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Discussion and Correspondence
S.O.R. and membranes

By M. J. O'Carroll*

Some corrections and further comments are made to a paper by Lloyd and McCallion on the
relation between the optimum S.O.R. parameter and the fundamental frequency of a membrane.

The description of the link between S.O.R. and membrane
vibration as presented by Lloyd and McCallion (1968) is in
parts misleading. In equation (5) and for the choice of Lt
afterwards, l/(4h2) should correctly be h2/4. Also in step 3 of
the argument, \tm does not represent a largest eigenvalue of L.
In fact it represents minus the largest (negative) eigenvalue
of the operator h2L. That is also the smallest (positive)
eigenvalue of — h2L. To follow the notation of Wood (1967),
as has been done elsewhere in Lloyd and McCallion's paper,
this quantity should be /J,0 not /Lim. Their equation (6), in
which r)m is the spectral radius of the Jacobi matrix, should
have been

Vm ~ 1 - 4T72/2A/,

not r)m = 1 — 7T2/,2, where/, is the fundamental frequency of
a membrane stretched on the given domain. As the finite
difference net becomes finer, r)m-> 1 so the Jacobi, and the
S.O.R., processes become slower.

Demonstration
There are two simple ways in which the relation between

the Jacobi spectral radius, which determines the S.O.R.
parameter, and the membrane frequency may be demon-
strated.

(i) In the usual notation the Jacobi matrix is

J = L+U = I — A = I + KD (1)

where L is lower triangular and U upper triangular,
K is a positive constant and D is a matrix representing
the discretised Laplace operator. For a square mesh
of side h, K = h2j4. The eigenvalues of / and D are
related by

= 1 K\ (2)

and the spectral radius of / is

PJ = 1 — KOL

= 1 - K4TT2/;2.

PJ ~ 1 - /C47T2/,2,
i.e.

(3)

where a is the smallest eigenvalue of —D and/ / is the
fundamental frequency of a discrete system with
operator D.

(ii) The Jacobi scheme is an iteration I/(n+1) = 7t/(n)

where U denotes the error vector. Thus the errors are
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diminished, asymptotically, by a factor pj for each
iteration.

On the other hand the scheme is

f/(»+D _ t/00 = (/ - /)£/(«) =

which is the discrete representation of the equation
<)[//<)/ = V2U, one iteration being given by a time
increment At = K. In the case of a square mesh of
side h, again A; = h2/4. The standard separation of
the time variable gives the eigenfunctions of the
differential equation, the most slowly decaying having
the factor e~at, where a is the smallest eigenvalue of
—y2 on the given domain with homogeneous boundary
conditions. Now a = 4TT2/2. Thus for one iteration
the error is, asymptotically and approximately for a
small mesh side, multiplied by a factor

e-aAl ~ j

~ 1 - K4n2f1
2,

which then is approximately equal to pJt agreeing
with (3).

Elliptic equations
Linear and quasilinear elliptic equations may be treated by

the S.O.R. method, by an iteration either of a Poisson-like
equation or of a linear equation, the right-hand side or the
coefficients being determined from the previous iterate. In
the latter case the membrane analogy is not immediate.

For the Laplace equation approximated on a rectangular
grid of sides h, k, the coefficient K in (1) is h2k2/2(h2 + k2).
For the elliptic operator a2~Si1l~dx2 + <52/<))>2, we have

K = h2k2/2(h2 + a2k2). (4)

Under the transformation x = ax', this operator becomes the
Laplacian. Equation (2) now applies with AD representing
an eigenvalue of the discretised elliptic operator in the
x, y plane. That is approximately the Laplace eigenvalue in
the x', y plane. By stretching the original domain in the
x direction by a factor I/a we obtain a domain for which the
membrane frequency is related to pj by equation (3).

For example, a compressible flow problem predominantly
flowing in the x direction, with Mach number approximately
M, may be calculated in terms of the velocity potential by
this sort of S.O.R. with the optimum parameter estimated
with the use of (3) and (4), where / , refers to the domain
stretched x-wise by a factor (1 — M2)~112.
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T. Lloyd and H. McCallion reply
We thank Mr. O'Carroll for bringing our attention to errors

in our presentation of the paper Lloyd and McCallion (1968).
We accept his criticism as valid but we would hasten to
add that none of these errors affects the numerical results
quoted, or in fact any of the paper except Sections 2(3)
and 2(4). We solved the problem initially by the methods
given in an appendix to Lloyd and McCallion (1967), and it
was upon these results that figures and conclusions of the
paper were based. The material to be presented did not, in
•our opinion, warrant the task of printing a full version of the

analysis and so we decided to write it up as a short paper.
We had, therefore, to base it upon a paper in the literature,
our 1967 paper was not readily available at that time and so
we decided to convert to the notation and terminology of
Wood (1967), a paper which had come to our notice subse-
quent to the work of the paper. It was as a result of our
mechanistic rather than thoughtful approach to this con-
version of notation and terminology that the errors were
introduced. We apologise for any inconvenience experienced.

T. LLOYD
H. MCCALLION
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Examinations by computer

By P. A. Ongley*

Although the literature on examinations by computer is not
as yet voluminous, use of the multiple-choice paper associated
with marking by computer is increasing. Computer exami-
ning involves two problems—marking by machine instead of
by hand, and dictation of the pattern of the paper.

The computer will not only mark multiple-choice question-
naires and comment on the progress of each student but will
also, by summarising class results question by question,
provide information on the ability of individual questions to
discriminate among more and less able students. It is claimed
that the labour of marking is supplied by the machine rather
than the examiner, and that the multiple-choice question can
be marked more accurately than the essay. The case for the
computer is made by Groves (1968), by Hinckley and
Lagowski (1966) and by Smith, Schor and Donohue (1965).

With regard to accuracy, the essay-question examination
can, with care, be made far more accurate than is generally
supposed. Further, errors tend to cancel out, and at least in
sessional and final examinations there are several papers.
With regard to the labour of marking, the extra effort of
setting is not inconsiderable; neither is the cost in computer
time.

At this stage it may be wise to try to define examinations.
An examination is an attempt to find out what knowledge the
student has absorbed, how he can apply this, and what is his
general understanding of his subject. The examination tells
the student how he is progressing; it tells the teacher not only
the student's grasp of his subject but also how successful the
teaching has been and where any weaknesses lie. Feedback
to both teacher and student is extremely important.

The multiple-choice question emphasises memory work.
The handling of data, a very good exercise which cannot
adequately be assessed by the multiple-choice question,
approximates to what is done by a scientist or technologist
when at work.

Insofar as feedback to the teacher is concerned, this is far
greater with hand rather than computer marking.

The computer can mark accurately multiple-choice ques-
tions; it can be shown how individual students are progressing

* The University of Aston in Birmingham

and in which areas any weaknesses lie. The imperfections
lie in the restriction to multiple-choice questions and in
impersonality. Some common drawbacks may, with care,
be overcome; others are unavoidable. Some difficulties are
avoidable, e.g.:

1. It can be difficult to obtain possible wrong answers that
are not so different from the correct answer as to be
obviously wrong, and so cut down the effective choice.
Consider the formula of aluminium chloride is AC1,
A1C12, A1C13, AlBr3, A1C1, A12C16. (Underline the right
formula.) The choice ranges from exclusion of the ludi-
crous AC1 and AlBr3 to the sophisticated distinction
between A1C13 and A12C16.

2. The position of the right answer must vary from question
to question. In particular it is known that students tend
to shy clear of either the first or the last possibility.
Obviously, unless the examiner is careful, the difficulty
of choice may be very uneven and the odds much less
than they seem.

3. Guesswork must be penalized. The correct score is
approximately

S — R —
W where 5 = score

n ~ 1 R = number right
W = number wrong
n = number of choices.

Some disadvantages, however, are unavoidable, e.g.:

1. In a foreign language examination the student cannot
be asked to translate to or from the language. The only
questions possible are of the types:
(a) 'Mensa' means book, table, football, boy, school

(underline the right word).
(b) 'Give it to me' in French is 'Donnez (le, la, leur, les)

moi' (underline the right word).
2. Not only must the answer be restricted to one of several

possibilities; the correct form itself must be suggested.
To recognize the correct answer among a number of
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