
268

Junction optimisation technique

By M. J. Savage^

This paper describes new optimisation procedures for specialised types of scheduling problem
within the broad framework of transportation network theory. Rigorous proofs of the techniques
are not presented, but their validity has been verified empirically by application to railway
junctions. Possible consequences in automatic train control are discussed.
(Received April 1969)

The basic scheduling problem
In scheduling problems a set of Nevents Ex, E2, . . • , EN
have to be arranged in an optimum sequence subject to
certain constraints. In the type of problem considered
here, it is assumed that the N events comprise n groups
of events, where group i contains m, similar events
(/ = 1,2, ..., ri). We shall describe an event in group /
as an event 'of type i'.

We have

1 < m , < N (/ = 1 , 2 , . . . , «)

£ m, = N

(1)

(2)

(3)

The constraints on the schedule of events are provided
by an (n X n) 'Event Matrix'

A = (fly) (4)

where ai} > 0 is the minimum time interval which must
elapse between an ordered pair of events of types i and j
whether or not there are intermediate events. (5)
The last requirement proves to be crucial in railway
applications of the kind considered below, and marks
the main point of divergence from standard transporta-
tion network theory. In its absence, the present problem
reduces to a variant of the Travelling Salesman Problem
(Reference 1) by regarding events as towns and equating
time with distance.

We are tacitly assuming in (4) and (5) above that real
events have zero duration. In an application when this
is not the case, the theory can still be applied by denning
theoretical events as, say, the start of corresponding real
events, provided that a constraint of the form (5) holds
for the starting times. The basic scheduling problem
can now be stated in the following form:

'Find a schedule for the events

E\, E2, • • • , EN

which minimises the time interval, 6, between the first
and last events, where the relative timings of all pairs of
events are subject to the constraint (5) imposed by the
Event Matrix.'

A 'schedule' in the above sense is denned as an
TV-vector

T =), r(2), . . . , T(A0]

where T(/) is the time of occurrence of event E, (I = 1,
2, . . . , TV); together with a permutation p of the

* The Railway Technical Centre, Wilmorton, Derby

integers 1 through N which defines the sequence of
events as follows:

p(I) = J => Ej is the /th event to occur.

We now have

e = TO>(AO) - r(p(i)) (6)

It should be noted that the schedule T does not define
p uniquely since we can have

r(/) = T(J) I^J

because some elements of A may be zero. On the other
hand p clearly does not define T uniquely, since, for
example, the time at which the final event occurs
(namely r(p(N)) can be increased by an arbitrary amount
without conflicting with (5). However, for any given p,
it is possible to determine a schedule T which minimises
6, as described immediately below.

The JOT algorithm
Suppose that event E, is of type p.{I) (I — 1, 2,. . . , N)

consistent with the grouping specified above at equa-
tions (1) through (3). Define a as the product of the
mappings p and fj., so that

(/ = 1,2, . . . ,7V) (7)

Thus <T(/) is the type of the event in position / in the
sequence. For a given p (and hence a given a) a mini-
mising schedule Tcan be determined as follows:

Put r(p(l)) = 0 (8)

and r(P(I)) = min (T(P(K)) + aoW>O(,,) (9)

(/ = 2 , 3, . . . , / V)

where the minimisation is over the range

max {L, M) < K < / - 1

where L is the largest integer, J, which satisfies the
conditions

(10)
and 1 < / < / — 1

or L — 1 if no such integers J exist;

and where M is the largest integer R which satisfies the
conditions:

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/268/363405 by guest on 19 April 2024

Junction optimisation technique

and

max (au)

1 < /?</— 2

r(P(I - 1))]
(II)

or M = 1 if no such integers R exist.
The integers L and M, which impose limits on the

range of K in equation (9), are introduced to limit
unnecessary computation. When testing for pairs of
events whose relative timings conflict with (5), L prevents
duplication of tests, and M avoids the testing of pairs of
events whose separation exceeds the largest element of A.

The problem has thus been reduced to the determina-
tion of an optimising permutation p. However it will
be sufficient to determine the mapping a, since although
this does not define p uniquely, the nature of the con-
straints imposed by A are clearly such that any one of
the

i = 1

permutations p corresponding to a given a (obtained by
permuting events of each type amongst themselves) will
be optimum; furthermore, given a, the derivation of all
corresponding permutations p, is trivial (using equa-
tion (7)).

Before describing the determination of a, it is worth
noting that for a 'typical' problem, with, say,

(12)

the number of distinct mappings a is about 2-4 X 1018.
Hence present digital computers are far too slow to
guarantee absolute optimality by trial and error methods.
The JOT algorithm produces a near-optimum, over-
coming the difficulty of size by splitting the problem into
manageable portions, using a technique which exploits
the nature of the Event Matrix A. In railway junction
applications, as described below, the diagonal elements
of A are in general greater than off-diagonal elements.
Furthermore, the diagonal elements are always non-
zero, whereas many off-diagonal elements are zero, so
optimum or near-optimum schedules will include few
instances where consecutive events are of the same type.

We now return to the determination of a, and without
loss of generality, suppose that

m, m2 mn

(In practice computationally this means renumbering
event types using a simple sort subroutine.)

Consider the N- vector:

S =), a(2), . . . a(N)]

We now split S into WJ, subvectors. The m, sub-
vectors comprise

Aw, subvectors of size * 1
Am2 subvectors of size 2

and Awn subvectors of size n

where

Aw, = m, — mi+, (i = 1, 2, . . ., n — 1)
Amn = mn

269

(13)

so that

= mli = 1

A subvector of size* / will contain as its elements the
integers 1 through / in some sequence, and we regard it
as a permutation of event-types 1 through /.

Qualitatively; the aim of this synthesis of a is to
mix event-types thoroughly, yet to maintain as far as
possible a repeated pattern of event-types to ease the
subsequent task of optimising individual permutations.
The sequence of the m, permutations which constitute S
can be defined by a 'permutation vector' of size mt:

where o-,(y) is the size of the yth permutation in the
sequence. The problem has now been reduced to the
determination of Su which is itself a sequencing problem
of a similar type, but with 'sizes of permutations'
replacing 'event-types'.

The determination of i1, can thus be tackled by the
above method, and itself reduced to the determination
of a 'permutation of permutations' vector S2 of size

max (Am,-)
1 < i < n

The above process is repeated, by continued differ-
encing and sorting, until after at most n steps we reach
a scalar

sk = Mi)]
We now introduce the notation

P° meaning 'event-type'
P meaning 'permutation' (of event-types)
P2 meaning 'permutation of permutations'

(of event-types)
etc.
Then S will be constructed to consist of one Pk of

size o-fc(l) < n, the sequence of / ^ " ' s which constitute
the Pk being determined by the natural sequence arising
out of the sorting process at stage k — 1. Hence the
sequence of elements in Sk-i is determined (the constitu-
tion of these elements was already known from the
differencing and sorting process) and by continued back
substitution in this way we obtain the sequence of
elements in 5 t _ 2 , ^ - 3 • • • and eventually obtain the
permutation vector St. A numerical example is shown
schematically in Fig. 1. (In this diagram the above
notation is extended straight-forwardly. Thus 13 P° 1
should be read as '13 type-1-events', and 5 P 4 as '5 size-4-
permutations of event-types' and so on.)

It remains to determine S (and hence a) from 5,.
The Event Matrix A is used to optimise individual

permutations (whose sizes are the elements of Si) in the
sequence specified by St. A permutation of given size,
is optimised once only, then used throughout S wherever
it occurs.

* The term 'size' is used in the above context throughout this
paper, in preference to the term 'order' which has the alternative
meaning 'sequence'.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/268/363405 by guest on 19 April 2024

270 M. J. Savage

Constituents Differences
of S

mi = 13
m2 = 10
m3 = 7
OT4 = 5

S4 = [2]

The event-types in each group are then permuted
separately, but all ordered pairs of permutations are
considered, so that the number of trials is reduced from
/! to 2.('!(/ - / ') !

Application of JOT to railway junctions
Fig. 2 shows a simple railway junction with 4 routes.

For the purposes of this illustration trains are categorised
according to their route, although in practice further
categories could be introduced to cater for different
classes of train.

Fig. 1. N = 35, n = 4 Fig. 2

The optimisation of an individual permutation makes
use of the timing technique of equations (8) through (11)
applied to appropriate subsequences of event-types in S.
These subsequences include all event-types in previously-
optimised permutations adjacent to the permutation
being optimised.

All i\ permutations of size / are considered, and that
for which the corresponding subsequence contributes
the least time to 9, is selected as the optimum.

The ratio of the computer time required for this
process to that needed for trial of all possible vectors S
is approximately a/j8 where

and

a = S i!
i = 1

N\

n ('«,!)
i = i

In the example of equations (12) we have

oc =

«/]8 =

5913
2
2-

•4 X
•4 x

1018

io-15

However, for problems with large n, computer-time
limitations may still dictate sub-optimisation of the
larger permutations. For a permutation of size i, this
can be achieved by dividing the event-types into two
groups, the first containing event-types 1 through V and
the second event types (f + 1) through i, where

1
2
3
4

1

3
0
2
0

2

0
3
1-5
2

3

2
1-5
2-5
0

4

0
2
0
2-5

Fig. 3. Event Matrix (times in minutes); n = 4

Trains of type 1 run from a to e
Trains of type 2 run from/ to b
Trains of type 3 run from a to c
Trains of type 4 run from dio b

We define an 'event' as the passage of the rear of a
train past a given reference line (shown dotted in Fig. 2).
The events Eu E2 . . . EN represent a set of N trains—a
given quantity of traffic which has to use the junction.
The Event Matrix A represents the operating and
signalling rules applicable at the junction, and is shown
in Fig. 3. The diagonal elements are headways between
trains taking the same route. The validity of this type
of representation of railway junction operations is
demonstrated in Reference 2. The aim of the optimisa-
tion is to maximise traffic throughput at the junction.

The JOT algorithm has been programmed for the
B.R. Research Department's computer, and applied to
railway junctions both xeal and ficticious. For small
theoretical cases where the absolute optimum was
determinable manually by trial and error the algorithm
always gave a traffic throughput within 10% of the
optimum. On a busy real junction on the Southern
Region of B.R. it produced, in 2.\ minutes computer
time, a throughput for the evening rush hour which was
3% better than that attained by the existing working

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/268/363405 by guest on 19 April 2024

Junction optimisation technique 271
TRAIN TYPE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

NUMBER OF THIS TYPE

2
10
12
16
4
3
7
7
0
4
3
0

10
9

11
TOTAL TRAINS 98

Fig. 4. JOT phase one. Junction B. 1700-1800 hrs.

timetable which had been produced manually by experi-
ence over the years.

Part of the computer output for this case is shown in
Figs. 4, 5 and 6.

Future developments
The JOT algorithm is a satisfactory tool for planning

the sequence of operations at busy railway junctions.
It is sufficiently fast for potential incorporation in soft-
ware for real-time control of trains by computer in
congested areas, but, in the form described above, is not
suitable for on-line control because it fails to cater for
the additional constraints imposed by a real-time
situation.

However, research has been in progress for some time
to extend the basic model to deal with all known con-
straints, and in particular those associated with the
presence of a large main line terminus such as passenger
requirements, and platform capacity. This has involved
the writing of a large software package combining JOT
scheduling techniques with new algorithms for optimum
platform selection, and accepting as data the expected
arrival times of a set of trains which provides an implied
constraint on the sequence of movements. Meanwhile
the associated computer hardware requirements are being
investigated for an experimental pilot scheme based on
the above software.

MS

1
1
8

1
8

6

3

1
8

6

TRAIN
TYPES

4
4
3
15
8
2
4
13
7
14
4
3
15
8
2
4
13
7
14
4
3
14
2
13
15
4
3
8
2
13
1
15
7
5
10
11
14
6
4
3
15
8
2
4
13
7
14
4
3
14

TIME

0
7
7
7
9
13
14
14
20
21
21
26
29
29
33
33
35
40
42
42
46
50
54
56
62
62
62
64
68
69
71
75
75
77
81
87
88
88
88
94
96
96
100
100
102
107
109
109
113
117

PERMS

13

2

3

10

12

5

TRAIN
TYPES

2
13
15
4
3
8
2
13
1
15
7
5
10
11
14
6
3
4
4
15
3
8
3
4
13
2
15
10
14
7
5
11
8
4
7
15
3
13
5
2
10
6
14
4
3
13
2
15

TIME

121
123
129
129
129
131
135
136
138
142
142
144
148
154
155
155
161
161
168
168
168
170
174
175
175
180
181
187
194
194
194
194
198
201
201
202
207
208
208
214
214
220
221
221
226
227
232
233

Fig. 6. Optimised schedule

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1

6
3
3
6
6
3
3
4
4
0
4
4
0
4
0

2

3
6
6
0
6
6
6
4
4
0
4
4
0
4
0

3

3
6
6
0
0
6
6
4
4
0
4
4
0
4
0

4

6
0
0
7
7
0
0
0
0
0
0
0
0
0
0

5

6
6
0
7
7
7
0
0
0
0
0
0
0
0
0

6

4
6
7
0
7
7
7
0
0
0
0
0
0
0
0

7

4
7
7
0
0
7
7
0
0
0
0
0
0
0
0

8

2
2
2
0
0
0
0
8
8
8
4
4
4
0
0

9

2
2
2
0
0
0
0
8
8
8
4
6
6
6
6

10

0
0
0
0
0
0
0
8
8
8
6
6
6
6
6

11

2
2
2
0
0
0
0
4
5
6
8
8
8
0
0

12

2
2
2
0
0
0
0
5
5
6
8
8
8
6
6

13

0
0
0
0
0
0
0
5
5
6
8
8
8
6
6

14

2
2
2
0
0
0
0
0
6
7
0
6
7
8
8

15

0
0
0
0
0
0
0
0
6
6
0
6
6
8
8

Fig. 5. Event Matrix Times in \ mins.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/268/363405 by guest on 19 April 2024

272 M. J. Savage

This initial system will be called TRAC—'Train
Regulation Advisory Control', and if successful, may
well form the basis for automatic train control systems
in conurbations. It is hoped to publish further details
of this work in the future.

Acknowledgements
I am indebted to Mr. P. J. Coates, formerly Assistant

Director of Electrical Research, British Railways Board,
for introducing me to the application of matrices to
railway junctions and for his considerable encourage-
ment throughout this research; and also to Mr. S. F.
Smith, the Director of Research for permission to
publish this paper.

References
1. BERGE, CLAUDE, and GHOUILA-HOURI, A. (1965). Programming, Games and Transportation Networks, Methuen (see

Chapter 10).
2. POTTHOFF, GERHART (1961). 'Verkehrsstromungslehre', Vol. 1, Transpress.

Book Reviews

Continued from page 267
Easy proofs are included and the difficult proofs quite properly
are given only by reference. The 'why' as well as the 'how'
is fully documented, with comments on where the theory is
far from complete. A notable feature is the treatment of
relative as well as absolute minimax error. The author
moreover nicely reveals both the parallel and the divergent
features of polynomial and rational approximations, and puts
continued fractions and the Pade table in proper perspective.
Above all he reveals a degree of 'numerical sense' which these
days is almost unfashionable!

Finally, one observes with awe and amazement the extreme
care with which the expert obtains his approximation and
bounds the error, and compares this, more in sorrow than in
anger, with the attitude of the average computer-user, who
often ruins the beautifully accurate approximation in the
first few error-laden arithmetic operations of his own
program.

L. Fox (Oxford)

Computer Approximations, by J. F. Hart, E. W. Cheney,
C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice,
H. C. Thacher Jr., C. Witzgall, 1968; xii, 344 pages.
(John Wiley & Sons, Inc. £8 4s. Od.)

This book is a sequel to and extension of the work Approxi-
mations for Digital Computers by Cecil Hastings, Jr., which
appeared in 1955. This book had a noticeable impact amongst
computer users when it appeared—it was more a work of art
than mathematics, yet valuable and attractive. The present
work is an extension, with a substantial introduction on
mathematical methods of derivation, and giving a great
number of numerical approximations for a variety of functions,
yet one sighs for a Hastings to present it to the reader—the
version now reviewed is more comprehensive but seems
relatively dull and uninspiring in its presentation and layout.

To indicate the scope of the text, it may be useful to list
chapter headings, and length in pages:

1. The Design of a Function Subroutine 9
2. General Methods of Computing Functions 32
3. Least Maximum Approximations 16
4. The Choice and Application of Approximations 24
5. Description and Use of the Tables 7
6. Function Notes 100
7. Tables of Coefficients 152

Chapter 2 includes techniques for acceleration of conver-
gence and error-elimination as well as familiar computation
techniques.

Chapter 6 contains, interspersed in the text, and not easy to
find rapidly, lists of approximations to various functions
given in Chapter 7.

There are also Appendices giving conversion algorithms
(programs in ALGOL), a Bibliography of approximations,
and a list of decimal and octal constants.

On p. 87 the authors say 'Because of the cumbersomeness
of some expressions and as a convenience in computer
work, each function has been assigned a code name'. Because
of this, and the condensed codification of individual approxi-
mations, the list of approximations is unnecessarily cumber-
some to use. The authors seem to have overlooked the fact
that a book is produced for the convenience of the average
user, not for that of the authors. A few more pages spent
on an intelligible and attractive presentation and layout of
results would have produced a less forbidding table, much
more readily usable.

It would also have helped if the illustrative examples on
p. 87 had not referred to Chapter 6 where Chapter 7 is meant,

and if the range [\, 1] had not appeared as —r, 1
|_V4 J

on p. 95.|_ J
It must be said however, that the work contains a great

number of useful polynomial and rational approximations,
of various precisions up to about 25 figures, for V*> "v7*; 2*>
10*, ex; logi0 x, \o%e x; sin U.TTX, COS OLTTX, tan CLTTX; arcsin x,
arctan x; F(x), <P(x); erfc x; J0(x), •/,(*)/*, Yo (x), Y^/x,
P0(x), />,(*), Q0(x)lx, Qx(x)lx; E(l-x), K(l-x).

A useful book, not quite obvious in use.

J. C. P. MILLER (Cambridge)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/268/363405 by guest on 19 April 2024

