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A general procedure for evaluating the controllability of time
delay feedback control systems

By N. E, Gough* and J. B. A. Eptonf

A general algorithm for evaluating the normalised integral-square-error criterion of controllability
is presented as a function of the parameters of a feedback control system. Pure time delays are
incorporated as Pade polynomial approximations and a matrix solution of the integral using
Gaussian elimination avoids the need for standard integral tables.
(Received September 1968)

1. Introduction
The theoretical determination of optimal control settings
for feedback control systems subject to random load
disturbances is a well-known problem in control en-
gineering. Numerous forms of criteria for assessing
controllability have been proposed in the past, many of
which were tested by Graham and Lathrop (1953).
However, only the integral of error squared criterion
(I.S.E.) has found widespread application and been used
successfully for many years. Griffin (1967) describes in
detail the advantages of determining optimal three-term
control settings using the I.S.E. criterion. The major
advantages spring from the fact that if H{s), the effective
error-to-load transfer function, is expressed as a rational
function of the complex pulsatance s, then the nth order
definite integral

I.S.E. = /„ = (1.1)

is a well-known mathematical form. Useful results can
be obtained by evaluating this integral for different values
of the system parameters.

For the general problem, H(s) may be written as the
ratio of two polynomials, i.e.

where

c{s) = „-!
k=0

H(s) = c(s)/d(s)

and d(s) =
(1-2)

k=0

Standard tables of expressions for calculating integrals
of the form (1.1), when H(s) is a rational function having
poles in the left-hand plane, were originally presented by
James, et al. (1947). In order to use these tables, the
order of d(s) must be made one higher than that of c(s).
The values of the coefficients ck and dk are then substi-
tuted into the standard expressions to give the value
of/..

Using a new method suggested by Dr. A. C. Hall,
Booton, et al. (1953) re-analysed the problem of evalua-
ting (1.1), gave the general theory in matrix form and
presented an extended list of standard tables (Newton,
Gould and Kaiser, 1957). The use of these tables has
been well-illustrated by Dadachanji (1967), who com-
pared the performances of electronic and pneumatic
controllers for various lengths of transmission lines.

These lines constitute time delays and increasing their
lengths tends to make the system less controllable.
Consequently it is important to discover the optimal
control parameters which give the best value of control-
lability.

Unfortunately, the use of standard tables is limited
and cannot be recommended for n > 6. Dadachanji
(1967) showed that expressions become prohibitively
complex as the order increases and a different computer
procedure is needed for each value of n. Furthermore,
time delays in the system are incorporated in (1.1) by the
use of polynomial approximations. The accuracy of
these approximations increases with the order of the
polynomial and consequently large orders are preferred.
In any case, standard expressions for n > 10 are not
available and the order of the integral (and hence the
polynomial approximations) is necessarily restricted.

In order to overcome these problems, a new procedure
is required which computes the integral coefficients for a
control system of any order. The procedure should
include polynomial approximations of any order and
the integral should be evaluated without resorting to the
standard tables. This paper concentrates on deriving
expressions for the coefficients of c(s) and d(s) for a
general feedback control system and shows how the
matrix approach to the evaluation of (1.1) given by
Booton, et al., gives the required method for obtaining
a general computer solution. The paper finishes with a
description of a program which enables the normalised
controllability to be plotted as a function of control
parameters and typical curves are presented.

2. The feedback control system
Fig. 1 shows a feedback control system, where the

subscripts C, P and L refer to controller, process and
load respectively. We assume that the load disturbance
may be described by a stochastic process which is both
stationary and homogeneous, i.e. ergodic. Typical
disturbances have a Gaussian probability distribution
with the power spectrum

(2.1)

where <J>B is the constant power per unit bandwidth,
a) the angular frequency and TD the effective disturbance
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time constant. Hence, the power spectrum of the load
disturbance is identical to that obtained by passing white
noise through a band-limiting filter having the transfer
function

1
sTL

(2.2)

Let the process transfer function Gp(s) be a linear
combination of poles and a time delay, i.e.

GP(s) = —
K

XM
(2.3)

where Kp is the gain, T^ the process time constants
and rp the pure time delay. Similarly, the load transfer
function is expressed as

GL(s) = -&-+

no
(2.4)

The three-term controller has the transfer function

Gc(s) = •£- (T .T^ 2 + Tls + 1) (2.5)

where AT is the gain, r7 the integral time constant and rD

the derivative time constant. Finally, a pure time delay
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Fig. 1. General feedback control system

TF is included in the feedback path, representing the
measurement time delay which characterises most
practical applications in process control. This block
has the transfer function

GF(s) = e~"' (2.6)

Applying block diagram algebra around the loop

[E(s)Gc(s)Gp(s) + L(s)GL(s)] GF(s) = - E(s)

GL(s)GF(s)
L(s) Gc(s)Gp(s)GF(s) (2.7)

This is the error-to-load transfer function. Substituting
for GL, Gp and GF using (2.3), (2.4) and (2.6)

Combining G(s) with the band-limiting filter gives the
effective error-to-load transfer function

H(s) = G(s)GD(s)

3. Calculation of the integral coefficients
The nth order integral

(2.9)

(3.1)

must now be expressed as the ratio of two polynomials.
Here, a difficulty arises since the time delays are not given
in polynomial form. In the past, Maclaurin, Bessel,
Tchebycheff and Pade polynomials have been tried as
possible approximations. Following the accounts given
by Al-Shaikh and Soliman (1965) andRiley and Walker
(1968), we use the all-pass Pade approximation

a2
5' - . . . + ar{-i

a2s
2r2

where

(2r-j)\r\

•"J {2r)\j\{r-j)\

As seen in (2.8) we require the combinations

(3.2)

;=o
+ rFy=^

(3.3)

i.e.

and

i.e.

aj(s)
0

(3.4)

Substituting (2.5), (3.3) and (3.4) into (2.8) gives

r r , KLP2P3Xp(s)srf

° W [KKJl + sr, + S2T,TD)P1 + STfiXjisfl

and from (2.2), (3.1) and (3.5)
i I KLXP(S)P2P3ST,

(3.5)

/„ =
2m [KKp{\ + srIP2Xp(s)]

ds

sTD)

(3.6)

By multiplying out the factors of the numerator and
denominator in the integrand, we obtain the integral in
standard form and hence the coefficients ck and dk can be
found.

4. Numerical evaluation of the definite integral
It has been shown by Booton, et al. (1953) that the

evaluation of the integral depends on the solution of a
set of linear algebraic equations. Briefly, the proof
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entails separating the c(s) and d(s) polynomials into the
sum of two fractions a(s)/d(s) and b(s)jd(—s) and the
integral becomes
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where
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2m J_1CO d{s)

A change of variable s = — s' is then made and the final
solution, by an application of the initial value theorem,
is found to be

h = an- \\dn (4.1)

Therefore the integral evaluation requires the calculation
of only one coefficient, an_,.

In practice, the numerator and denominator coeffi-
cients c(s) and d(s) are used to form the elements of two
matrices [C] and [£>]. The [C] matrix is set up by
summing products of the ck coefficients

Co

c2

(4.2)

where

2Cm = S (.-\?ckcm_k for 0 < m < n - 1

and
n - l

2Cm= S (-l)fcctcm_fcfor«<w<2rt-2
k—m— n+ 1

(4.3)

The [D] matrix is formed directly from the dk coefficients
but differs for n odd or even.
For n odd

0
0

do
d2

[D]

and

=

for

4>

0

0

n even

0

"r
0

0
do

2 "dn

0

[D] =

d2

0 0

0 0

0 0

da

0

0
0

d,
d,

dn-,

(4.4)

/„ is now obtained by solving the matrix equation

[D] x [A] = [C] (4.5)

-a.

(-1)"- Jn-l

(4.6)

In fact it is only necessary to compute an_x and the
integral is then given by (4.1).

5. Implementation
The method described above has been programmed in

FORTRAN for the ICT 1909 computer in eight seg-
ments, Epton and Gough (1967). Initially, the MASTER
segment reads the process parameters and other constant
data before calling SUBROUTINE GENCOEFS. This
routine computes the numerator and denominator
coefficients of (1.2) by multiplying out the factors given
in (3.6). In order to do this, GENCOEFS calls three
further SUBROUTINES PADE, POLYADD and
POLYMULT which generate the time delay approxima-
tions given by (3.3) and (3.4), and add and multiply
polynomials in s. In addition PADE uses REAL
FUNCTION IFACT which generates the factorials for
the Pade coefficients using (3.2).

Control is then transferred to SUBROUTINE
DEF1NT which is a general procedure designed to
evaluate the standard integral using relations (4.1) to
(4.6). The solution is carried out by augmenting the [D]
matrix with the [C] matrix and using Gaussian elimina-
tion. Round-off errors are minimised by choosing the
largest element of the appropriate column as a pivot.
Termination of the program occurs if [D] is found to
be singular, since this implies that unrealistic data has
been used.

After one evaluation of the integral, the MASTER
segment increments one of the control parameters and
repeats the above procedure.

Finally, when the required number of evaluations nave
been computed (or when the value of the integral
becomes negative or infinite, indicating the onset of
instability) the answers are normalised and a GRAPH-
PLOT routine is called to present the results in graphical
form.

Where possible, the program has been tested by
comparison with results obtained using the standard
tables. For n = 30 the program occupies 8000 store
locations but this requirement may easily be reduced by
altering the DIMENSION statement. For n < 10,
typical running times for computing normalised curves
are less than 60 seconds.

Fig. 2 shows a typical set of normalised controllability
curves plotted as a function of controller gains for
varying transmission line lengths. The curves show
clearly the manner in which the controller gain must be
reduced in order to avoid instability.

In conclusion, it may be said that the successful
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2nd ORDER SYSTEM

3rd ORDER PADE APPROXIMATIONS

4.0 6.0 8.0 10.0

CONTROLLER GAIN

Fig. 2. Normalised controllability as a function of controller
gain for various time delays

implementation of this method has shown many possi-
bilities for the rapid design and optimal operation of
feedback control schemes. The program development
continues and its use in an on-line computer control
scheme is being prepared. It is envisaged that an
Argus 400 process control computer involving about
30 feedback loops will be used to monitor variations in
process parameters. The computer will then interrupt
the ICT 1909 computer via a high speed data link so
that the higher-level computer can compute the optimal
control settings.
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