Debugging and assessment of control programs for an

automatic radar

By K. Jackson and J. R. Prior*

The development of a program for an experimental automatic surveillance and tracking radar is
described. The problems of debugging a real time system are discussed. The technique of testing
the real-time system in four stages is of interest to users in other fields including business data
processing, where on-line systems may be under development.

(Received January 1969)

During the last three years the authors have been
concerned with program development for an experimen-
tal automatic surveillance and tracking radar. This
radar has been described in detail elsewhere (Phillips,
1966, 1967a), but in order to put the rest of this paper
in perspective a brief description of the system is given
below.

In our experience there are two main problems
associated with the programming of a complex experimen-
tal system. The first of these is the difficulty of sub-
dividing a large program, the details of which are not at
first known precisely, so that more than one programmer
can work on the system. This subject has already been
discussed by Phillips (1967b) and the methods he suggests
were used in all our work. The second problem arises
once the system has been partially programmed and
concerns the methods whereby subsequent development
of the real-time system can be speeded. The difficulties
here are the recognition and elimination of faults
occurring in the system whilst it is operating in real-time,
and the assessment of the performance of the system.

We are now using a method of program testing which
greatly reduces these problems and which has general
applications to on-line systems.

The automatic radar

The aim of this equipment is to use a fast, multilevel
interrupt computer to control various parameters of
the radar so that it can survey through 360° in azimuth
and up to 60° in elevation. Tracks are automatically
initiated on targets within about 50 km of the radar
and fresh information about these tracks is obtained at
regular intervals by controlling the aerial beam pointing
direction and the transmission.

We are using an aerial which rotates at several manually
variable rates between six and forty revs per minute.
The aerial provides a beam three degrees high in elevation
which can be positioned rapidly under computer control
to any one of twenty-three elevation positions between
zero and sixty degrees.

As this aerial rotates the computer must decide at
each point the elevation setting, and the transmitter
and receiver characteristics necessary for correct per-

* Royal Radar Establishment, Malvern, Worcestershire

Crown Copyright; reproduced with the permission of the
Controller, Her Majesty’s Stationery Office.

formance both of surveillance for new targets and of
redetection of known tracks.

In addition to the peripherals concerned directly with
the radar there are two which are used to control the
timing of computer operations. One of these is the
master azimuth clock. This is a counter which is
driven by the rotation of the aerial. It can be read at
any time by program to give azimuth as a fraction of
360°. Since we have found it less troublesome to
arrange the timing of operations with reference to an
unambiguous clock rather than one that repeats every
360°, the counter interrupts the computer regularly so
that a revolution count can be kept within the computer.
This count can then be combined with the counter reading
to give an unambiguous measure of azimuth.

The other timing peripheral is an angular interval
counter. This device can be set to any angle up to
360°. It will then provide an interrupt when the aerial
has rotated through that angle.

The control programs

One object of the programs is to provide data to
control the radar aerial, transmitter and receiver so that
the system will perform the tasks of surveillance and
tracking of many targets. The control data is stored
in a time ordered control list since the aerial is rotating
mechanically at a constant rate. This list is a buffer
holding the control data for a period of up to 135°
ahead of the radar aerial azimuth at any time. Control
data is output from the control list by an interrupt
program initiated by the external angular interval
counter. The interrupt program also sets the counter
to the angular interval before the next control so that
when that angle has elapsed another control will be
output with negligible time error.

Detections are made by recognising the presence, in
any of the receiver channels, of a peak of energy which
exceeds a predetermined level for the channel. These
channel levels are controlled by the computer. When a
detection occurs the computer program is interrupted
and the target data is stored in an input buffer within the
computer. Subsequently the data is used by the non-
interrupt (or base level) program to generate a track
list which contains the current positions, velocities,
priorities, etc., of all detectable tracks. The data from
this track list, together with that from various preset lists
of data within the computer is then used to generate the
control list.

¥202Z YoJelN g1 uo 1senb Aq L1 8GE/C0E/P/Z L/eIoIe/|uloo/woo dno-olwepeoe//:sdiy woij pepeojumod

304 K. Jackson and J. R. Prior

The master azimuth clock interrupt has been allotted
the highest priority level since it is important in deciding
the timing of other programs that there should be no
confusion as to the azimuth at any time. The next two
lower levels hold the control output and data input
programs respectively. The remaining lower levels are
used for displays and manual controls.

Since the greater part of the work is done on the base
level the program on this level has been subdivided into
roughly 20 sub-programs which interact with each other
and with programs on interrupt levels only through data
stores. These base level sub-programs all operate
under the control of a master program which has two
sections.

The first section contains the setting up procedure.
This is entered once only each time the program is run.
Its purpose is to initialise all modifiers and data which
might lead to malfunctioning if left undefined.

The second section controls the frequency of operation
and priorities of the base level programs. It arranges
that these programs provide and process data at a
suitable rate to match the demands of the external
equipment. Whenever one of the sub-programs operates
there is an optional print-out of the relevant information
about the program and its data interfaces. After the
operation of any of the programs on the base level the
priority list is again studied to see if a more important
sub-program is demanding attention. If not then lower
priority programs are allowed to operate.

Debugging

One of the greatest difficulties in the development of a
real time system of this kind is debugging the on-line
programs. This difficulty is more pronounced in a
real-time system than an off-line system for the following
reasons. In contrast to most off-line programs the data
being processed is often of a random nature; hence
fault conditions cannot be repeated in an identical
manner. Owing to the logically complex nature of the
operations, faults are frequently only recognised some
time after they have occurred, by which time any evidence
of use for fault diagnosis may have been destroyed. Itis
often impracticable to insert extra print into the program
for fault diagnosis, or even to use the facilities built into
the master program, since the printing rate may not be
fast enough to keep up with all the data output required
and, in any event, vast amounts of data may be printed
before a very infrequent fault occurs. Additional
difficulties arise in an experimental system in which new
equipment is also being developed since this equipment
can frequently provide incorrect data.

As a result of the above difficulties the task of on-line
debugging becomes one that can occupy both the
computer programmer and all the peripheral radar
equipment for long periods. It is clearly preferable
therefore to do as much debugging as possible off-line
and in the absence of equipment. We have developed a
four stage process of debugging, the aim in the first
stage being to test small parts of the system in isolation
by simulating the input data to those parts. The output
data can then be studied at leisure to ensure that the
correct actions have taken place. In this way debugging
becomes an off-line process. As more of the programs
are developed they can be combined to make groups of

programs to be tested together off-line. This is the
second stage of development. The third stage, which
must occur before finally running the programs on-line,
is the operation of the whole system in pseudo-real-
time. This is in effect an extension of the above methods
to the point where all the programs on all the different
interrupt levels are combined together.

Pseudo-real-time operation

The aim of this part of the debugging is to remove
many of the faults which occur due to the variable timing
of the operation of one program with respect to another.
It also enables the programmer to operate the complete
system in the absence of peripheral radar equipment,
thereby both removing the possibility of equipment
faults as a source of error and simplifying the final and
most difficult stage—that of true on-line debugging.

In order to operate in pseudo-real-time without
equipment one must simulate (1) the passage of time,
(2) the timing and action of interrupts and (3) the
sources and sinks of data.

It is important that time and interrupts are simulated
in such a way that situations are precisely repeatable.
For this reason they are simulated by software. Hard-
ware simulation can only lead to repeatable sequences
if the timing is driven from the computer logic clock
so that interrupts occur at the same instruction on
repeated runs of the program.

We have simulated the passage of time (which in our
case is proportional to aerial azimuth angle) by adding
an additional sub-program to those operating on the
base-level. This program is entered from the master
program once for each cycle of the rest of the programs
on the base level. The additional sub-program contains
both a master clock store to simulate absolute time and
an interval timer store for each of the interrupt levels.
The master clock is incremented by unity each time the
program is entered. This store is read by any program
which in real-time operation would read the peripheral
(azimuth) clock to determine the present time.

All the interval timer stores are decremented by unity
each time the program is entered. Whenever an interval
timer store becomes zero the interval has elapsed and
the corresponding interrupt program is entered on base
level. The particular counter is reset to the next
interval appropriate to the level of interrupt. In this
way the event by event behaviour of the real system is
simulated, though not necessarily at the ‘true’ rate.
The system can therefore be described as operating in
pseudo-real-time.

The incremental times to which the counters are
reset depend upon the nature of the interrupt. Generally,
sources of interrupt can be divided into four classes:

1. Those which provide interrupts at regular intervals
not under computer control (e.g. the interrupt from
our master azimuth clock which occurs every
180° of aerial rotation). Obviously these are
simulated by replacing a fixed number into the
relevant elapsed angle counter store on each
occasion.

2. Those which provide interrupts at times specified
by the computer (e.g. interrupts calling for more
controls for the radar). These must be simulated

¥202Z YoJelN g1 uo 1senb Aq L1 8GE/C0E/P/Z L/eIoIe/|uloo/woo dno-olwepeoe//:sdiy woij pepeojumod

Control programs for automatic radar 305

by extracting the relevant time interval from within
the computer.

3. Those occurring at random time intervals (e.g. noise
inputs to the computer from the radar) can be
simulated by selection from a table of random
numbers.

4. Those whose time interval is defined by laws not
known precisely to the computer (e.g. inputs or
target data). This last group is the most difficult
to simulate since the timing here requires a know-
ledge of the environment external to the computer.
In the past we have used a list of times calculated
by hand to simulate the timing of track detection
interrupts but, as explained later, we currently use
a programmed model of this environment to
calculate these times by computer whilst the control
programs are running.

Let us now consider the problem of simulating the
sources and sinks of data. There is no difficulty with
regard to outputs since no ‘real’ equipment is being
controlled. We have found it useful, however, to
replace each output instruction of the program by the
option to punch the data if required. This can be used
to give a diagnostic facility during debugging.

Input of data is more complicated to arrange. At
present there are only two sources of data for input.
The first of these is the absolute time (or azimuth clock)
The second is the data about the external environment
and in the past this was read from a precalculated list
of tracks. Currently, this data is provided by the
environmental model and is influenced by the data which
is output.

A limitation of the third stage of debugging in which
all the programs operate together with pseudo interrupts
occurring in the correct time relationship to each other

,—\“v“l"-~~\
S
~

ON LINE
OFF LINE
SWITCH

INTERVAL
TIMER

INTERVAL
TIMER
STORE

is that these interrupts always occur after the operation
of any one of the base-level sub-programs, rather than
during the operation of these sub-programs. However,
even with this limitation, the real-time interaction of
programs can be tested comprehensively. We have set
up various lists of input data and interrupt times for
targets which have tested many functions of the logic.
Removal of any faults now becomes a very much easier
process since time can be made to ‘stand still’ when
necessary. The computer may be stopped at any point
and the contents of stores examined or printed. Data
may be printed if desired whilst the system is working in
pseudo-real-time with no danger of upsetting the oper-
ation. Also by running on the same input data the
identical situation may be repeated with different tests
until the fault can be located. The ability to run the
system without associated equipment removes all
equipment faults from consideration.

In some applications it might be possible to pass
through a further intermediate stage in which some parts
of the peripheral equipment were associated with the
system working off-line.

Program layout

Full advantage of pseudo-real-time operation can be
obtained if the organisation of the program tapes is
made in such a way that the transition from on-line to
off-line working involves the minimum of change.
All transfers to and from radar equipment have therefore
been arranged to take place via short sub-routines
(or macros). These routines each read a switch store,
which can be simply set at the start of any program run,
to define on-line or off-line operation of that routine.
Fig. 1 shows an example of the programs associated with
on-line timing and off-line simulation of time. This
shows how the input and output routines are arranged

HARDWARE P REVOLUTION
MASTER e CQUNT
CLOCK

INPUT DATA hiS
<

MASTER CLOCK ON LINE-
CLOCK [mmm v o s e . INPUT OFF LINE
STORE S.R. SWITCH

=~ HARDWARE INTERRUPT
“\A~ SOFTWARE TRIGGER

ON LINE=- ,
s3]

OFF LINE ATA TRANSFER ON LINE

S = w= P DATA TRANSFER OFF LINE

Fig. 1. Simulation of time and interrupts

¥202Z YoJelN g1 uo 1senb Aq L1 8GE/C0E/P/Z L/eIoIe/|uloo/woo dno-olwepeoe//:sdiy woij pepeojumod

306 K. Jackson and J. R. Prior

to access either the hardware devices or the software
stores. It also indicates how the programs P; & P,
can be entered on interrupt from the hardware devices
or can be triggered from the timing program.

The additional sub-program entered from the master
program to simulate time and interrupts is also activated
by a switch, hence while working in real-time the presence
of the programs to simulate time and peripherals causes
negligible increase in running time.

System assessment

Once the logical errors have been removed from an
on-line program one is still left with the problem of
performance assessment. This is particularly true of an
experimental radar. It is frequently expensive and
impractical to test the performance of the system using
genuine aircraft, hence simulation of the data sources of
the external environment is to be desired.

As mentioned earlier we have written programs for the
simulation of the track environment. These programs
operate by calculating the co-ordinates of many manoeuv-
ring tracks as a function of time once they have been
given some initial information about the targets. At the
times that the aerial is pointing on the correct azimuth
direction to detect the targets the conditions of the
radar are examined to determine whether the target is
detectable and also what the input information should
be. In this way tracking of many manoeuvring targets
can be simulated. Input of this artificial track data
is synchronised to the radar azimuth by using either the
external hardware interval timer for real-time operation
or the internal software interval timer for pseudo-real-
time operation.

Thus the input of track data can be regulated. The
track simulation programs can be run with the systems
working in pseudo-real-time or in real-time. Also when
the system is operating in real-time they can work while
true radar detections are being made. In this way it is
possible to have a gradual build up of complexity in the
testing and assessment of performance since early work
can then take place in the absence of equipment. This is
then followed by tests with equipment and pure track
data provided by the simulator. Finally we can simulate
a more realistic radar environment by adding clutter
returns and noise from the radar.

The program allows the testing of the complete
computer system in real-time with track situations which
are repeatable. The simulated information can be
outputted to displays in the normal way whether the
program is running in real or pseudo-real-time. If any
faults are noticed one can revert to the more simple
preceding steps using the same data to eliminate the
fault.

Future plans

In the near future our computing facilities are to be
increased by the addition of a disc backing store, an
on-line flexowriter and an alpha-numeric display.
Using this equipment our methods of program develop-

References

ment will be extended and improved. We will be able
to store the past history of the real-time situation for
several minutes of operation so that diagnosis of faults
and assessment of programs can be performed by
analysing the stored data. This analysis will be done
using the display and associated keyboard to show the
contents of various lists on demand.

Future programming will be done using a high level
language (CORAL 66) so that the writing time for new
programs will be reduced. Since the use of such a
language eliminates many of the simple logical errors
made in machine code the emphasis of the debugging
will shift towards faults which prevent the program
compiling correctly. This work, which at present
involves much paper tape handling, will be speeded
considerably since the editing and compilations will be
done using the programs from the disc. The display
will be used to show fault reports and the text requiring
correction, and the keyboard will allow input of com-
mands for rapid correction of texts and to initiate
recompilations.

Conclusions

The method described here for the debugging and
assessment of an automatic radar has general applications
in the field of process control, since whatever the appli-
cation it is possible to program a model which can be
used to provide the data for input to the control programs,
and the times at which interrupts would occur. The
ability to remove faults due to timing interaction of the
program whilst working off line allows more rapid
debugging. Also the fact that the program can be
operated in the absence of peripheral equipment elimin-
ates the need for the equipment and the possibility of
equipment errors. The programming effort required to
implement a system of simulated time and interrupts is
very small. In our system the timing program consists
of less than one hundred instructions. Simulation of the
environment and data input sources was initially done
by using tables of data and a short input program. The
more flexible simulation now implemented is roughly
1000 instructions long.

The effort involved in developing these programs has
been well justified by the ease of testing additions and
alterations to the radar program.

A further advantage of pseudo-real-time working with
simulated data sources could be the possibility of
extensive development of the programs either before or in
parallel with the equipment. Hence the effects of the
programming on the equipment could be available at the
development stage rather than after production had
started. If the early development is done before the
computer is purchased it should preferably take place
on a computer of the same type though some advantage
can be obtained even if this is not so. Development
work should also be done in the same high-level language,
but a general purpose machine might be used, in which
case only minor modifications to the program would be
needed before transfer to the process control computer.

PuiLLips, C. S. E. (1966). Radar Techniques for Detection, Tracking and navigation, Gordon and Breach, pp. 253-265.
PHILLIPS, C. S. E. (1967). Computer controlled adaptive radar, Proc IEE, Vol. 144, No. 7.
PuiLLIPs, C. S. E. (1967). Networks for real time programming, The Computer Journal, Vol. 10, No. 1, pp. 46-52.

¥202Z YoJelN g1 uo 1senb Aq L1 8GE/C0E/P/Z L/eIoIe/|uloo/woo dno-olwepeoe//:sdiy woij pepeojumod

