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The effect of inadequate convergence criteria in automatic routines

By J. N. Lyness*

The possibility of round off or other statistical error in function values is sometimes not taken into
account in the construction of automatic routines. The possible consequences of such an ¢mission

are discussed.
(Received February 1969)

‘The aim of an automatic integration scheme is to
relieve the person who has to compute an integral-{the
user] of any need to think.” This is the opening sentence
of Chapter 6, ‘Automatic Integration’ of the standard
textbook Numerical Integration, by P. Davis and
P. Rabinowitz (1967).

Informal discussion indicates that views about this
aim vary from extreme to extreme. Some say the user
should be made to think; others, that it is impossible to
relieve him of all need to think and ‘consequently’ no
attempt should be made to relieve him of any need to
think. Another view is that this should be the aim of
all numerical analysis or at least the aim of any published
algorithm. Occasionally the same individual subscribes
to all of these views. However, the present author
accepts the opening sentence as a laudable aim, and
discusses below the presently available implementations
of this aim.

The textbook goes on to describe an automatic
integration scheme in general terms (as it appears to the
user). The user is to provide the upper and lower limits
B and A4, a tolerance EP, a subroutine FUN(X) and N,
an upper limit on the number of function evaluations to
be used. After using N function evaluations the routine
gives up and provides the best result available and some
indication or message to this effect.

Although in the text it is suggested that N be provided
by the user, in the examples in the same book, N is
usually provided by the program. In the Romberg
Integration Code N =25 +1 = 32,769, and in the
Adaptive Simpson Code N =2-33% +1 ~ 4 x 10'4.
Presumably experience has shown that it is difficult
enough to get the average user to think out what value
EP he requires. (This is the author’s experience.)
When asked in addition for a value of N, mental exhaustion
leads him to make some wild guess.

Thus in the present state of the art, the aim (which is
to relieve the user of any need to think) has been attained
to the following extent. He does not have to think (at
least not at this stage) about 4, B, or FUN(X). He is
forced to give some thought to EP. He has refused to
think about N and the programmer has usually done it
for him.

An automatic quadrature routine may be considered
as containing two essential ingredients. One is the
standard rule evaluation part, which is capable of
obtaining numerical approximations in terms of function
values. The other is the ‘strategy component’ using
which the routine considers the results it has already
obtained and decides what further calculation is necessary
to obtain a result of the desired accuracy.
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An example is the automatic routine ROMBERG
(A, B, EP, FUN). The rule evaluation part is capable of
calculating successive approximations R, f, R> f, . .., Rysf
to the required integral. Here R;f is the standard
Romberg approximation requiring 27+ 1 function values
(Bauer, Rutishauser, and Stiefel, 1963). The strategy
section is particularly simple. After each evaluation
R;f, 2 > j > 14, the number

| Rif = Ry_1f| — EP

1s calculated. If this number is less than or equal to
zero the routine returns R;f as a final answer and the
calculation terminates. Otherwise the routine proceeds
to calculate the next approximation R;,,f. If j = 15,
the routine need not carry out this check. It simply
returns the result R,sf a result requiring 32,769 function
evaluations.

In the Adaptive Simpson automatic quadrature rou-
tine, the procedure is more complicated. However, it is
still possible to distinguish between sections of coding
devoted to rule evaluation and sections devoted to
strategy.

We now turn to the question of the effect of round-off
error in these routines. While of course every single
operation in the routine could be considered as a source
of round-off error, the principal sources are generally
agreed to be these:

(i) Errors in the abcissas x; and weights w;;
(ii) Errors in function values f(x;);
(iii) Accumulation Error in the sum XZw, f(x;).

In general the effect of errors (i) and (iii)) can be
removed by calculating abscissas and weights and carry-
ing out the sum using double precision arithmetic. The
relative additional cost in computer time is not significant.
However, errors in the function values are beyond the
reach of the automatic routine.

From the point of view of the rule evaluation, such
errors while present are not serious. For example, if a
function is only accurate to seven digits the effect of
using a rule which is capable of obtaining a twelve digit
result is that a seven digit answer is obtained at a twelve
digit answer cost. Possibly a factor of 2 or 3 in machine
time might have been wasted. This is one reason why
round-off error is not considered a practical problem in
numerical quadrature.

However, from the point of view of strategy in an
automatic routine, moderate errors of a statistical nature
in the function values f(x;) may cause a disaster. Two
examples are illustrated in the accompanying tables.
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In each the same problem, the evaluation of
32

Jocosxdx =—1

is attempted to various accuracies EP, using essentially
the coding

FUN(X) = COS(X) -+ 1000000-0 — 1000000-0

(recoded in such a way that the compiler does not notice
the cancellation).

In the first example, Table 1, using ROMBERG
(4, B, EP, FUN) it is possible to see at a glance how the
strategy reacted to the information at its disposal; the
values |R;f— R;_,f| are listed. If EP = 10-6 the
routine concludes after stage j = 6 returning a six-figure
result based on 65 function evaluations. If EP = 107,
the routine goes on to stage j = 15 returning a result of
comparable accuracy based on 32,769 function evalua-
tions. The price paid by the user for not giving sufficient
thought to the value of EP is a factor 500 in machine
time, with no significant gain in accuracy.

Table 1

Romberg integration approximations

J N Rif Rif-Ri1f
1 3 —0-4879856539
2 5 —1-0127508941 —5-25-001
3 9 —0-9998910218 1-29-002
4 17 —90-9999900407 —9-90-005
5 33 —0-9999943948 —4-35-006
6 65 —0-9999951011 —7-06-007
7 129 —1-0000017132 —6-61-006
8 257 —1-0000003520 1-36-006
9 513 —1-0000008370 —4-85-007
10 1,025 —0-9999991700 1-67-006
11 2,049 —0-9999993830 —2-13-007
12 4,097 —1-0000001393 —7-56-007
13 8,193 —0-9999999992 1-40-007
14 16,385 —1-0000001818 —1-83-007
15 32,769 —0-9999997753 4-07-007

In the second example, Table 2, using a modification
(Lyness, 1969) of the original version (McKeeman,
1962) of the adaptive Simpson Routine, the consequence
of asking for too much accuracy is even more cata-
strophic, a factor of 1,000 in machine time. In the table,
only results are given. Here if EP < 107 round-off
error prevents convergence in any interval unless the
difference to be tested is identically zero in that interval.
Essentially a machine accuracy calculation is carried out.

Depending on one’s point of view, this type of
behaviour in these routines may be regarded as a fault,
or as a necessary penalty designed to influence the user
to give more thonght to his problem. The fault, if it is
so considered, lies not in the rule evaluation section, but
in the strategy section. In general the numerical
approximations are all quite adequate. The simple
strategy in these routines assume that there will be no
significant round-off error and proceed on that basis. If
there is round-off error, the strategy sets the routine off
on a totally unrealistic sequence of calculations.

Table 2

Somte results given by routine
SQUARED (4, B, EP, FUN)

EP N ACTUAL ERROR*
104 29 —1-1 x 10-3
10-3 45 —6-9 X 106
10-% 97 3-9 x 10-¢
10-7 152,997 —6-6 X 107
10-8 152,997 —6-6 X 107

* This is (—1-0-SQUARED) and not
(EXACT INTEGRAL-SQUARED)

In this example the round off level was set deliberately
to simulate a large cancellation error. Thus, if the
problem had been re-coded to avoid cancellation error
or if a computer using a longer word length had been
used, different results would have been obtained. This
is not the only way in which such errors arise. The
error in f(x;) might be discretisation error arising from
perhaps a previous numerical quadrature. If an auto-
matic routine is used for the previous calculation, the
discretisation error may have a different form for
different values of x;. Thus it would appear to the
automatic quadrature routine that the function f(x) it
is asked to integrate is smooth only in sections; the
errors here could be termed semi-statistical.

These errors may be relatively independent of the
machine accuracy. They stem from a desire on the part
of the user to economise at an earlier stage in the calcula-
tion. They are not due to round off nor are they due
to cancellation. Nevertheless they are present and may
cause the unwary routine to have difficulty in converging.

In general the function f(x) may be an intricate
combination of solutions of differential equations, spline
functions and even extrapolated experimental data. The
user may be unable or unwilling to perform an extensive
error analysis of the entire problem to determine the
accuracy of his function. Even if he were, to ask him
to do so is completely at variance with the stated aims
of automatic integration, namely that he should not have
to think at all. Instead of allowing him not to think,
these automatic routines demand that either he gives
considerable thought to the problem of determining EP,
or that he risks being penalised by computer time factors
of order 500 or 1,000.

The aims of automatic integration may be more
completely fulfilled if the strategy is adjusted to take into
account possible statistical error in the function values.
The intention should be that the routine, which has
available large numbers of function values f(x;), should
in some way use this information to determine the round-
off level—or ‘noise’. The value of EP provided by the
user should be considered by the routine as a lower
bound only, and should be increased to the noise level
automatically if this becomes necessary. A user who
simply requires the best result available sets EP = 0-0.
At the end of the calculation EP is over-written by a
number calculated by the routine which represents its
own estimate of the accuracy attained.

The detailed method by which such a scheme should
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be put into effect varies from routine to routine. The
author has implemented such a scheme in a modification
of the Adaptive Simpson routine described in detail in
Lyness (1969). This particular routine calculates in
any case various quantities which are very susceptible to
round-off error whose difference should generally be
positive; in practice this difference is used as an indicator
of the round-off level with reasonable success.

In principle a scheme of this nature can be implemented
by applying familiar theory concerned with the determi-
nation of the noise in a table of numbers. A chapter is
devoted to this in Hamming (1962). Or the criterion
could be simply that the routine terminates when suc-
cessive iterates do not appear to be converging.

The author does not feel that there is any fundamental
difficulty in arranging for an automatic routine to take
into account the possibility of statistical fluctuations in
f(x;) and to terminate if appropriate. The principal
difficulty—and the main purpose of this article—is to
convince the people who construct such routines that it
is a necessary or worthwhile thing to do. Once people
are so convinced, they will be quite ingenious enough to
invent many schemes and to make thorough tests of
these with a view to producing the most efficient pro-
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