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Chebyshev solution of differential, integral and integro-differential
equations

By S. E. El-gendi*

This paper describes a new method for the numerical solution of linear integral equations of
Fredholm type and of Volterra type. The method has been extended to the linear integro-
differential equations and ordinary differential equations. It can also be applied to non-linear
problems. In each case numerical examples are treated and the method compares quite fav-
ourably with other known methods.
(Received March 1969)

1. Introduction
El-gendi (1964) considered the use of finite Fourier
series for approximating the integral

\f(t)dt, ( - ! < * < 1)

at the points

rmrxm = — cos — , w = 0, 1, . . . , N

(1)

(2)

We know that if the function values at the points (2)
are known, the Chebyshev coefficients for this function
can be directly computed. So the previous procedure
gives a finite Chebyshev expansion for the integral.

The purpose of this paper is to develop another
method based on the Clenshaw and Curtis quadrature
scheme. This method is used to solve linear integral
equations, integro-differential equations and ordinary
differential equations. Like the previous method the
new procedure will provide the solution in terms of a
finite Chebyshev expansion.

2. The Clenshaw and Curtis quadrature scheme
We assume that the function f(x) is defined and 'well-

behaved' in (— 1 < x < 1). Clenshaw and Curtis (1960)
give the following procedure for the numerical integra-
tion off{x), based on the approximation

/(*) = S " a,T,(x)
0

where

and = cos lJ
1-T),j = O,l,...,N.

(3)

(4)

(5)

Here Tr{x) is the r-th Chebyshev polynomial. A summa-
tion symbol with double primes denotes a sum with first
and last terms halved.

fTn(t)dt =
- 1

i{T2(x) - 1}

i f « > 2

ifn = 1

if n = 0

(6)

The indefinite integral f(f)dt is approximated by

.x N -x N+l

f(t)dt = 2 " aj Tj{t)dt = S C,Tr(x) (7)
J-i ;=o J - i r=o

where

Q = 2" ^

Ck =

• £ ? J2~l

Ok- 1 — '
2/c

, fc= 1, 2 , . . . , N — 2

CN =

2(N-l)

2N

2{N + 1)

If we insert the expressions for Cr in (7) and use (4),
then after certain arrangements we can define the
elements of the matrix B defined in the relation

(8)

= B[f] (9)

where 5 is a square matrix of order (N + 1); the elements

of the column matrix [/] are given by fj = f( — cos — J

j = 0 , 1 , . . . , N. The right-hand side of (9) gives approxi-
mations for the integral at the points (2). In other words,

Formulae for both the definite and indefinite integral w e h e r e e v a l u a t e t h e i n t e g r a l fflftft, at the points
are derived from the relations J - i
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= — cos — , m = 0, 1, . . . , N, rather than evaluate

the Chebyshev coefficients of the integral. The two
approaches are equivalent in the sense that if we know
the values of the integral at xm its Chebyshev coefficients
can be directly evaluated from a formula similar to (4).

The main advantage of using the suggested approach
is that for a certain value of N the elements of the
matrix B can be evaluated once and for all. Economisa-
tion in computation will be achieved if, for example, the
matrix B is stored, for different values of N, on cards.
For N = 4 the elements of the matrix B are given in

N f in \
Table 1. We may notice that £ bu = ( 1 — c o s ^ )

j=o v JV'
i = 0, 1, . . . , N; and this can be used for checking
purposes.

3. Matrix approximations
From relation (9) we can deduce the following approxi-

mations which will be of importance in treating different
problems.

Integral equations

(iii)

where

(iv)

(i) \f(x)dx = £ bNsfs
s = 0

(10)

where bNs, s = 0, 1, . . . , N are the elements of the last
row of the matrix B. It is easy to verify that for TV even
we have

4 Nl2 1 IJTTS

"/V0 — bNN —

(ii) For — 1 < x < 1,
- r

[J (11)

where the right-hand side defines the operator I k{x, s)

y(s)ds at the points (2). The elements of the matrix C
are defined as

Qj = bNjkij, kij = k ( - ^ , - cos ^

[J V , s)y(s)ds~j = D[y]

du =

[ £ j V = s)y(s)dsdx^ = E[y]
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(12)

(13)

where E= BD.

(v) As a special case of (13) we have

Xy(s)dsdx^ = F[y]

F=B\

(14)

where

We have also

(vi) [' f/LWdx^-ZsJ, (15)
J-1J-1 i=0

where s,; i — 0, 1 , . . . , iVare the last row of the matrix F.

(vii) f [ ^ | k(x, s)y(s)dsdx\ = G[y] (16)

where G = BC and C is defined in (11).
Finally, when the range is (0 < x < 1) we have the
approximation

= A[f] (17)

where A = \B and the right-hand side defines the integral
at the points

(18)- cos—), / = 0, 1, . . . , N

The elements of the column [/] are also defined at these
points. We notice that the interval has been normalised
using the transformation x = ^(1 + t), — 1 < t < 1.
The Chebyshev expansion of the integral will be in this
case in tern-.s of

= Tr(2x - 1). (19)

The operators from (11) to (16), can be similarly defined
by replacing the matrix B by A and the points (2) by (18).

and the elements of the column [y] are ys = y( — cos jrj,
j = 0, 1, . . . , N.
Similarly

4. Numerical integration

To illustrate the approximations (9) and (17) we con-
sider the following.

bijijj

0
1

4

0

0
0-1194036
OO333333
0-0722631
0-0666667

0
0
0
0
0

Table 1

The matrix B, N

1

• 1900634
•6202201
•5200466
•5333333

0
-0-
0-
0-
0-

= 4

2

0242641
4000000
8242641
8000000

0
0

-0
0
0

3

•0132867
•0868867
•3432699
•5333333

0
-0
0

-0
0

4

•0055964
0333333
•0527369
•0666667
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Example 1.
To evaluate /(x) defined as

S.E.

(20)

(21)

(20)'

In (20)' the elements of [e~l] are all equal t o e " 1 and
those of [e*] are equal to eXi, where x,- are defined in (2).
The right-hand side of (20)' gives /(*,•) for i = 0, 1,
. . . , N. If we use (17) we have

and

%x) = e~l + fjtdt, - l < x <

g(x)= 1 + \ e'dt, 0<x< 1.

El-gendi

6. Elliott's method

For the numerical solution of (22), Elliott (1963)
suggested for y(x) the Chebyshev expansion,

If we use (9) we have the representation

\g] = [1] (21)'

where the elements of the column [1] are all equal to
one and those of [ex] are equal to eXi and of [g] are
g(x,) where xt are defined in (18).

Table 2 shows the results if we take N = 4, so we can
use the matrix defined in Table 1. The Chebyshev
coefficients off(x) are computed so they can be compared
with the exact values.

Table 2

Numerical example 1

1

0
1
2
3
4

CHEBYSHEV COEFFICIENTS
OF/{X)

THE METHOD

2-5322
1-1303
0-2714
0 0449
0 0057

EXACT

2-5321
1•1303
0-2715
0-0443
0 0055

VALUES OF g(xf),

xi — ^(1 — cos in/4)

THE METHOD

1 0
1-157711
1-648729
2-347973
2-718281

EXACT

1 0
1-157713
1-648721
2-347975
2-718282

5. Fredholm integral equations
We now consider the equation

y{x) - A \k{x, s)y(s)ds = f(x) (22)

where — 1 < x, J < 1. This equation is known as a
Fredholm integral equation of the second kind where A
is a given parameter, f(x) is a given function and X*) is
the function to be found. We shall consider non-singular
integral equations, i.e. the kernel k(x, s) is continuous
and bounded.

Recalling relation (11), we may represent (22) in the
form

(/ - XC)[y] = [f] (23)

where / is the unit matrix and the elements of [/] are
fi = /(x,) and Xj is defined in (2). The system (23) is
to be solved for the solution at the points (2) and the
Chebyshev coefficients can be evaluated directly if they
are required. For the sake of comparison we now mention
briefly another method which provides the solution as a
Chebyshev expansion.

N

X*) = ia0 + S a,T,(x). (24)

In order to determine the (N + 1) coefficients ar,
equation (22) is to be replaced by the (N + 1) equations

X*,) - A \k{xh s)y{s)ds = (25)

ITT
for the (N + 1) points x-, = cos—,i=0,l,...,N.

For each x, the kernel k{xt, s) is approximated by a
polynomial of degree M in the form

M

= S " br(xdTr(.s) (26)

U

where

9 M

The expansions (24) and (26) are then inserted in (25)
and after some algebraic manipulations we have a system
of (N + 1) equations in the coefficients a0, a,, . . . , aN.

Compared with the suggested method the method of
Elliott contains much work.

Example 2.

As an example we take Love's equation, also treated
by Fox and Goodwin (1953), by Elliott (1963) and by
El-gendi (1964). The equation is

y(s)
-,ds= 1. (27)

Here the solution is symmetric about x = 0 and for
J V = 8 we get the results shown in Table 3. For the
sake of comparison the Chebyshev coefficients are com-
puted and the method of Elliott has been used taking
N = M = 8. The results in the last column of this
table are obtained by Elliott's method if we take N = 20
and M = 16. For this example the suggested method
gives better accuracy than that of El-gendi (1964).

Table 3

Numerical example 2

IHE CHEBYSHEV COEFFICIENTS IN y(x) = iao + 2 azrT2r(x)(N = 2ll

air
THE METHOD

N = 8

1-4151850
493851

10481
2310

195

METHOD OF
ELLIOTT

N = M= 8

METHOD OF
ELLIOTT

= 20, M= 16

1-4151850
493850

- 10483
- 2308

195

1-4151850
493851

- 10475
- 2327

200
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7. Volterra integral equations
We now consider the equation of Volterra type

y{x) - fjc(x, s)y(s)ds = fix) (28)

where — 1 < x, J < 1. Recalling approximation (12),
the matrix representation of (28) is given by

(T-D)[y] = (29)

The solution of this system gives approximations for
yfa), i = 0, 1, . . . , N, from which the Chebyshev
coefficients can be evaluated.

Example 3.

We consider Volterra's equation

y(x) = x+ \'(s - x)(y(s)ds, 0 < x < 1 (30)Jo

with exact solution y = sin x. The same example has
been solved by Jain and Sharma (1967) using Lobatto
quadrature. The results obtained by the suggested
method with N = 4 are shown in Table 4.

•v,- = Ki -

x0

Xi

x2
x3
x4

Table 4

Numerical

COS 777/4)

example

THE METHOD

0
0
0
0
0

145921
479438
753615
841468

3

0
0
0
0
0

EXACT

• 145924
•479426
•753621
•841471

8. Integro-differential equations
We now consider the class of integro-differential

equations defined as

y'(x) + p{x)y{x) = q{x) + \k(x, t)y(t)dt (31)

with the initial condition

j ( - l ) = 7j and - 1 < x < 1 (32)

Intergrating (31) we get

Ax) + f_P(t)y(t)dt = h(x) + £ fjc(x, t)y(t)dtdx (33)

Kx) = V+ JjKO*
where

and the initial condition is satisfied. This preliminary
integration often has a very good effect on accuracy.
Fox (1962) uses the method of 'prior integration' to get
better accuracy with Lanczos' method.

Now, using the matrices B and E defined in (9) and
(13) respectively we get

where

(/ + S)[y] = [h]

S = BP- E

(34)

and P is a diagonal matrix whose diagonal is given by

Pi = p( — cos -r- V i = 0, 1 , . . . , N. The elements of [h]

are given by h(— cos — ) and if we solve the system (34)

we get the solution of equation (31) under the condition

(32) at the points — cos —, i = 0, 1, . . . , N.

We now consider two examples which have also been
solved by J. Day (1967).

Example 4.
Our first example is the integro-differential equation

y' = 1 - [ y(s)ds, y(0) = 0, 0 < x < 1 (35)Jo

which has the exact solution y(x) = sin x.
Integrating this equation we get

y(x)=x-§ Jy{s)dsdx. (36)

The matrix representation will be

(/ + F)[y] = [x] (37)

where [x] is a column matrix whose elements are

xt = i( 1 — cos ^ H , « = 0, 1, . . ., N and F = A2

where A is defined in (17). Taking N = 4 we have the
results shown in Table 5.

Table 5

Numerical example 4

*.- = i ( l -
cos ITT 14)

Xo
X\

x2

* 3

x4

THE METHOD

00
0-1459244
0-4794224
0-7536206
0-8414703

EXACT

00
0-1459237
0-4794255
0-7536208
0-8414710

CHEBYSHEV
COEFFICIENTS OF

THE METHOD

0-8998513
0-4252206
- 293436
— 44855

1531

Example 5.
Our second example is given by

y'{x) + y(x) = 1 + 2x + f*x(l
Jo

(38)

with y(0) = 1 and 0 < x < 1. The exact solution is
y(x) = e*1. The integrated form of this equation is

+ = i + x + x2

(o Jo
(39)

Replacing the integral operators in (39) by the appro-
priate matrices and taking N = 4 and 8 the errors found
are shown in Table 6. By error we mean, error = |true
value—approximate value|. Since equation (38) is in-
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286 S. E.

herently unstable, the errors are rather large near the
end of the range and there has not been much gain in
accuracy in going from N = 4 to N = 8.

Table 6

Numerical example 5

El-gendi

where

Xi = -HI - cos (77/4)

* 0
x \

*2

* 3
X4

N

0
2 0 5
3-35
1 6 9
2-37

=

X
X
X
X

4

io-4

10-3
io-2

io-2

N

0
9-9
1 0 9
6-31
9-98

=

X
X
X
X

8

IO-6

10-3
10-3
10-3

9. Other linear problems
The suggested method can be applied to other

problems which we now mention briefly.

(i) For Fredholm integral equations, with Kernels which,
though continuous, possess discontinuities in their first
derivatives, i.e. for the problem

y(x) - A \\{x, s)y{s)ds = f(x) (40)

u ; t ^ fkl(x> S) for —1 < S < X

where k(x, s) = < , , N r ^ , ,

equation (40) is replaced by

y(x) - A |J_£iO, s)y(s)ds

+ (f_{ - \'_x )ki(x, s)y(s)dsj =/(x). (41)

We here apply the matrix representations (11) and (12).
(ii) Other types of integro-differential equations can also
be considered. For instance, if we have

y'(x) + p{x)y = q(x) + J k(x, s)y(s)ds

with y(- 1) = 7], - 1 < x < 1 (42)

the integrated form of this equation will be

fp(t)y(t)dt = h(x) + f [ k(x, s)y(s)dsdx

Kx) =v+ fj(t)dt (43)

We can here use the approximations (9) and (15).
(iii) For the second-order differential equation

y"(x) + p(x)y = q(x), -

with the boundary conditions

x < 1 (44)

the integrated form is given by

X*) + f_t fp(t)y(t)dtdx - (^

= g(x)

_i f_p(t)y(t)dtdx

(45)

g(x) = -\(B + A)+ \(B - A)x + £ f_q(t)dtdx

We can here apply the approximations (14) and (15).

10. Non-linear problems
The method can also be applied to non-linear problems

after using a linearisation process. For instance, we con-
sider the two-point boundary problem

dx y2 dx

with the conditions

yt(0) = 1, y,(\) = e

(46)

(47)

and which has the exact solution yx(x) = y2(x) = ex.
This example has also been treated by Sylvester and
Meyer (1965). Now, if z,(x) and z2(x) are approximate
or assumed values of the solution where z,(x) satisfies
the conditions (47), the linearised equations may be
written in the form

det 2z, z2

dx~ z e ' + T 2 '

d€2 z\ _ 2_Z2

= 1

A ,

(48)

with e,(0) = e,(l) = 0

where e,(*) = y-,(x) — z,(x), (/ = 1, 2).

In our method we proceed to integrate (48) to get

r* 2 z i r*' z\ rx z2

£\dx + -5 e i ^ = 1 — ZiW + —
'o 2 , J o z , Jo z ,
r * Zj r* 2z2

e2(x) + ~2 *\dx — — e2dx — C — — z2(x)
Jft Z, Jn Z\

0 Zl

x , 2f % f
J0 z i J0

e,(l) = 0, 0 < x < 1

where Cis constant of integration.
If we use the matrix approximation (17), the problem

is reduced to a system of linear equations to be solved
by standard methods. A new trial solution is obtained
by adding the correction e,(x) to the previous z,(x).
The process is repeated until a certain convergence
criterion, for example max |e,-(x)| < S, where 8 is a

X

given small positive quantity, is satisfied. In this
example, we have started with the initial guess
z,(x).= ( e - l)x+ 1, z2(x) = 2.
If we take N = 4 and S = 10"5 we obtain, at the fourth
iteration, the results shown in Table 7.

11. Conclusion
In the various problems considered in this paper the

suggested method computes y(xj) rather than the
Chebyshev coefficients. However, the Chebyshev coeffi-
cients can be simply computed and the solution is
expressed in the form
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We may need to solve for two or more values of N,
comparing coefficients and thereby deciding when to
stop by inspection. For the different problems con-
sidered the computations will be reduced if the matrix B
defined in (9) is available for different values of N.
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*i = i(l-cos

xi
x2

Table 7
Numerical example 6

i-nlN)

1
1
1
2
2

157711
648731
347974
718282

1
1
1
2
2

157711
648733
347979
718290

EXACT VALUES e*i

1
1-
1-
2-
2-

157713
648721
347975
718282
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Notice to Members of The British Computer Society
The Computer Journal

The recent notice about the circulation of The Computer Journal has given rise to some unfortunate misunderstandings which
the Society is anxious to correct.

First, no one is to be deprived of his right to receive the Journal; second, the Journal is not to cease publication.
It is known that some members do not wish to receive the Journal and it is felt that the cost of printing and posting unwanted

copies of the Journal should be saved and applied to the benefit of members in other ways.
It was recognised that the right to receive the Journal must continue but it was felt that those who really wanted it should be

asked to make a decision and, if they decided that they needed it, should be asked to request it by returning the card.
In this way, The British Computer Society would be sure that the Journal goes only to those with a real need and use for it and

that no money is wasted.
As a result of the unfortunate misunderstandings which have occurred the question is being reconsidered and further

announcement will be included with the Annual Report.
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