actions exit to interpreterx which stacks
altno:

interpreterx:
stack [r] altno;

go to interpreter;

To be completely safe, checks should be included to
ensure that the data at each end of stack does not meet
in the middle.

Table 4

Description of SAG output for rule set (11)

ASSOCIATED
NAME

assign

' typechange'

'rhsreaV

'rhsint'

BECOMES

/o

0
1
1
1
1
1
1
0

1
—
—

1
—

0

1

—
0

1

DATA

/ I

0
—
1
0
1
1
0
1

1
1
1

1
1
0
0

1
0
1
0

0

FOR INTERPRETER

/ 2

bss
—
—
—
—
—
—
—

bss
bss

bss
bss
—

bss
bss
—

bss

/ 3

pu
faultno
id
'realint'
BECOMES
id
'realint'
'typechange'

faultno
'rhsreaV
'rhsint'

faultno
0
T>SJ

parealtoint

faultno

pa
0
inttoreal

faultno

*-

1

Although the selection of an alternative in a semanti-
cally controlled syntax rule is done by predetermined
semantic data, a syntactic check is still performed to
ensure that the incoming basic symbol is a legal starter
for that alternative. The values of bss for this purpose
are computed using the algorithm for the normal syntax
rules.

The syntax checking part of the SAG program must
be slightly modified. Cycles should not be permitted in
semantically controlled syntax rules, but of course such
rules can have alternatives which clash. The banning of
cycles in semantically controlled syntax rules does not
prevent the use of recursive definitions in the usual
manner, but merely ensures that at least one basic
symbol is processed between successive calls of the rule.
In order to make the technique as straightforward as
possible, each selector action should only be allowed to
plant a single value of altno in the stack. If this restric-
tion is made then it is possible to make the SAG program
scan the rules to determine the semantically controlled
syntax rules which make use of data stacked by a given
instance of a selector action. This would be a very
valuable aid when dealing with a large complicated
syntax.

12. Discussion
The SAG technique described in this paper gives a

reasonably straightforward method of making direct use
of formal syntax description in programs concerned with
the interpretation of input data which has a complex
structure. The SAG program itself can be implemented
quite quickly and is suitable for quite small computers;
the program requires no special software (e.g. list pro-
cessing, programming language allowing recursion).
SAG is a highly segmented program, and it is estimated
that the size of the largest segment can be kept below
IK; the overall size of the program can certainly be kept
below 8K.. SAG could be usefully implemented on
machines with stores as small as 8K by using IK for
program (and overlaying different segments of program
in this space) and 7K for data; this amount of data space
is sufficient to handle quite complicated syntaxes, e.g.
Coral 66 (Currie and Griffiths, 1967). The precise forms
of the interpreter program and the SAG output data will
depend on the machine and the maximum size of the
syntax set which is to be handled. For ease of explana-
tion, a number of minor changes have been made to
SAG as previously described (Simpson, 1968). Also
SAG has not been modified to include extensions to
allow the incorporation of semantics, but this is a simple
matter.

It has been found that the technique whereby actions
are embedded in the syntax rules imposes a very useful
discipline on a program writer. The actions break the
problem down into small manageable parts, and the
syntax analyser is used to govern the overall flow of
the program. Although examples in Sections 2-9 were
of a mathematical nature, the main application of
this approach lies in the construction of compilers and
assemblers. The technique has proved useful even when
applied to simple assembly languages which would
otherwise be handled by ad hoc methods.

Some comparison can be made with Compiler-Com-
piler techniques. The SAG (or SID) approach would

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/233/363368 by guest on 19 April 2024

One-track syntax analyser 243

appear to throw a far greater load onto the programmer;
the complete syntax analysis is not available at any point,
special precautions must be taken to remember past data
and subsidiary results, and the actions have no para-
meters. However, in practice these disadvantages turn
out to be relatively unimportant, particularly if the
actions are able to communicate with one another via a
complex data structure (e.g. lists). On the other hand
the technique results in an efficient end product which
can be tailored to the problem in hand.

The semantically controlled syntax rules introduced in
Sections 10, 11 are thought to be a particularly important
addition to the SAG approach. They allow a very
flexible interaction between syntax and semantics. Par-
ticular parts of the syntax can be selected on the basis
of semantics. This allows tight syntactic definitions to
be applied in particular circumstances; if no semantics

are used then the syntax always has to cater for the
general case, and some degree of checking and control is
lost. In fact the semantically controlled rules turn out
to be complementary to the normal syntax rules, since
many awkward syntactic clashes arise from using syn-
tactically similar structures for semantically different
categories of data.

13. Acknowledgements
The author is extremely grateful for the help received

by way of informal discussion with his colleagues in the
Mathematics Division, R.R.E. In particular, thanks are
due to P. M. Woodward and D. P. Jenkins who have
made useful comments on the first draft, and to P. R.
Wetherall who has supervised the final stages of produc-
tion of the paper.

References

FOSTER, J. M. (1968). A Syntax Improving Program. The Computer Journal, Vol. 11, p. 31.
FOXLEY, E., and KING, P. (1968). The Implementation of Syntax Analysis Using ALGOL, and some Mathematical Applications*

The Computer Journal, Vol. 10, p. 325.
CURRIE, I. F., and GRIFFITHS, M. (1967). Coral 66 Manual, R.R.E. Technical Note No. 732.
SIMPSON, H. R. (1968). SAG—A Syntax Analyser Generator, R.R.E. Technical Note No. 739.

Book Review

Computers in Humanistic Research. Edited by E. A. Bowles,
1967; 264 pages. (Prentice-Hall, Inc., £3 0s. Od.)

Some of the papers and discussions at a series of IBM-
supported conferences on the role of the computer in human-
istic research are here printed in somewhat abridged form.
The purpose of the exercise seems to have been to assuage
computer-phobia among those humanists who weren't
already hopeless cases; but the diagnosis is hasty and super-
ficial, and I doubt that the therapy adopted can have produced
many lasting cures.

The sugar-coating, to begin with, is laid on suspiciously
thick: 'To have done this with a desk calculator would have
taken one man 105 years working constantly day and night
without any breaks whatsoever. When performed on an
IBM 7094 computer, the task required only 55 minutes at a
total cost of about S35O!'

His suspicions roused by that 'whatsoever', the patient
begins to entertain systematic doubts, and soon finds it easy
to believe the opposite of what he's told: 'A welcome by-
product is the computer's complete dependability. . . . One
ideal area for computers is inquiring into the way problems
are solved. . . . The computer is frequently able to bring to
light hitherto unsuspected relationships or meanings. . . .
The necessity of providing an extremely lucid explanation of
what he hopes to achieve compels the scholar to face the
questions why he wants to do it.'

Nor is it good tactics- to blame resistance on 'unreasoning
abhorrence' of the computer, 'suspicion, fear, and ignorance...
an almost prehistoric mentality'. The patient finds himself
reversing roles and diagnosing in his turn that the inability
to make out a fair case for the opponent must itself indicate
some deep and all-too-well-founded unconfidence.

Two proposals for large-scale computerised multivariate
analysis—of archaeological records in one case and historical
in the other—report meeting resistance barely explicable on
rational grounds. But these projects were presumably open,
like any others, to objections on any of a number of grounds—
their feasibility, cost-effectiveness, statistical clarity, concep-
tual novelty, and so on. To give the impression that oppo-
sition to computerised projects can only be attributable to
machine-phobia is to betray just the kind of epistemological
naivete best calculated to nourish that phobia.

This naivete also takes the form of fantasies of exhaustivity.
Several contributors talk of collecting 'all relevant material,...
every bit of data,. . . every measurable feature'; of 'standard-
ising the concepts' and establishing 'extremely detailed'
'universal codes', with 'provision for infinite subdivision' of
'every descriptive variable'. Symptomatically, one author
mentions with what I take to be pride only lightly touched
with guilty embarrassment—like the father of a 15-pound
baby—his 'sheets of matrix which, when glued together,
extended for over 10 ft.' It seems urgent to repeat that some-
thing more recalcitrant stands in the way of exhaustivity than
mere 'practical limitations' of channel-capacity, whether of
the machine or its user.

Continued on page 250

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/233/363368 by guest on 19 April 2024

