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Synthesis of TANT networks using a Boolean analyser'

By Miguel A. Marint

The automated synthesis of TANT combinational networks (Three-level AND-NOT networks
with True inputs) is studied using the advantages of Svoboda Boolean Analyzer (SBA) (see
Svoboda, 1968). The synthesis procedure consists of (i) calculating the ordinary prime implicants
of the given function / using operation Mode I of SBA, (ii) calculation of all generalised prime
implicants o f / b y solving a system of Boolean equations (operation Mode II), (iii) solution of a
covering problem using a special Petrick function and operation Mode I of the SBA. The
synthesis procedure yields a TANT network containing a minimum number of AND-NOT elements.
FORTRAN IV programs have been developed which implement the proposed synthesis method;
however, the SBA hardware unit, when available, will prove an efficiency factor in processing time
of approximately 104.

(Received November 1968)

The synthesis of Three-level AND-NOT combinational
networks with True inputs (TANT networks) has been
studied by Maley and Ogden (1962), McCluskey (1963),
Hellerman (1963), Maley and Earle (1963) and recently
by Gimpel (1967). This last author presents the first
systematic synthesis and simplification method of TANT
circuits. This method is very similar to the Quine-
McCluskey minimisation algorithm for two-level AND-
OR logic.

Gimpel's method starts by generating a general form
for the implicants of the given Boolean function/, called
permissible-implicants of/, and in such a way that it is
simple toderivethe circuit configuration from this general
form. From the set of permissible implicants, the set of
prime-permissible implicants (which we shall call here
generalised prime implicants) is determined and from this
set those which realise the given function with a minimum
number of NAND decision elements are selected.

In this paper we propose another method of TANT
synthesis based on the two modes of operation of
Svoboda's Boolean Analyzer (Svoboda, 1968).

The proposed method consists of calculating the
ordinary prime implicants of the given function / , and
from this set to calculate all generalised prime implicants
of / by solving a system of Boolean equations. The
selection of those generalised prime implicants which
form a minimal TANT network is done by constructing
a special Petrick function (Petrick, 1956) Z and deter-
mining its prime implicants. The proposed method thus
uses the two modes of operation of the Boolean
Analyser: Mode II for the determination of the
generalised prime implicants and Mode I in triadic
mode for the determination of the minimal TANT
networks. %

% See Marin, 1968, for a detailed description of the two modes
of operation of Svoboda's Boolean Analyzer.

Definitions and theorems
Consider the TANT circuit of Fig. 1. It is easily

verified that this circuit implements the function

/ = x2x0 +xo(xlxo) + x1x2(xoxl) (1)

This function is written in AND-OR form as follows:

/=

1+X1XO

Fig. I. Example of TANT circuit

Form (1) of/presents a characteristic structure of sum of
permissible terms (P-terms) whose general form may be
defined in the following way:

* This Research was done at the Department of Electrical Engineering, University of California at Los Angeles and is part of
the author's Ph.D. dissertation.
t Department of Electrical Engineering, McGill University, Montreal, Canada
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260 Miguel A. Mar in

Definition 1
Every term P, implicant of a Boolean function f of n
variables and expressed in TANT for (1), may be
written as a product of two factors H and T

P = H.T (2)
where

H = x , x-

T = Tm_ \Tm_2 . .TtT0

x) takes the values 1 or x,
exclusively (i = 0 , . . . , « — 1)
and
Tj = xn_ , + . . . + x, + . . .
+ x0; x, takes the values
0 or X; exclusively. (j=0...
m - 1), (i = 0 . . . n - 1),
m < n.

has H = x0,

Example 1
The term P, =

The term P2 = x1x2(x0x1) has H = xt,
and T = T2 . Tx = x2(x0 + x{).

Definition 2
A term P of the form (2) is said to be a generalised

prime implicant of / (GP-term) if an ordinary prime
implicant o f / ( in the sense of the AND-OR logic) or a
sum of any number of them is obtained when a P-term
(2) is expanded using the rules of logical sum, product
and complementation. The ordinary prime implicants
of/will be denoted by OP.

Example 2
The function/given in Fig. 1 has the following ordinary

prime implicants:
XQX2, XQX\X2.

The terms P, and P2 of example 1 corresponding to the
TANT form (1) o f / a r e generalised prime implicants.
Effectively, according to definition 2,

P, = GPX = xoxo =

P2 = GP2 = xlx2(x0x1) =

Definition 3 (Criterion of minimal TANT network)
We shall say that a TANT network produces a certain

given Boolean function/in a minimal form if no other
TANT circuit exists which has less number of NAND
decision elements.

Theorem 1
According to the previous definition of minimal

TANT network, every P-term (2) of a minimal TANT
form of/ is a generalised prime implicant.

Proof:
Suppose that the minimal TANT expression of/ is

where each term P, is of the form (2). We shall prove
that P, is formed by logical addition of any number of
ordinary prime implicants OP of / . To prove this
statement it is sufficient to prove that there is no min-
term mt of/ such that

P, = ZjOPj + m, with mt * SyOPy.

Effectively, according to definition 1 the general form of
P-, is HX{J\T2 . . . Tk); on the other hand, since OPj is
an ordinary prime implicant of/,

Pj = Hlx1

for
x,,

/ = 1 . . . m, m < n.

But Pi = ZJOPJ + mi; therefore, the minterm mt should
have the same factor Hx of uncomplemented variables
that the terms OP} and P,. But mt is a minterm and
thus contains all complemented variables which are not
contained in Ht. These variables must be contained
also in ^JOPJ because, if not contained, or w; is not a
minterm or its //-factor of uncomplemented variables
does not coincide with Hu implying that P,- is not of
the form (2). Therefore every term of a minimal TANT
form is a generalised prime implicant.

The question is now how to determine the set of
generalised prime implicants and to select from this set
those that produce the function/according to definition 3.

To form the set of generalised prime implicants we
start from the set of ordinary prime implicants o f / a s
proven by the following theorem.

Theorem 2
Let {OP} be the set of ordinary prime implicants of/

and let {GP} be the set of generalised prime implicants,
then

{OP} c {GP}

GPj = S,OP(. for OPte{OP}; GPje{GP}.

The proof of these two propositions follows immediately
from the definition of ordinary prime implicant of/and
from definition 2.

Based on theorem 2, it is clear that the set of ordinary
prime implicants of/augmented with those P-terms of
the form (2), obtained by logical addition of any number
of prime implicants OP,- contained in {OP}, constitutes
the set of P-terms from which it is possible to generate
all possible generalised prime implicants GPj. This set
of P-terms thus formed is called the BASE of the given
function/. It will be denoted by B.

Note that once the set of ordinary prime implicants is
obtained, only those with common //-factor will produce
a new P-term of the base by logical addition. This is
due to the special form of the P-terms (2).

Example 3
Consider the function of Fig. 2.

0 0 0 1 1 0 1 1

Fig. 2. TANT synthesis example
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TANT network synthesis 261

The set of ordinary prime implicants is

{OP} = {XQXI, XQX2, XQX^}.

Since there are no terms OPj c {OP} with common
//-factor, the base B of the function coincides with the
set {OP}. Thus

B = {XQXX, XOX2, x0xlx2}-

Example 4
Consider the function whose corresponding Marquand

map is

X ! X O

0

I

0 0

•

0 1 1 0

•

•

11

•

The set {OP} is xxx2, xxx0, jfox2. In this case there are
two terms OPj with common //-factor X\X2 and xxx0.
These two terms are combined by logical addition pro-
ducing the term x,(x2x0). The BASE is thus

B — {xxx2, xxx0, xQx2, xt(x2x0)}.

Calculation of the generalised prime implicants
The generalised prime implicants of a given Boolean

function / are constructed by inserting in all possible
ways the variables contained in the //-factor of each term
of the base in its corresponding /"-factors. The GP
terms thus obtained which are identically equal to zero
are disregarded.

Example 5
Consider the base B = {x^xx, XQXIX2, XOX2}. From

the term XQXI we obtain the term GP{ = xo(xoXi). From
the term x<pc2 no acceptable term is generated because
those obtained: XQX2(XO), X0X2(X2), X0X2(X0X2) are identi-
cally equal to zero. From term xlxQx2 we obtain

GP2 = xx{xxx0)x2

GP} = xxx0(x2xx)

GP< =

The generalised prime implicants are:

GP2 = xx(xxx0)x2

Gpi = xx{x2xx)x0

GP4 = Xi(x2xt)(x^

plus the P-terms of the base

GP5 = Xoxt

GP6 = x<pcxx2

GP7 = Xox2

This method of calculating the generalised prime
implicants is preferred when the synthesis is done
manually. However, the automatisation by standard
computer programming of this method is laborious
because it is required to handle variable-length words
and many shift operations to insert the variables of the
//-factor in the T-factor. Also the identification of
H- and T-factors belonging to the same /"-term is not
easy to implement. For these reasons and due to the
fact that the Boolean Analyser is capable of solving large
systems of Boolean equations, we studied the possibility
of transforming the problem of generalised prime impli-
cants generation to the solution of a system of Boolean
equations. Before describing the set-up of this system
of equations we need the following theorem.

Theorem 3
If a T-factor of a P-term belonging to the base B of a

given Boolean function / of n variables has m(m < ri)
complemented variables, the (7/Merms obtained from
this P-term has m distinct 7} factors (y = 1 . . . m).

Proof:

Let the term OPX = x0 xk, where

(r + s) < n, x0 . . . Xj ^= Xj . . . xk, and let P = 0P},
P c B and OPj c {OP}. Suppose that it is possible to
generate from this P-term a generalised prime implicant
of the form

GPl=x0... x, . . xk(Tq). (3)

According to Theorem 2 the factor Tq has to have the
form

Tq = (ax0 hx-, + Axj + . . . +Kxk)

(where a, b, . . . , h, A, . . . , K are logical variables),
because if it does not have this form, either P does not
belong to the base B or GPX (3) is not a jP-term of
the form (2). But, suppose that the term GPt(3) is
accepted as a generalised prime implicant of the minimal
TANT expression, then it is evident that the circuit thus
obtained will use an additional gate to synthesise Tq
as compared with the circuit obtained by accepting the
term P instead of GPX. In the case that the factor Tq
is available already in the synthesised circuit because it
may belong to a necessary G/yterm (j # 1), it is easily
seen that the term P is also preferred instead of GPU
because by using P an input at the decision element
that realises the term GPX is saved. Therefore, the
term GPX (3) with m + 1 factors T does not introduce
any additional information in the synthesis process and
thus is not considered as an effective generalised prime
implicant of/.

Theorem 3 gives the general form of the equation to
be solved to obtain the acceptable generalised prime
implicants. Effectively, given a term /", of the base,

J r
P, = x0 . . . Xj. Xj . . . xk, (r + s) < n

s r
X0 . . . X; #= Xj . . . Xk

every GPj-term derived from Ph PteB, is a solution of
the equation
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262 Miguel A. Mar in

x0 . . . x, xk = x0
xt . (a{x0

brxt hrxn_ i) (4)

where aq, bq . . . hq for q = 1, 2, . . . , r are logical
variables.

The equation (4) may be considered as a system of
Boolean equations with the unknowns aq, bq . . . hq
(q = 1 . . . r). This equation may be written in the
form Y = 0 as required for the Boolean Analyser. The
discriminant is obtained using Mode II of the Boolean
Analyser which is used to obtain all possible solutions
of (4). The values of unknowns substituted in the right-
hand side of (4) give the terms P which form the set of
generalised prime implicants originated by the term P
of the base.

Example 6
Consider the term Px = xlxox2. The set of generalised

prime implicants derived from this term was already
obtained in Example 5. The corresponding equation (4)
for Pt is:

c,xo)(a2x2 + b1xl c2x0).

(5)

Let us form the discriminant of this equation, i.e. in
the space of 26 . 23 = 29 (6 unknowns and 3 constants)
let us determine the minterms for which equation (5) is
satisfied. This discriminant is shown in Fig. 3.

The interesting solutions to our problem are those
which are invariant with respect to the values of the
constants x0, xu x2; i.e. those which satisfy (5) irrespec-
tive of the values of the constants x0, x\, x2. If the
discriminant is organised as we have done in Fig. 3,
rows representing the space of unknowns and columns
the space of constants, the desired solutions may be read
directly from the discriminant because each solution
corresponds to every row containing only dots (a dot
means that for this minterm equation (5) will hold).
The solutions of (5) have been marked with an arrow in
Fig. 3 for easy identification, and are listed as follows:

IDENTIFIER
SPACE OF

UNKNOWNS
TERMS OBTAINED

BY SUB. IN (5)

12
14
28
30
33
35
49
51

c2b2a2clbiai

0 0 1 1 0 0
0 0 1 1 1 0
0 1 1 1 0 0
0 1 1 1 1 0
1 00001
1000 11
11000 1
110011

From this set of solutions we eliminate those that are
repeated because the logical multiplication is commuta-
tive. Thus solution 12 is identical to solution 33, 14
to 49, 28 to 35 and 30 to 51. Finally we obtain the
following generalised prime implicants:

0
1
2
3
4

5
6

7
8

9
10
11
12
13
14
15
16

17

18
19
20

21
22
23
24

25
26
27
28
29
30
31
32

33
34
35

36
37
38
39
40
41
42
43
44

45
46

47
48

49
50
51
52
53
54

55
56
57
58
59
60
61

62
63

C2

0
0
0

0
0

0
0

0
0

0
0

c
0
0
0
0
0
0

0
0
0
0
0
0
0

0
G

0
0

c
c
c
1

1
1
1

1
1
1
1

1
1
1
1

D 2 °
0 0
0 0
0 0
0 0
0 0

0 0
0 0

0 0
0 1

0 1
0 1
0 1
0 1
0 1
0 1
0 1
1 C

1 C

1 C
1 C
1 C
1 C
1 C
1 C
1 1

1 1
1 1

1 1
1
1
1

1
0 (

c
0 (
0

0
0
0
0

0
0
0
0
0

0
0

0
1
1

1

2 el

0
0
0

0
1

1
1

I
0

0
0
0
1
1
1
1
0

0

0
0
1

1
1
1
0

0
0

0
1

I
1

1
) 0

3 0
3 0
) 0

3 1
3 1
3 1
3 1

0
0
0

1 0
1 1

1 1
1 1

1 1
0 0
D 0
D 0
0 0
0 1
0 1
0 1

0 1
1 0
1 0
1 0
1 0
1 1
1 1

1 1
1 1

Dl

0
0
1

1
0

0
1

1
0

0
1
1

0
0
1
1
0

0
1
1
0
0
1
1
0

0
1

1
0
0
1

1
0

0
1
1

0
0
1
1

0
0
1
1
0

0
1

1
0
0
1
1
0
0
1

1
0
0
1
1
0
0

1
1

°1
0
1
0

1
0

1
0

1
0

1
0
1

0
1
0
1
0

1

0
1
0
1
0
1
0

1
0

1
0
1
0

1
0

1
0
1

0
1
0
1

0
1
0
1
0

1
0

1
0
1
0
1

c
1
0

1
0
1
0
1
0
1
0
1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

• •

• •
• •

• •

• •

• •

• •
• •

• #

• •

•

•

•

•

•

•
•

•

•

•

•
•

•

•

#

•

•

•
•

•

•

•
•
•
•

•
•
•
•
•

0

•

#

•
•

•

•

Fig. 3. Discriminant of equation (5)
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TANT network synthesis 263

GP6 =

which coincide with those previously obtained. (We
have kept here the same sub-indices as in Example 5.)

The method of generating the generalised prime
implicants through the solution of systems of Boolean
equations is very long if done manually. Note, for
example, that for functions with only 3 variables a logical
space of 9 variables is required. The method, however,
is completely general and is specially adapted to the
Boolean Analyser (see Marin, 1968). The general pur-
pose computer (in our case the Sigma 7 computer) will
generate the terms of the base B, and for each term of
this base, it will generate an equation like (4) but in the
form Y — 0. The terms of Y will be inserted in the
logical operation unit of the Boolean Analyser and the
discriminant will be obtained in the circulating memory
(in our case a RAD Storage System). Sigma 7 will read
out this discriminant selecting those identifiers from the
space of unknowns which verify (4). The solutions thus
obtained are stored in the memory of Sigma 7 and the
system proceeds with the next term of the base. At the
end of this process, all generalised prime implicants of/
will be stored in Sigma 7.

In order to show the automatisation possibility of the
above described method, a program was derived for
Sigma 7, called SBEV3 (Systems of Boolean Equations
Version 3) which simulates the Boolean Analyser in
this particular application. The program SBEV3 was
written in FORTRAN IV and for functions / of three
variables only.* A full listing of this program and the
output data obtained for the function/of three variablesf
is available on application to the author.
To interpret properly the output data given by the
program SBEV3, the following terminology is used:

Base term number

List of terms of the
function Y = 0

Refers to the ordering number
of the base
Refers to the terms of equa-
tion (4) written in form Y = 0

Identifier of the solution Refers to the identifier of the
logical space of unknowns for
which a solution exists.

In our case, since there are 3 unknowns, this logical
space corresponds to the unknowns a, b, c, exclusively
and in correspondence with the constants x2, xu x0

respectively. Thus, for the first term of the base (see
Table 1), XoX2xt, the program SBEV3 gives the following
solutions:

Identifiers a,b,c

2 0 1 0
3 O i l
6 1 1 0
7 1 1 1

GP-Term

X2xo(.x2x\xo)

For the second term of the base, xxx0 the solutions are

• A more general program is presented in Marin, 1968, Chapter 5.
t This function (shown above Table 1) is taken from an example

presented by Gimpel.

\
0

1

00 01

•

10

•

•

11

•

Generalized Prime Implicants'

Terms of the Base

Number

1

2

3

4

Expression

x. sr
1 o

x l Go"*?

x l * 2

Calculated GP Terms

"I X2 *o <X1 *1>

x, £7*?
x, (xox,x2)

xi ^r*?

Table 1

Generalised prime implicants

0 0 1
0 1 1
1 0 1
1 1 1

xo

For the fourth term of the base, x{x2 the solutions are
4 1 0 0 x2 xtx2

6 1 1 0 (x2xi)

The prime implicants obtained with the program
SBEV3 coincide with those of Table 1.

The selection of generalised prime implicants
In order to obtain a minimal TANT synthesis of a

Boolean function / , not all generalised prime implicants
are required. This is also the case of the AND-OR
logic of two levels. The problem now is to select those
generalised prime implicants which produce the function
/ according to the criterion of minimality given in
definition 3.

In a TANT expression and due to the fact that there
exists a third logical level, it is possible to use the same
elements of the third logical level in several inputs of
elements of the other levels and therefore the selection
of GP-terms consists of two problems:

1. The selection of the minimum number of GP-terms
which cover the function.

2. From all TANT expressions obtained select those
which use the least number of NAND elements,
i.e. obtain maximum sharing of T-factors.
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264 Miguel A. Mar in

The first problem is a classical one and has been
solved by McCluskey (1965) using tables or algebraically
by Petrick (1956) by means of a logical function Z which
expresses the condition of covering of the function / .

The second problem has been solved by Luccio and
Grasselli (1965) using a special table called a CC-table
(Cover and Closure Table) but in connection with the
problem of simplification of the number of internal
states of a sequential circuit. In this section we propose
a similar method as the one using CC-tables but we
differ in the fact that our table is used to generate two
special Petrick functions that in combination solve the
covering problem.

In the following lines we describe systematically our
investigations in solving this covering problem.

We apply first the Petrick function to the example on
Table 1. For this purpose a table is constructed whose
columns represent the minterms of the function / and
the rows the generalised prime implicants. We enter a
dot in those places of the table where the generalised
prime implicant of a row covers a minterm of a column.
See Table 2.

GP, =

GP2 =

GP3 =

GP. =

X2

X2

X2

X2

X X,
o 1

xo<*7

o 1

x o ( x 2

xc»

T2)

X I xo>

G P 6 =

GP8 = x, <x2 x, xo)

GPO =

G P . 0 =

X« X, X
2 1 o

•

•

•

•

•

•

X - X , X

2 1 o

•

•

•

•

X2 *1 xo

•

•

•

"2 "1*0

•

•

•

•

Table 2
Covering of minterms

If the proposition 'All minterms of the function are
covered' is identified with the Boolean variable Z, this
variable may be expressed as a function of the GP{
(j = 1 . . . 10) terms as follows:

Z = (GP5 + GP6

(GP5

GP7 -

GP8 -

GP2-

GP6-

hGP8-

±GP9

\-GP3-]
\-GP7-\

\-GP9 H
•f GPi0)

h GP4) .

~GP8)

GPl0) .

(6)

Each term gives us a covering of / . Evidently those
terms of Z with the least number of GP-terms will give
the most economical implementation. In other words,
the ordinary prime implicants of Z are the irredundant
coverings of/. The expansion of (6) gives

Z = GPi . GP-j + GP2 . GP7 + GP3 . GP7

+ GP4 . GP7 + GPX . GP8 + GP2 . GP8

+ GP3 . GPS + GPA . GP8 (7)

where each term is already a prime implicant of Z.

Any term of (7) that we may choose for the TANT
circuit has the same number of GP-terms. This selection,
however, does not suffice to obtain an implementation
with a minimum number of gates, because it is possible
to use an output of the third logical level (r-factor) as
inputs to several gates of the second level. Inspection
of Table 2 shows immediately that GP4 and GP8 have
the same T-factor: ( o , ^ ) s m c e GP4 . GP8 is a
term of (7) these two G/Merms give a minimal TANT
implementation off. The corresponding circuit is given
in Fig. 4.

Fig. 4. TANT circuit corresponding to Table 1

The visual inspection of Table 2 is not in general so
easy for problems of large numbers of variables, and
since we are interested in automatic methods of selection,
we investigate the following two alternatives:

1. to construct another table based on a function like (7)
2. to add logical conditions to the Petrick function to

include the second selection process.

(VV

GP,

GP2

GP3

GP,

GP,

GP,

GP , .

GP, •

GP2 .

G P 3 •

G P 4 •

GP?

8

GP8

8

8

Table 3

Let us consider both alternatives separately.
The first alternative consists of constructing another

table (Table 3) in which each row corresponds to each
term of the Petrick function previously obtained (7) and
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TANT network synthesis 265

with each column corresponding to every 7} factor of
the GTMerms contained in (7). If a dot is entered in
those places of the tables where a Tyfactor is present
in a GP-term, the answer to our selection problem is the
row(s) with the least number of dots. If several rows
exist with the least number of dots, all give a minimal
solution according to definition 3. However, if the
criterion of minimum total number of inputs to the
gates of the circuit is considered, we will choose from
the table those 7} factors with the least number of literals.

To illustrate this process, consider the previous
example and let us build a table (Table 3) in the way
indicated with the terms of (7).

The row with the least number of points is the last one
which corresponds to the term GP4. GPS as expected.

We now present another example of synthesis of a
function of 4 variables.

00

01

X 3 X 2 10

11

Genera I i zed Prime
Implicants

G P3 = x0 X2

G P5 = * 0 x 3 X l

G P6 =

GP? =

G P 9 = X 0 X 2 X 3

00

x. x
1 o
01 10 11

Fig. 5

Minterms

0

•

1

•

•

•

•

3

•

•

•

8

•

9

•

•

•

•

•

13

•

•

•

•

•

15

•

Example 7
Let / be taken as given by the map of Fig. 5.

The terms of the base are:

B = {xoX2x3, X\X2

The corresponding Petrick function is:

Z = GPA(GPi + GP2 + GP3 + GP4) .
(GPX + GP2 + GP3) . GP4 .
(GP4 + GP5 + GP6 + GPn + GP8) .
(GP5 + GP6 + GP-, + GP8 + GPg) . GP9

which is reduced to:

Z=GPA. GPgiGPi + GP2 + GP))
= GP4GP9GPt + GP4GP9GP2 + GP4GP9GP3

The associated table to this function is:

minimal solution

minimal solution

There exists two solutions with the same number of
NAND elements:

*1

•

•

•

"2

•

•

•

* 3

•

•

<*0*2>

•

<x3*0>

•

/ = GP4 + GP9 + GPX = xxx2 + xox2x3

(8)

XoX2(x3xo) (9)

Fig. 6. TANT circuit corresponding to example 7,
first solution

Fig. 7. TANT circuit corresponding to example 7,
second solution
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In Figs. 6 and 7 we show the TANT circuits realising
forms (8) and (9).

The second alternative in the selection of GiMerms
is to add to the Petrick function Z a set of logical con-
ditions (equations) that together with Z give the solution
of the problem.

If we expand the original Table 1 from which Z (7)
was derived by adding new entries each one correspond-
ing to a ^-factor belonging to every GP-tcrm, and if
a dot is used to mark those places of the expanded side
when the 7}-factor belongs to a certain GP-term (as was
•done in Table 3), new equations may be generated that
together with Z express the logical conditions for minimal
covering.

This process was illustrated in the previous example.
The extended table of GP-terms with the 7}-factors is
given in Table 4. From the columns of minterms one
deduces the Petrick function Z which is the same as (7)
and by using the columns of T";-factors one obtains the
logical equations which express logically that the indi-
cated 7}-factors belong to the corresponding GP-terms.
The jT,-factors are named here with the letter Q (see
Table 4). Thus the set of equations obtained is:

Z = GP4GP9GPi + GP4GPgGP2

GPi = Q2.Qz

GP3 = 0 2 • Qs

GP4 = Qi.Q2

= Qx

GP1 = Q7

(9)

(10)

READ IN TERMS

OF FUNCTION

F

FORM

BASE

B

SET M EQUAL

TO OF TERMS

IN B

_J , / B ^ \
~ / CALCULATES \

+ 1 I \ DISCRIMINAN^

READ OUT

T-FACTOR FROM

RAD

YES

BUILD Z

FUNCTION

/ ^ ^
< COMPUTES \
\P . I. OF Z /

READ OUT

P.I. OF Z

FROM RAD

LEGEND

B.A.

P.I

BOOLEAN ANALYZER

PRIME IMPLICANT

Fig. 8. Flowchart of the TANT synthesis using the
Boolean analyser

Generalized
Prime
Implicants

GP1= *0 x 2 x 3

(ID = v fv V ^ v

2 0 0 2 3

/ " * D — v* v /v #̂ \

GP4= x, x2

GP5= X Q X ^

CvP — V X /v v 1

6 0 3 1 3

GP = xnx_ (x. xn)7 0 3 1 0

GP9= x Q x 2 x 3

Minterms

0 1 3 8 9 T3 15

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

• •

x l

•

•

X2

•

•

•

X3

•

• •

•

•

•

<*1 x 0 X 3 )

•

Q Q 6 Q 7

Table 4
Selection table
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If (10) is substituted into (7), the result obtained is:

Z = QiQ2CP9Q3 + Q1Q2Q3Q4GP9 + QXQ2Q5GP9.

The first and the last terms contain the same least
number of variables, and therefore are the solutions of
the covering problem. Thus,

/ = GP4

f=GP4 GP9

GPX

GP2

which coincide with (8) and (9) previously obtained.
From the point of view of automation, the second

alternative seems to be more convenient because once the
ordinary prime implicants of Z are obtained it suffices to

do the above mentioned substitution (i.e. equations (10)
in (g)) and this process may be done easily in the general
purpose computer (Sigma 7).

In Fig. 8 we show a schematic flow chart of the pro-
posed automated process of TANT synthesis as carried
out by the system Sigma 7—Boolean Analyser.

Svoboda's Boolean Analyzer has been simulated in a
computer (Marin, 1968). This simulator, together with
additional programs, are being developed to implement
the synthesis process proposed here. However, the
parallel processing feature of Svoboda's Boolean Analyzer
hardware unit when available is expected to provide an
efficiency factor of 104 when compared with an all-soft-
ware implementation of this synthesis method.
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Book Review

Computer Evaluation of Mathematical Functions, by C. T. Fike,
1968; 227 pages. (Prentice-Hall, £5 5s. Od. (cloth))

The word 'evaluation' in the title is short for 'evaluation and
approximation', since of the eleven chapters more than half
are directly concerned with the determination of polynomial
and rational approximations to more complicated functions.
Chapters 4, 5 and 7 have the respective titles 'Polynomial
evaluation methods', 'Minimax polynomial approximation',
'Various polynomial approximation methods', and these are
paralleled in Chapters 8-10 where 'polynomial' is replaced by
'rational function'. Chapter 6 deals with Chebyshev poly-
nomials and series, and Chapter 11 with 'Asymptotic expan-
sions'. Chapter 1 discusses the effect of rounding and data
and truncation errors in the evaluation of functions, and some
ways of assessing the error. Chapter 2 is devoted to iterative
methods for evaluating square roots and cube roots, and
Chapter 3, on 'Reducing the argument range', discusses some
methods, reasons and dangers of performing this operation.
There are numerous worked examples, over 150 exercises for
the reader, and a wealth of bibliographical material about
methods, codes and programs, not only from standard books
but also from computing centres and computer firms (and for
various machines) which are not usually mentioned in the
standard literature.

One can criticise in very few places. I would have liked
a little more on 'backward error analysis' in Chapter 1, and a
reference somewhere to Moore's interval arithmetic; I am not
persuaded by the arguments given for the accuracy of 'nested
multiplication' or of the value of its combined use with the
more economic methods of evaluating a polynomial; I would
have liked a comment on why ill-conditioning in the solution
of the linear equations involved in the Remez algorithms is
dangerous; I would have liked a little more detail on the
choice of the relative degrees of the polynomials in a Tational
approximation, and on the motivation for the method of
economising continued fractions (p. 197), the formulae for
once appearing out of the blue without supporting reasons;
and I would have liked to see a comparison between the method
of the text for improving the accuracy obtainable from
asymptotic series with the almost forgotten 'convergence-
factor' method of Bickley and Miller (Phil. Mag. 22,784,1936)
and Airey (Phil. Mag. 24, 522, 1937).

But altogether this is an excellent book, a 'must' for com-
puting centres, numerical and other mathematicians, and
scientists with problems to solve. Almost all known valuable
methods are included and illustrated by numerical example.

Continued on page 272
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