
Algorithms Supplement
291

Previously published algorithms

The following algorithms have recently appeared in the
Algorithms Sections of the specified journals.

(a) Communications of the ACM (January-March 1969)

344 STUDENT'S /-DISTRIBUTION
Evaluates in single-precision the value of Student's t-distribution
for argument T and degrees of freedom DF.

345 AN ALGOL CONVOLUTION PROCEDURE
BASED ON THE FAST FOURIER TRANSFORM

Computes the convolution of two real vectors A and B

Cfc = - "S «/j8f exp (Pmjkln)
n y=o

where ce.j and |3y are the Fourier transforms

a- =

and
P=O

Pj = S Bq exp (il-nqjln)
9=0

and ft* is the complex conjugate of Pj.

346 F-TEST PROBABILITIES
Gives the probability that F will be greater than the value off
where

of is the variance of the sample with size Nx, o\ is the variance
of the sample with size N2, df\ = Nx — 1, dfl = N2 — 1, and
F is the Snedecor-Fisher statistic.

347 AN EFFICIENT ALGORITHM FOR SORTING
WITH MINIMAL STORAGE

Sorts the elements of an array into ascending order.

(b) Applied Statistics (June 1969)

AS13 MINIMUM SPANNING TREE

Computes the minimum spanning tree of a distance matrix
stored in lower triangular form without diagonal elements,
using Prim's method. The procedure can be modified to handle
matrices of similarities, and matrices stored in other ways.

ASH PRINTING THE MINIMUM SPANNING TREE
Operating on the output of AS 13, this procedure prints the
links of the minimum spanning tree in an order helpful in
preparing it for display.

AS15 SINGLE LINKAGE CLUSTER ANALYSIS
Uses the minimum spanning tree to compute a single linkage
cluster analysis. Two forms of output are provided, (i) a list
of the members of each group at each level of clustering and
(ii) a graphical form of(i) known as a dendrogram.

AS16 MAXIMUM LIKELIHOOD ESTIMATION FROM
GROUPED AND CENSORED NORMAL DATA

Computes the maximum likelihood estimates of the mean and
standard deviation from a censored or grouped normal sample.
Approximate values of their variances and covariance are also
given.

AS 17 THE RECIPROCAL OF MILLS' RATIO
For a given x the procedure calculates the corresponding ratio
of the ordinate to the upper tail area for the standardised normal
distribution, Z(x)/Q(x). The value of this function is required
as a parameter in AS 16.

The following papers, containing useful algorithms, have
recently appeared in the specified journals.

(a) Numerische Mathematik (December 1968)

SIMILARITY REDUCTION OF A GENERAL MATRIX
TO HESSENBERG FORM (Band 12, Heft 5, pp. 349-368)

MODIFIED LR ALGORITHM FOR COMPLEX
HESSENBERG MATRICES (Band 12, Heft 5, pp. 369-376)

IMPLICIT QL ALGORITHM (Band 12, Heft 5, pp. 377-
383)

(b) International Journal for Numerical Methods in Engineer-
ing (January-March 1969)

A CONFORMING QUARTIC TRIANGULAR ELE-
MENT FOR PLATE BENDING (Vol. 1, No. 1, pp. 29-45)

New algorithms

Algorithm 41

A CURVE PLOTTING PROCEDURE
P. J. Le Riche
The Computation Laboratory
University of Southampton

Author's Note:
In order to plot the graph of a function it is often convenient

to tailor a program for the purpose. Nevertheless, it is
useful to have a procedure which will plot any function given
to it, particularly if functions are likely to be encountered for
which dynamic step length adjustment is essential. The
procedure CURVE, given here, is an attempt at such a
general procedure and will be found to handle practically all
functions encountered, including any having discontinuities
of themselves or their derivatives.

The recursive definition of the procedure makes it essen-
tially simple and elegant and gives it the advantage that a
minimum number of points is calculated, all of which are
used.

procedure curve (/, p, a, b, inc, phi, eps); value a, b, inc, phi,
eps; real a, b, inc, phi, eps; procedure/; real array p;
comment draws the function fin the range a < / < b where t is a
parameter from which the x and y coordinates are found by f.
p is an array of constants which may be used in the definition

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/291/363512 by guest on 13 M
arch 2024

292 Algorithms Supplement

off. The maximum increment of t is inc and this is subdivided
recursively until chords in adjacent subdivisions differ in
direction by less than phi radians or the chords are shorter than
eps. The maximum chord length satisfying these conditions is
found at all points and drawn. Finite discontinuities of the
function and its derivatives will be plotted correctly;

begin real xl, x2, y\, y2, h, k, I; Boolean b\, b2, bb;
integer m, n;

procedure d(xl, y\, x2, y2, a, b);
value x\, y\, x2, y2, a, b; real x\,y\, x2, y2, a, b;
comment draws two chords in the interval supplied if they
satisfy the conditions, otherwise calls itself recursively twice,
in each case supplying half the interval;

begin real x, y, c, l\, 12, theta;
c:=(a + b)/2;f(x,y,c,p);
11 : = sqrt((xl - x) f 2 + (yl - y) f 2);
12 :=sqrt((x - x2) f 2 + (y - y2) f 2);
theta : = (((xl - x) x (x - x2) + (yl - y) X (y - y2))J
(/I X 12));
if theta > 1 0 then theta : = 0 else theta : = sqrt (1 -0 —
theta \ 2);
b\ : = 62 := false;
if abs(l — II) < eps A 12 < eps then b\ : = true;
if abs{l — / 2) < eps A /I < eps then b2 := true;
if b\ A b2 then b\ : = b2 : = false;
comment b\ is true if there is a discontinuity in the first
half of the interval and similarly 62;
bb : = theta < phi V U < eps V 12 < eps;
bb : = bb A /n > « — 1;
if bb then

begin
if b\ then penup; drawee, y);
if b2 then penup; drawixl, y2);
n : = m
end

else
begin
m :=m+ 1; / : = II;
d(x\,y\,x,y,a,c);l:=l2;
d(x, y, x2, y2, c, b); m := m — 1
end

end of d;

penup;
n : = if (b — a) / inc < 1 then 1 else entier(((b — a) j inc

+ DI2);
inc : = (b — a) / n; m : = n : = 0;
b :=b + inc I 2;f(x2, yl, a, p);
draw(x2,y2);
for k : = a + inc step inc until b do

begin
h :— k — inc; xl := x2;
yl : = yl; f(xl, y2, k, p);
I := sqrt((x2 - xl) f 2 + (yl - yl) \ 2);
d(xl,yl,x2,y2,h,k)
end

end of curve;

procedure penup;
comment This procedure and the following one are machine
dependent user supplied procedures, penup causes the plotter
pen to be raised before it is next moved and automatically
lowered again after the move;
procedure draw(x, y); value x, y; real x, y;
comment The pen is moved to a position with coordinates x, y
with the pen down unless penup has been called since the last
call of draw;

comment This procedure contains the function to be plotted and
must be written by the user, t specifies a point on the curve
and the procedure body must calculate values of x and y from
it, assigning them to the parameters, p may be used to hold
any constants in the function which need to be assigned by
program;

Algorithm 42

INTERPOLATION BY CERTAIN QUINTIC SPLINES
H. Spath
Institut fur Neutronenphysik und

Reaktortechnik
Kernforschungszentrum Karlsruhe

Germany
Author's Note:

We consider the problem of finding a function/such that
for given data triples (xk, yk, yjj (k = 1, . . . , « > 2) with
xi < x2< . . . < xn and values y'{ and j£ the following
relations hold:

(1)
(2)

/(**) = Vk (k=\,...,n)

f"(xk) = yk (k=l,n)
fe C\xu xn]

Such a function/is given by piecewise quintic polynomials

/(•*) = /*(*) for xe [xk, xk+i](k = I, . . . , « - 1)

with fk(x) = Akz
5 + Bkz

4 + Ckz
3 + Dkz

2 + Ekz + Fk

where z = x — xk

with 6(« — 1) suitably determined constants.

From the conditions (1) and (2) we have at once

(3) E k = y k , F k = y k (k = l , . . . , n - l)

We can express the coefficients Ak, Bk, Ck in terms of the
xk> yk> y'k a n d Dk t 0 S'

Ak =

(4) Bk =

Matching the third derivative of/gives the following tridia-
gonal system of linear equations for the Dk(k = 2 , . . . , / / — 1)
where D{ and Dn are given:

procedure f(x, y, t, p); value t;
real x, y, t; real array p;

As the matrix of coefficients is symmetric and strictly
diagonally dominant it is also positive definite. Therefore, a
unique solution exists and Gaussian elimination is numerically
stable without pivoting. Having determined the Dk we
obtain the remaining coefficients by (4).

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/291/363512 by guest on 13 M
arch 2024

Algorithms Supplement 293
The method can be extended to interpolate data points

(xk, yk, y'k, y'k, y't'^W = 1 , . . . , n; m > 3) with given
values for yff-l'> and y^~l) by piecewise polynomials of
degree 2/n — 1 such that the interpolating function has m
continuous derivatives in [xu xn]. One would have to solve
once for all a m x m linear system for the first m coefficients
of fk and for given data a tridiagonal system for the values
^ - 1) ^ = 2, . . . , « - 1).

The algorithm is given as Table 1.

Table 1

t \ . Y 2 1 , Y 2 N , A> B, C» D>
A (l > > B (l > > C C 1 > J DC 1)

SUBROUTINE 9UINTCN. X
DIMENSION X(l), »(1),

C
C FOR GIVEN DATA T H I P L E S C X C K) . Y C K) . Y 1 C K) , K = 1» N>» »J
C GREATER THAN OR EQUAL TO TWO. AND VALUES Y 2 1 AND Y2N
C FOR THE SECOND D E R I V A T I V E AT THE P O I N T S XC 1 > AMD XCN)
C T H I S SUBROUTINE CALCULATES THE C O E F F I C I E N T S C A C K) , BCK>»
C C C K) . D C K) . E C K) . F C K) . K = 1» N l) . C.N1 = N - l) « OF
C Q U I N N C POLYNOMIALS DEFINED IN THE INTERVALS (X (K > . X t K +
C THAT J O I N TO A THREE TIMES CONTINUOUSLY D I F F E R E N T I A B L E
C FUNCTION F DEFINED IN C X C 1) . X C N > > .
C THE ACTUAL ASSAY D MJST HAVE THE DIMENSION M BECAUSE I T I S
C ALSO USED AS INTERMEDIATE STORAGE WORKING F I E L D .
C THE VALUES OF E (K) AND F C K) , CK = 1» N l) » ARE RETURNED I N THE
C ARRAYS Yl AND Y R E S P E C T I V E L Y .
C

1))

Nl = N - 1
DC1) = 0 . 5
DCN) = 0 . 5
CC1) = 0 . 0
AC1) = 0 . 0
IF CN - 2)
R2 = 1 . 0 /
8C1> = R2
GOTO 1 1
DO 9 K = 1. Nl
R2 = 1 . 0 / CXCK
G2 = Ra • R2
G = G2 • R8
R = CYCK + 1) - YCK>)
BCK) = R
F = Y1CK)
F2 = 1 0 . 0 * R - 4 . 0 *
IF (K - 1) 3 . 8 . 3
R = Fl + F2 + 2 . 0 *
G = 3 . 0 * CR1 + R2)
IF CK - N l) 5 . 4 . S
R = R + Ra * DCN)
IF CK - 2) 7 . 6» 7
R = R • Rl * DC1)

Y2N

13. 1. 2
CAC2) - X(I)>
R2 * R3 * CY<2> - YC1>>

1) - XCK>)

* G2 * <F + Y1CK +

CGI - G2) • F

CG - Rl
* F
+ Rl

* CCK - 1))

ACK - * F

10
11

A<K>

12
13

F = 1 • 0 /
CCK) = R2
ACK) = CR
Rl = R2
Fl = -F2
Gl = G2
CONTINUE
DCN1) = ACN1)
N2 = N - 2
DO 10 I = 2 . N2
K = N - I
DCK) = CCK) * DCK
Fl = Y1C1)
DO 12 K = 1. Nl
R = 1 . 0 / CXCK + 1) - XCK>>
Rl = R * R
R2 = Rl * R
F8 = YKK *
F = BCK)
CCK) = 1 0 . 0

CR • CDCK
F = F • R
BCK) = - 1 5 - 0 * F' • R2 * C8 .0

CR1 • C3.0 * DCK) - 2 . 0 * DCK
ACK) = 6 . 0 « F * R - 3 . 0 * HI

CR2 * CDCK + 1) - DCK))
Fl = F2
CONTINUE
RETURN
END

1)

• 1)
F - Rt
- 3.0 t

> (6.0
DCK>>

Fl + 1-0 * F2> +

* F l + 7 - 0 • F2> +

* Rl * <F1 + F2> +

Note on Algorithm 35

BEST RATIONAL APPROXIMATION TO A REAL
NUMBER

This problem has been investigated as a practical example
by Computer Science M.Tech. students at Brunei University.
Algorithm 35 appears to be inefficient for large values of
bound except in special cases. For example, if real equals TT,
x is just under one-seventh; it would be approximately seven
times faster to find a rational approximation p'/a to n — 3
by searching p' from 1 until the associated q reaches bound,

instead of the q search suggested. Admittedly, q := p'/x
may not be the best q for some values of p', but it will be for
good values of p', and it is with these that the process is
concerned.

A better technique altogether is well known to students of
continued fractions, e.g. H. S. Hall and S. R. Knight, Higher
Algebra, Macmillan 1929 (4th edition—1st edition 1887),
Chapter XXV. 3 14159, for example, can be written
, , 1 1 1 1 1 1 1 „ . Pi
3 + T T 15+ 1+ 25+ T+ 7+ 4- I f W e W n t e j] = "o

-t
1 1 1

. . . — as an approximation to some real, then itr
n2+

is known that each successive convergent is better than any
other rational approximation with smaller q. Successive
Pi and <7; are computed from the recurrence relations
Pi = niPj_x + Pi_2 and q(= n,<7,_, + <7,_2, and the suc-
cessive n-, are obtained from the reciprocal of the previous

residues, e.g. 7 is the integer part of 15 is the integer

part of the reciprocal of — 7, and so on.

This sequence may miss a value near the terminal bound,

e.g. 3 + — — is a better approximation than 3 + - , but

this can be accommodated when a qt is found which exceeds
bound by testing whether the largest possible n\ such that
«•(?,_i +<7,-_2< bound gives a better approximation than
Pi-\{qt-\.

The process can be made a little faster by using nearest
integers rather than integer parts in the division, e.g. the

sequence for 3 14159 can be written 3 H
1 ! 7+ 1 6 - 2 7 -

— - . This is conveniently programmed by allowing
negative «,-, accepting negative p, q combinations.

M. L. V. Pitteway
Brunei University
R. W. Parry
Reading College of
Technology

Note on Algorithm 35

Algorithm 35, though logically correct, is a very inefficient
means of finding the best rational approximation p/q to a
real number, since it involves increasing q in unit steps and
checking at each stage.

A much faster method is based on the continued fraction

real = bo +
1 1 1 1

b2+ h+ ' ' ' br+ ' ' '
Terminating the continued fraction at the rth stage yields

the approximation
real ^ pr/qr

where

Pr = 2.

There are alternative ways of finding the br.
When the object is to find the maximum accuracy for a

given bound on q the fastest method is as follows:

(i) Put bo equal to the nearest integer to real,

(ii) bx = nearest integer to

(iii) b2 — nearest integer to

real -bo'
1

1
real - bo '

and so on. In it the br can be positive or negative.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/291/363512 by guest on 13 M
arch 2024

294 Algorithms Supplement

Such an expansion has been used for many years in finding
rational approximants to transcendental functions for comput-
ing purposes. For example, one expansion for tan x is

tan x =
- J C 2 / 1 5 -x2 /35

1+ 1 + 1 + 1 +

This is the last method suggested by Pitteway and Parry in
the comments published above. An algorithm based on it is
given as Appendix 1.

However, in many practical problems the important criterion
is a fixed accuracy using the smallest possible a. In these
circumstances it is necessary to increase qr in the smallest
sensible steps, i.e. in steps of ar_i, equivalent to increasing br
in unit steps. Testing for convergence is then carried out at
each stage. It is also desirable to keep the br > 0, which
requires the error to be tested for a change in sign. The
same method can be used when the object is to find, as in
Algorithm 35, the maximum accuracy for a given bound
on a, but it is slower than continued reciprocation. An
algorithm to do this is given as Appendix 2. To convert this
algorithm to the fixed accuracy form it is only necessary to
move the convergence test to follow the calculation of x.
The real variable accuracy is, of course, read in rather than
calculated.

It is perhaps worth mentioning that in the equipment design
problem for which the original version of this algorithm was
written the accuracy was a function of q, so that in a very few
cases convergence was not possible even by stepping br, so
that other methods had to be used.

To test the various methods a set of 401 cases was run on
the Atlas computer with bound = 2500. The execution time
measured in instruction interrupts was 83071 for Algorithm 35,
but only 967 using Appendix 1, making a speed-up factor
of 86. An even larger factor could be expected with a larger
bound. Using Appendix 2 the time taken was 2281, whilst
with positive br formed by reciprocation it was 1093. Thus
reciprocation is over twice as fast as increasing br in unit steps.

x : = absireal — entier(real + 0 5));
comment x is the distance of real from its nearest integer;
if * < 1 0 / bound then

begin
if x< 0-5 / bound then

begin
comment solution is an integer;
p := real; q := 1;
goto DONE
end

else
begin
comment solution is of form integer / bound;
q : = bound; p : = real x bound;
goto DONE
end

end;
• pi := real; q\ := I;

residue := real — p\; x := 1 / residue;
ql := x;p2 : = p\ X ql + q\;
residue := x — ql;
comment These are the initial values of the iteration;

NEXT: x : = 1 / residue; b : = x;
residue : = x — b; p := b x pi + p\;
q := b X ql + ql;
if abs{q) > bound then goto REDUCEb else

begin
p\ := pl;q\ :=al;
pi := p; ql :=<?;
goto NEXT
end;

REDUCEb:b: = {sign{q) x bound - ql)-^ql;
p : = b x pi + pl;q : = b x ql + q\;
if abs(p/q — real) < abs(pl/ql — real) then goto DONE
elsep := pl;q : = ql;

DONE.p := abs(p); q := abs(q)
end of continued fraction

References
PRESCOTT, R. J. (1968). Algorithm 35. Best Rational

Approximation to a Real Number, The Computer Journal,
Vol. 11, No. 3, pp. 347-350.

PITTEWAY, M. L. V., and PARRY, R. W. (1969). Note on
Algorithm 35, The Computer Journal, Vol. 12, No. 3,
pp. 293

APPENDIX 1

procedure continued fraction(real, p, q, bound); value real,
bound; real real; integer p, q, bound;

begin real x, residue; integer b, p\, pi, ql, ql;
comment This procedure finds the best rational approximation
p I q to a real number real, in the sense that abs(j> / q — real)
is a minimum, subject to the condition 0 < q < bound.
The approximation is by a continued fraction expansion
for which the recurrence relations are p = b X pi + pi,
q = b x ql + q\, where pi I ql and pi I ql are the best
approximations obtained with the two next lower order
truncations;

APPENDIX 2

procedure continued fraction(real, p, q, bound); value real
bound; real real; integer/?, q, bound;

begin real x, r, accuracy; integer pi, ql;
comment This procedure finds the best rational approximation
p I q to a real number real, in the sense that abs(p / q — real)
is a minimum, subject to the condition 0 < q < bound.
The approximation is by a continued fraction expansion
for which the recurrence relations are p = b X pi + pi,
q = b X ql + ql, where pi I ql and pi j ql are the best
approximations obtained with the two next lower order
truncations;
x : = absireal — entier(real + 0 • 5));
comment x is the distance of real from its nearest integer;
if x < 1 • 0 / bound then

begin
if x < 0 • 5 / bound then

begin
comment solution is an integer;
p:=real;q := I;
goto DONE
end

else
begin
comment solution is of form integer / bound;
q : = bound; p : = real X bound;
goto DONE
end

end;
accuracy := 0-5 / (bound x (bound — 1));

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/291/363512 by guest on 13 M
arch 2024

Algorithms Supplement 295

comment / / abs(j> / q — real) < accuracy, p and q will
necessarily give the best approximation, since for any pair
of rational numbers p\ / q\ and p2 / ql, not equal in value,
satisfying 0 < q\ < ql < bound,
abs(p\ Iq\ — p2/q2)^ 1 /(bound X (bound — 1));
p := entierireal); ql : = entier(\ I (real —/>));
pi : = p X ql + 1; p : = p + pi;
q:=\ +q2;
comment These are the initial values of the iteration;
r:= - 1 ;
comment Sign of r is that of p I q — real;

NEXTAl q > bound — ql then
begin
if abs(x) < abs(pl I ql — real) then goto DONE else

begin
p : = pl;q :=ql;
goto DONE
end

end;

p : = p +p2;q :=q + q2;
x : = p I q — real;
if r x x> 0 then goto NEXT;
p2 : = p — pl;ql :=q - ql;
if abs(p2 I q2 — real) < accuracy then

begin
p : = pl;q :=ql;
goto DONE
end

else
begin
r : = — r;goto 7VEAT
end

DONE: end of continued fraction

S. M. Cobb
The Plessey Company Ltd.
Roke Manor
Romsey

Contributions for the Algorithms Supplement should be sent to

Mrs. M. O. Mutch
University Mathematical Laboratory

Corn Exchange Street
Cambridge

Future papers

The following papers have been accepted for publi-
cation but, owing to pressure of space, have had to be
held over to the next issue:
R. P. Tewarson. A least squares iterative method for

singular equations.
An iterative method for the solution of a system of

simultaneous linear equations, having a singular coef-
ficient matrix A, is described. The method is obtained
by minimising (in the least squares sense) the image
under AT of a given residual vector. (Received Decem-
ber 1968)
D. Wood. The theory of left factored languages: Part 1

Left factored grammars and languages are introduced
and their relevance to syntax-directed top-down analysers

is discussed. A number of results concerning
these languages are proved, including the decidability
of left factored grammars. Finally a number of
open problems are posed. (Received February
1969)
W. A. Zaremba. A syntax for ALGOL input/output

formats.
The desirability of simple and yet comprehensive

input/output formats is postulated. A possible grammar
for ALGOL formats is given and shown to be of a simple
precedence type. A reduced precedence matrix has
been included and the meaning of major constructs
explained and illustrated using the regular expression
language. (Received January 1969)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/3/291/363512 by guest on 13 M
arch 2024

