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A theorem on rank one modifications to a matrix and its inverse

By M. J. D. Powell*

Some algorithms need to compute the inverse of the matrix {J + uvT), where J is a non-singular
n x n matrix, « and v are n-component column vectors, and where the inverse o f / i s available. This
calculation can be carried out in many ways using only of order n2 computer operations, but if the
inverse of / is wrong, then the resultant expression for the inverse of ( / + uv1) is usually wrong
also. We identify an expression for ( / + uvT)~l that is useful because it tends to suppress the
contribution from any errors in J~l.

(Received March 1969)

1. Introduction

The calculation of ( / + uvT)~l, where J is an n X n
matrix and u and v are n-component column vectors, is
important to many different fields of numerical computa-
tion, for instance the solution of non-linear algebraic
equations (Broyden, 1965) and the inversion of a matrix
by the method of modification (Householder, 1964).
When the matrix / ~ ' is available, the formula

n±. n - i - r - i J-^TJ-1
 m

y+UV) -J (i+t,ry-iM) <-U

is often used, because its application requires only of
order n2 computer operations.

However in Broyden's algorithm the vector

y = u(vTv) + Jv (2)

is available instead of the vector u, in which case it is
convenient to rewrite expression (1) so that y replaces u.
Thus we obtain the equation

(J + uvT)~1 =
(v — J~ly)vTJ-

(vTJ-ly) (3)

The purpose of this paper is to point out that for
numerical computation it is often preferable to use
expression (3) instead of expression (1).

The advantage of the second formula is obtained in
the usual case when, instead of the exact matrix J~l, we
have an approximation H, which differs from J~l due
to the errors of previous computation. In this case the
two formulae

+ uvT)T\-\ H —

and

(J + uvT)~l x H +

HuvTH
+vTHu)

(v - Hy)vTH
(vTHy)

(4)

(5)

(y is defined by equation 2) are not equivalent. Indeed
we let the right-hand sides of equations (4) and (5) be
H^ and H+ respectively, and we deduce the identities

(/ + iiv1^ - H~l =J- H~l (6)
and

Equation (7) shows that the advantage of using formula
(5) is that there is some suppression of the errors in H.

In Section 2 we establish equation (7), and in Section 3
we give two numerical examples to show the advantages
of preferring formula (5).

2. The theorem

Let / be any n X n matrix, and let H be any non-
singular n X n matrix. Also let u and v be any n-compo-
nent column vectors subject to the condition that the
scalar (vTHy) is non-zero, where

Y = u(v
Tv) + Jv. (8)

Then the matrices / + and H+, defined by the equations

/+ = / + uvT (9)
and

H+=H
(v — Hy)vTH

satisfy the equation

where / is the unit matrix.
Proof. By combining the identity

(10)

(ii)

(12)

with the definitions (9) and (10), we obtain the equations

'-(^oW
and

vvT

(v'v)
vvT

(vTv)
(14)

Also, noting that J+v = y and H+ y = v, we deduce the
identity

(J + uvr)-H+1=(J-H-1)[I-r¥-.). (7)
\ i / + \ /^ (vTv)/
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{H+J+ - I)v = 0.

Now equations (13), (14) and (15) give the relation

(15)
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(H+J+ - I) = (H+J+ -

(16)

from which we can obtain the required equation (11)
by multiplication by H+l, provided that the matrix H+

has an inverse.
To complete the proof we show that the conditions of

the theorem imply that H+ is non-singular, for then
H+l is well-defined.

We suppose that there is a non-zero vector x such that
H+x = 0, and show that consequently there is a contra-
diction. The definition (10) implies that the vector
H+x is a linear combination of Hx and (v — Hy), so if
it is zero there is, because of the non-singularity of H,
a number A such that

* = XH~l{v- Hy). (17)

In this case direct calculation using equation (10) gives
the result

H+x = X(v - Hy)(vTv)/(vTHy). (18)

It follows that H+x is zero only if A or (v — Hy) is zero,
in which case expression (17) shows that x is zero also,
which is the contradiction. Therefore H+ is non-
singular, and so the theorem is an immediate consequence
of equation (16).

3. Discussion
Expression (11) shows that the difference (J+ — # + ' )

is equal to the difference (J—H'1) multiplied by a
symmetric projection matrix. Therefore we have the
inequality

\\J+-H+l\\F< \\J-H-i\\P, (19)

where the subscript ' /" denotes the Frobenius
norm. Moreover the inequality (19) is strict unless
( / — H~ l)v = 0, which is the feature of formula (5)
that tends to suppress the effect of errors between H~'
and J. Indeed the fact that equation (15) is satisfied
shows that we force a relation between H+ and J+ that
would be obtained if H were equal to J~l.

On the other hand H*, the right-hand side of the
alternative formula (4), is calculated to satisfy the
equation

= H~l +uvT,
so we deduce the result

= J- H~x

(20)

(21)

which is equation (6). This expression implies that any
discrepancies between J and H~' are neither suppressed
nor amplified.

The relation (21) shows that the usual formula (4) is
excellent for single calculations of (/ -f- uvT)~i. How-
ever often one has to calculate a sequence of matrices
./<», J<2>, . . . and their inverses H<-1\ H™, . . . , where
for k = 1, 2 , . . . the difference (_/(* + » — /<*>) is a matrix
of rank one. In this case it is usual to apply formula (4)
recursively. Here a numerical calculation will cause
rounding errors at every stage of the process, so equa-

tion (21) and a consideration of probabilities indicate that
gradually the discrepancies between J(k^ and //(Ar)~' will
tend to grow as k becomes large. However the theorem
of Section 2 shows that this will not happen if formula (5)
is preferred, provided that the successive vectors v do not
have unfortunate tendencies towards linear dependence.

We illustrate typical behaviour by a numerical example.
For this example we calculated three sequences of
10 X 10 matrices, Jw, Hl£> and //<*>, using single length
arithmetic on an IBM 360/65 computer, which provides
about six and a half decimals accuracy. For k = 1,
2, . . . we chose vectors w(Ar) and vw in a way to be
described, then /(*+>> was defined by the equation

J(k+l) — J(k) _|_ u(k)v(k)T (22)

//(*+') w a s calculated by substituting H(^ and Jw in
equations (2) and (5), and Hjf + l) was obtained by
substituting H = Hp in equation (4). To start the
process we let / ( 1 ) = H$ = H^ — I, the unit matrix.
The successive vectors u^ and v(Ar) were obtained by
using random numbers in the following way: each
component of i>(/c) was set equal to a random number
from the distribution that is uniform over [—1, 1], and
also each component of a vector g(*} was set to a random
number from the same distribution. Then we defined

and we tried calculating / (* + 1), H^+l) and //<* + •> in
the way just specified. However if it happened that any
element of any of these three matrices exceeded ten in
modulus, then different random numbers were used to
define vw and g{*>, and if necessary this replacement
continued, until all the elements of all the calculated
matrices Jik + 1\ # ^ + 1 ) and //<Ar + 1) were in the range
[—10, 10]. Finally, before proceeding to the next value
of k, we calculated the discrepancies

= max
ij

- h,j\

and

(24)

(25)= max \(J<*+»Hik+l% - 3,7|,
u

where S/y- is the Kronecker delta.
This calculation was repeated three times, and the

resultant discrepancies are given in Table 1. We note
that the table confirms that formula (5) is superior to
formula (4) in controlling the rounding errors of the
numerical calculation.

Table 1

Calculated values of df and d™ when = y(">-i

k

10
20
30
40
50
100
200
500

+

7
19
14
20
22
16
31
15

22
32
10
13
20
20
14
18

10
29
20
17
11
15
13
25

ci(.k) x 106
*

14
31
39
136
280
39
256
164

27
43
35
39
75
53
141
201

26
58
40
70
30
79
155
272
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Note that in the example we constrain the size of the
elements of J™, Hp and #<*>. Without the constraints
the values of d^ and d^~> would fluctuate so much that
a more extensive table would be needed to compare
formulae (4) and (5). Then it is more preferable to use
equation (5) because larger errors are suppressed. Also
note that in the example we calculate y from uw and
vw (although, except for rounding errors, y = gw), in
order to include all the rounding errors that usually
occur in the evaluation of H^ + l).

Also we calculated a similar example to show the rate
at which formula (5) suppresses errors. Here we
followed the calculation just described, except that we
introduced random, non-zero, off-diagonal elements
into the initial matrices H^ and //£'>, but Jw remained
equal to /. Each off-diagonal element of H^ was set
to a number from the distribution that is uniform over
[—01, 01] , and we set #<•> = H%\ The resultant
discrepancies are reported in Table 2. We see that
formula (5) requires about 175 iterations to make the
errors as small as those of Table 1, but in fact the
number of iterations depends strongly on the directions
of the successive vectors vw. In particular the fewest
number of iterations would occur if n consecutive values
of fl(fc) were orthogonal, for then all the initial errors
would be annihilated by n iterations, because equation (11)

implies the identity

(/<* + » _ = (/(!>

(26)

The discrepancies d^ of Table 1 are not very large,
so often the loss of accuracy due to formula (4) is
acceptable. Indeed formula (4) is often the better
choice, because it does not require the elements of / .
However formula (5) is natural to Broyden's (1965)
algorithm, because v and y are available but J is not.
In Powell's (1968) method for non-linear equations both
/ and H are calculated, and here formula (5) is preferred.

We recommend that when H, J, v and y are available,
equation (5) should always be used, but when u is
calculated instead of y, other factors are important.
Specifically a need for high accuracy supports equa-
tion (5), but the calculation of y requires an extra vector
by matrix multiplication, which increases the computing
time by about one third.

For iterative processes that include updating the
inverse of a matrix that is subject to a rank one modifica-
tion, many readers may prefer the formula recommended
in this paper, because it does suppress the accumulation
of errors.

Table 2

Calculated values of rf« and rfj*> when Hm ¥= / ( l ) ~ x

k

10
20
30
40
50
75
100
125
150
175
200

rfcwxios

880,366
227,253
115,996
104,810
19,580
6,039
6,915
521
203
21
21

143,245
387,309
131,936
18,775
12,541
5,592
260
72
74
10
24

313,590
181,209
66,923
53,300
43,337
17,128
3,764
363
118
16
15

d<Mx\Q6

1,152,046
335,528
431,328
785,799
671,965
592,856
813,716
473,855
723,234
535,759

1,066,539

648,336
390,858
892,932
367,247
710,577
647,500
956,899
386,242
980,423
383,976
774,638

395,583
459,403
747,881
491,335
590,575

1,125,246
974,374
650,397

1,058,437
451,759

1,499,561
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