An integer linear programming model of a school

timetabling problem

By N. L. Lawrie*

Earlier papers have defined the input requirements of a program for timetabling in terms of a list
of lists of items, each item being a teacher, a class or set, a classroom or a piece of equipment.
This paper describes an approach based on larger items of departments, group of pupils (generally
year groups), and layouts. The problem is given an integer linear programming formulation, and
computational methods used in obtaining solutions are discussed.

(Received March 1969)

There have been a number of approaches made in the
last few years to the problem of constructing timetables
for schoolsin Britain. Barraclough’s work (Barraclough,
1965) has been developed and extended by Cox (1969),
and, at the recent IFIP Conference in August 1968,
Johnston and Wolfenden described a new approach.
The Local Government Operational Research Unit
(1967) has made a survey of programs and methods and
has carried out field trials using a recently developed
procedure due to Clementson (1968).

There has been general agreement among the authors
mentioned above about the computer input requirements
of a program for timetabling, and these requirements are
well illustrated by Johnston and Wolfenden (1968). In
essence, they form a list in which each entry specifies a
list of items which must be available simultaneously for
a specified number of periods in the week. An item may
be a teacher, a class or set, classroom or piece of equip-
ment, and a simply entry in the list of requirements
would specify a teacher, a group of pupils, a room, and
a number of periods.

The author (Lawrie, 1968) has described an approach
to school timetabling which is based not on units of the
teacher, the class or set, and the event, defined by Lions
(1967) as ‘either a teacher and a class meeting for one
period, or a teacher having a spare period or a class
having a spare period’, but on larger units of depart-
ments, groups of pupils (generally year groups), and lay-
outs.

The aim of this paper is to describe the mathematical
formulation given to the timetabling problem as it is
posed here, and the computational methods used in
obtaining solutions. No justification of the expression
of the requirements in the form of layouts is given.
This has been attempted in the paper by the author
already referred to. In the next section, however,
layouts are briefly described and illustrated, and some of
the advantages and disadvantages of using them are
mentioned.

Data requirements

Layouts

The data relating to curriculum of pupils and their
organisation into classes and sets is expressed in a
number of layouts, generally between 4 and 6 in total.
The idea of a layout and its use are discussed by Lewis
(1961), and the layouts developed for use with this

* Department of Operational Research, University of Strathclyde

method of timetabling are a development of those in
Lewis’s book. In essence, the layout is a statement of
the curriculum and its organisation for a group of pupils,
generally a year group, e.g. all the pupils in the first or
other year of the school. The example of Table 1 is a
layout for the 3rd year of a comprehensive school with
1060 pupils. There are 260 pupils in the 3rd year.

Column A of the layout specifies a requirement for
5 classes or sets in English, 2 in Latin and 4 in Commerce
for 6 periods in the week; column B specifies a require-
ment for 4 classes or sets in English, 1 in Homecraft,
5 in Technical subjects, 1 in Dress and Design, and
1 in ‘X’ which stands for a number of miscellaneous,
minority time, subjects; the entries in the remaining
columns may be interpreted similarly. On its own, the
layout does not make clear which pupils will go to which
classes or sets at any time, although this information will
be available to the timetabler who has drawn up the
layout, and may be set out beneath the layout, as illu-
strated in Table 1. It does not specify which teachers
of English, Latin and Commerce will be required in
column A or which rooms, although this data could be
added beneath some or all of the columns and would not
affect the formulation of the problem or require any
alteration in principle to the computational method.

The advantages to the headmaster of expressing his
requirements in the form of layouts have been discussed
fully by the author (Lawrie, 1968). Two points will be
made here.

1. A layout simplifies the planning of curriculum and
organisation for a group of pupils by providing a
compact notation which emphasises the staff
requirements by department of the plan and omits
explicit reference to classes or to how pupils are
regrouped into sets from period to period. The
notation makes it relatively straightforward to treat
a year group as a unit for purposes of curriculum
planning even in large schools, and should therefore
help to avoid the segregation of pupils into separate
streams which occurs in some schools simply
because of the difficulty of planning for a large year
group as a whole when the unit in which planning
is done is the class.

2. A layout enables a certain amount of detail to be
suppressed in planning. What is suppressed may
vary from layout to layout. In Table 1, classes or
sets in a notional department ‘X’ appear in several

Y202 YOJBIN € U0 189nB Aq GG 18GE/L0E/¥/Z | /BI0IME/|UlWO0/WOoo" dNO"dIWSPEDE//:SARY WOl PEPEO|UMO(

308 N. L. Lawrie

columns, and the subjects which are grouped
together and labelled ‘X’ in this instance are the
non-examinable subjects occupying minority time:

Art (or Art Appreciation)

Music Appreciation or Class Singing
Physical Education

Religious Education.

It may be thought a disadvantage that the timetabler
has to produce a layout for the year group as a whole
since this transfers to him the burden (which apparently
might be carried by the computer) of determining not
merely curriculum and setting but also the overlap of
sets (or classes) in different subjects over the week. If a
year group is divided into ‘streams’ or ‘sides’ which do
not mix with one another for much of the week, the
layout is an additional burden and its specification fixes
the simultaneous occurrence of unrelated classes which
could well be left undetermined and at the disposal of a
computer program. On the other hand, if the year
group is not divided into ‘streams’ or ‘sides’ but is, like

the year group in Table 1, set over different sub groups
of pupils in different columns of the layout, the layout
becomes necessary in order to specify the educational
policy of the school.

Table 2 illustrates five layouts which describe the
curricula and organisation of a six-year comprehensive
school, labelled school B in Table 5. Notice that plans
for years 5 and 6 are run together in one layout and that
the layout of Table 1 is identical to the 3rd year layout
in Table 2. Much of the detail in years 1 and 2 has been
suppressed since most teaching in these years is to mixed
ability classes and could have been specified in the layout
in a wide variety of ways. Rather than do this it was
felt better to defer decisions about the overlapping of
such classes in the timetable to a later stage.

What have been specified in the 1st and 2nd year
layouts are:

1. the way in which practical classes are organised and,
in particular, how two of the periods of Technical/
Homecraft are used by two language pupils for
Latin;

Table 1

Layout for a 3rd year of 260 pupils

Column: A B C D E F G H I J
Periods: 6 6 4 2 7 3 4 4 2 2
Sets: 5E 4E 4F 6F 6M 4M 3Hi 3Ch 2Bi 2Bi

2Lt 1H 1H 5X
4C 5T ST

IDD 2X

1X 1C

4X 6X 2G 3Ph 2Ph 2Ph
2EO 2C 2C 2C
4GSc 1A 1A 1A

IMu 1IMu 1IMu

1Ge 1Ge 1Ge

1Sp 1Sp 1Sp
3IMS 3X 1H
1Hi 4T
2X

Examples of pupil curricula

Non academic:

Building E T T X M X GSc MS X T
Commerce C E C F X M GSc MS X X
Academic:
Sc/Ge/Sp Lt E F F M/X X/M Hi/G Sc/Ge/Sp
Commerce C E F F M/X X/M Hi/G — Commerce —
Home/Tech. E H/T H/T F M/X X/M Hi/G Ph/Ch X H/T
Abbreviations

E: English M: Mathematics Bi: Biology

Lt: Latin Hi: History A: Art

C: Commerce G: Geography Mu: Music

H: Homecraft EO: Economic Organisation Ge: German

T: Technical GSc: General Science Sp: Spanish
DD: Dress and Design Ch: Chemistry MS: Modern Studies

F: French Ph: Physics

X: Miscellaneous (‘minority time’) subjects consisting of Art and Music Appreciation, Physical

and Religious Education.

Y202 YOJBIN € U0 189nB Aq GG 18GE/L0E/¥/Z | /BI0IME/|UlWO0/WOoo" dNO"dIWSPEDE//:SARY WOl PEPEO|UMO(

Integer programming and school timetabling 309

2. the way in which sets in English and Mathematics
are organised. There are enough staff in the school
to make possible the simplest arrangement—the
simultaneous occurrence of all sets in English or
Mathematics in each year.

What goes unspecified is the organisation of the rest of
the curriculum which consists of French, History,

Geography, Latin (only two of five Latin periods is
specified in either layout), as well as the subjects classed
as ‘X’. This larger group of subjects is classed as Y’
in the layouts.

Table 3 shows the data of Table 2 prepared for compu-
ter input. Each column of each layout gives rise to a
line in Table 3 (in effect Johnston and Wolfenden’s

Table 2

Layouts for school B (a 6-year school of 1,060 pupils)

Ist year layout (150 pupils)

Column: A B C D
Periods: 6 6 6 2
Sets: SE M 4Sc 1H
2H 1T
2T 4Sc
2Lt
2nd year layout (180 pupils)
Column: A B C D
Periods: 6 6 4 2
Sets: 6E sM 6Sc 3T
2H 3H
2T 3Sc
3rd year layout (260 pupils)
Column: A B C D
Periods: 6 6 4 2
Sets: 5E 4E 4F 6F

2Lt 1H 1H 5X
4C 5T 5T

IDD 2X

1X 1C

4th year layout (260 pupils)

Column: A B C D
Periods: 6 6 6 7
Sets: 4E SE 6F ™

3Lt 1H 1H 2X
3C 2T 2T
3X 2X

Sth and 6th year layout (210 pupils)

Column: A B C D
Periods: 6 4 7 4
Sets: 7E 2Hi ™ 4Ph
2G 1X 2Bi
1IMS 2Ge
3X 2A
2Mu
1C

1X

E
20
5Y
E F
2 20
2T 5Y
1H
3Sc
2Lt
E F G H I J
7 3 4 4 2 2

6M 4M 3Hi 3Ch 2Bi 2Bi
4X 6X 2G 3Ph 2Ph 2Ph
2E0O 2C 2C 2C
4GSc 1A 1A 1A
IMu IMu 1IMu
1Ge 1Ge 1Ge
1Sp 1Sp 1Sp
3IMS 3X 1H
1Hi 4T
2X

M 4Hi 4Ph 6Ch
7X 4G 2Bi 1X
1X 2Ge 2Ge

1Gk 1Gk
IMu 1Mu
1A 1A
3C 3C

4Ch 2Lt 6F 7
2Ge 3T 3T

2A 2H 2H

2Mu 1C 1X

1C 3X

1X

202 YoJeIN €1 U0 1s9nB Aq GG 18GE/L0E/b/Z L /B10IME/|UlWoo/Woo" dno-olwapedk/:sdpy Wwoly papeojumod

310 N. L. Lawrie

requirement list) which specifies a number of periods
and the staff required by department for these periods.
At the foot of Table 3, the number of teaching staff in
each department is given.

Notice that there are apparent discrepancies between
columns X and Y of Table 3 and the sets in X’ and ‘Y’
specified in the layouts. For example, column I of the
3rd year layout in Table 2 specifies 3 classes or sets in ‘X’
and yet line 20 (the corresponding line) of Table 3
specifies 5 teachers required in department X. The
explanation is that teachers available to teach the
notional subject ‘X’ come from the departments of
Music, Art, Physical Education and Religious Education,
and that where some of the subjects taught by these
departments occur explicitly in the layout, as they do in

columns H, I and J of the 3rd year layout in Table 2,
the number of staff required to teach these subjects is
deducted from the number available to teach in depart-
ment ‘X’ (or, equivalently, added to the number of sets
in ‘X’ already specified). The effect of the single classes
in each of Music and Art in the columns referred to is
included in the appropriate lines of Table 3 (lines 19, 20
and 21) by adding 2 to the staff requirement in depart-
ment ‘X’ for each line. Apparent discrepancies in
column Y have the same explanation.

Notice too that the layouts in Tables 1 and 2 are
expressed in terms of the subjects taught, whereas Table 3
is expressed in terms of departmental requirements. The
link between these two is given in the following para-
graphs.

Table 3
Staff requirements for each line of each layout

LINE NO. PERIODS E M S T H C L F yA U A X Y
1 6 5 - - - — - - - - - - - -
2 6 - 5 - - - - - - - - - - —
3 6 - - 4 2 2 - - - - - - - -
4 2 - - 4 1 1 - 2 - - - - - 2
5 20 - - - - - - — - - - - - 5
6 6 6 - - - — - — - - - - - -
7 6 - 8 - - - - - - - - oo
8 4 - - 6 2 2 - - - - - - - -
9 2 - - 3 3 3 - - - - - - - -

10 2 — - 3 2 1 - 2 - - - - - 2
11 20 - - - - — - - - - - - - 5
12 6 5 - - - - 4 2 - - - - - 2
13 6 4 - - 5 2 - - - - - — 1 1
14 4 - - - 5 1 1 - 4 - - - 2 6
15 2 - - - - - - - 6 - - - 5 11
16 7 - 6 - - - - - - - - - 4 4
17 3 - 4 - - - — - - - — - 6 6
18 4 - - 4 - - 2 - - 5 — - - 5
19 4 - — 6 2 - 2 4 1 1 2 8
20 2 — - 4 - - 2 - 2 - 1 1 5 7
21 2 - - 4 4 1 2 - 2 - 1 1 4 6
22 6 4 - - - - 3 3 - - - — - 3
23 6 5 - - 2 1 - - - - - - 3 3
24 6 - - - 2 1 - - 6 - - — 2 8
25 7 - 7 - - - - - - - - - 2 2
26 3 - 2 - - — — — - - - - 7 7
27 4 - - - — - - - 8 - - 1 9
28 4 - - 6 - - 3 1 2 - 1 1 2 5
29 4 - - 6 - - 3 1 2 - 1 1 3 6
30 6 /N
31 4 - - — - - - - - 5 - — 3 8
32 7 - 7 - - - - - - - — - 1 1
33 4 - - 6 - - 1 - 2 - 2 2 5 7
34 4 - - 4 — - 1 - 2 - 2 2 5 7
35 6 - - - 3 2 1 2 - - - - 3 5
36 6 - - - 3 2 - - 6 - - - 1 7
37 3 - — - - - - — - - - — 7 7
Staff Numbers 9 9 9 6 4 4 3 9 8 3 4 12 32

(by Department)

202 YoJeIN €1 U0 1s9nB Aq GG 18GE/L0E/b/Z L /B10IME/|UlWoo/Woo" dno-olwapedk/:sdpy Wwoly papeojumod

Integer programming and school timetabling 311

Other data requirements

The data still requiring to be specified after layouts
have been determined consists of:

1. figures of staffing by department;

2. subjects taught by actual and notional departments;

3. agreed codes to be used in presenting input and in
printing output.

In school B, staffing and subjects taught by depart-
ments were as follows:

DEPARTMENT NUMBER

OF STAFF

SUBJECTS TAUGHT

English 9 English

Mathematics 9 Mathematics

Science 9 General Science, Physics,
Chemistry, Biology

Technical 6 Technical

Homecraft 4 Homecraft, Dress and
Design

Commerce 4 Commerce, Economic
Organisation

Classics 3 Latin, Greek, Y

Modern Languages 9 French, German, Spanish,

Y

Modern Studies 8 Modern Studies, History,
Geography, Y

Music 3 Music, X, Y

Art 4 Art, X, Y

Physical Education 4 PE, X, Y

Religious Education 1 RE, X, Y

Notice that the number of teachers available to teach the
notional subject ‘X’ is 12, and the number available to
teach the notional subject ‘Y’ is 32.

The following single letter codes are used to label
departments in Table 3 and in Table 4 which is an
‘outline timetable’ (defined in the next section) for
school B, based on the layouts of Table 2.

E: English H: Homecraft Z: Modern Studies

M: Mathematics C: Commerce U: Music

S: Science L: Classics A: Art

T: Technical F: Modern X: department ‘X’
Languages Y: department ‘Y’.

Mathematical formulation

Once layouts have been obtained, the problem of
constructing the timetable is dealt with in two stages.

Table 4

An outline timetable for the requirements of Table 3

PERIODS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5Y 5M 5M 5Y 5Y 4S 4S 5Y 5M 5Y 5Y 5Y 5Y 5M 5Y 5Y 5Y SE 5Y S5Y
Year 1 2T 2T
2H 2H
38 5Y 5Y 8M 8M 5Y 8M 6S 3S 5Y 5Y 5Y 5Y 6E 6E S5Y 5Y S5Y 6S 6S
2T 2T 3T 2T 2T
Year 2 1H 2H 3H 2H 2H
2L
4S 4S 4S 6S 6S 4S 4S SE 6S 6M 6M 6M 6M 5T 6M 4S 4S 4E 6M 6M
2C 2C 2C 2C 2C 2C 2C 4C 2C 4X 4X 4X 4X 1H 4X 4T 4T 5T 4X 4X
52 5Z 5Z 2F 2F 2F 5Z 2L 2F 1C IH 1H 2H
Year 3 4Z 4Z 1U 47 4F 2C 2C 1X
car 1IU 1U 1A 1u 2X 2F 2F
1A 1A 3X 1A 1U 1U
1A 1A
2X 2X
7M SE SE 2T 2T SE 2T 2M 5E 6S 6S 6S 6S 8Z 8Z 2T 2T 6S 4E 4E
2X 2T 2T 1H 1H 2T 1H 7X 2T 3C 3C 3C 3C 1X 1X 1H 1H 3C 3C 3C
IH 1H 6F 6F 1H 6F IH 1IL 1L 1L IL 6F 6F 1L 3L 3L
Year 4 3X 3X 2X 2X 3X 2X 3X 2F 2F 2F 2F 2X 2X 2F
1U 1U 1U 1U 1u
1A 1A 1A 1A 1A
1X
37T 45 4S 3T 3T 7M 7E 7M 7X 7E 7E 7E 7E 6S 3T 7M 7M 7M 3T 3T

2H 1C 1C 2H 2H 1X 1X
6F 2F 2F 1C 1C

Years 5and 6 | 1X 2U 2U 2L 2L

2A 2A 3X 3X

1X 1X

IC 2H 1X 1X 1X 2H 2H

2F 1C 6F 6F
2U 2L 1IX 1X
2A 3X

1X

202 YoJeIN €1 U0 1s9nB Aq GG 18GE/L0E/b/Z L /B10IME/|UlWoo/Woo" dno-olwapedk/:sdpy Wwoly papeojumod

312 N. L. Lawrie

1. The overlapping of layouts with one another in
such a way that staffing restrictions are not violated
during any period of the week. This results in
what is called an ‘outline timetable’ in what follows
and is illustrated for school B in Table 4.

2. The permutation of the outline timetable to meet
requirements on distribution of classes and sets in
various subjects over the week.

So far, only the first of these stages has been programmed,
and the mathematical formulation given below is for this
stage only.

We define an arrangement as a set of columns, one
from each layout, which does not violate any staffing
restriction. For the five layouts of Table 2, for example,
column B of layout 1, column F of layout 2, column G
of layout 3, column B of layout 4 and column E of
layout 5 can be verified as forming an arrangement since
the total staff by department to teach the classes or sets
specified in these columns is, department by department,
less than the teaching staff available. The problem can
now be seen as one of finding as many arrangements, not
necessarily all different, as there are periods in the week.
It has a Linear Programming formulation analogous to
the trim problems discussed, for example, by Gilmore

and Gomory (1961). The constraints which must be
satisfied by any solution are that each column of each
layout must occur the number of times specified for it in
its layout.

Formally, we suppose that all possible arrangements
are serially numbered, and define for each j an integer
valued, nonnegative variable, x;, as the number of
occurrences in the outline timetable of the jth arrange-
ment. There are thus as many variables as arrange-
ments, N say, and as many constraints, m say, as the
total number of columns in the layouts of the problem
(37 in the case of the problem of Table 2).

We suppose the columns of the layouts numbered
consecutively from 1 (column A of layout 1) upwards to
m as in Table 3, and define

b; = the number of occurrences of column i specified
in its layout.

i=1,2,...,m
a;; = 1 if column i appears in arrangement j
= 0 otherwise.
i=12,...,m
j=12,...,N

Table 4 continued

PERIODS 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
SE 5Y SY 5Y SE SE 4S 4S 4S 4S S5E 5Y SY S5Y SM SE 5M 4S 4S 5Y
2T 2T 2T IT 2T IT
Year 1 2H 2H 2H 1H 2H 1H
2L 2L
SY 6E 6E 6E 8M 6S SY 5Y SY 5Y 5Y SY 5Y 8M 3S 8M 6E 5Y 5Y 3S
2T 2T 3T
Year 2 2H H 3H
2L
ST 4M 4M 4M 4E GF SE SE SE 4E ST 4E 4E SE 4S 4E 5T SE 6F 6S
IH 6X 6X 6X ST 5X 4C 4C 4C 5T 1H ST ST 4C 2C 5T 1H 4C 5X 2C
1C 2H JL 2L 2L 2H 1C 2H 2H 2L 2F 2H IC 2L oF
Year 3 4F 1X 1X 4F 1X 1X 1U 1X 4F 4z
2X 2X 1A 2X 1U
3X 1A
4E 6S 6S 6S 8Z 4E 7M 7M 7M M TM 4E 4E 2T 2M 8Z 2M 7M 5E 5E
3C 3C 3C 3C 1X 3C 2X 2X 2X 2X 2X 3C 3C 1H 7X 1X 7X 2X 2T 2T
3L 1L 1L IL 3L 3L 3L 6F 1H 1H
Year 4 2F 2F 2F 2X 3X 3X
U 1U 1U
1A 1A 1A
1X 1X 1X
5Z 3T 3T 3T 4S 7M 3T 3T 3T 5Z 5Z 6S 68 7X 7E 68 5Z 7X 4S M
3X 2H 2H 2H 1C 1X 2H 2H 2H 3X 3X IC IC 1C 3X 1IC 1X
IC 1C 1C 2F 6F 6F 6F 2F 2F oF oF
Years 5 and 6 2L 2L 2L 2U 1X 1X 1X 2U 2U 2U 2U
3X 3X 3X 2A 2A 2A 2A 2A
1X 1X 1X 1X 1X

202 YoJeIN €1 U0 1s9nB Aq GG 18GE/L0E/b/Z L /B10IME/|UlWoo/Woo" dno-olwapedk/:sdpy Wwoly papeojumod

Integer programming and school timetabling 313

The constraints of the problem may now be written in
the form:

i=1,2,...,m (1)

The matrix of coefficients (a;;) is by its definition a
zero-one matrix and has in general between 859, and
909, zeros. It may be noted that
2 a;=1
i €layoutk
since each arrangement contains one and only one
column from any layout, and that
2 bi =N, P
ielayoutk
the number of periods in the week, since the layout
specifies an activity (column) for each period of the
week. Hence

N
X > a;jX; = X b

iclayoutk j=1 iclayoutk

reduces to

M=z

x_,- - Np.

j=1

Thus the m constraint equations are not independent.
If there are K layouts, K — 1 of the equations, one from
each of any K — 1 of the layouts, may be omitted.

Although a set of K — 1 equations is omitted in the
Linear Programming runs, the explanation of details of
the computational method assumes that all m equations
are present in order to simplify the exposition.

In typical problems the number of variables is large
and greatly in excess of the number of equations.
Details of 4 recent problems taken from actual schools
are given in Table 5.

An objective function

Most frequently, headmasters specify what they regard
as a good timetable in terms of the distributions over the
week of classes and sets in the various subjects, some-
times also in terms of the distribution of free periods for
staff or for senior pupils, sometimes in terms of the mix
of periods each day—not too many or too few periods
daily of ‘academic’ subjects. These imprecisely defined
criteria can be seen to be relevant to the second stage of
calculation mentioned above, but not to the first stage.
At that stage we are interested only in feasible (integer)
solutions and hence most recent work has omitted an
objective function. It is clear, however, that some
outline timetables might lead to better permuted time-
tables at the second stage than others, and the aim of the
numerical procedures described in the next section has
been to produce a number of alternative solutions at
stage one.

In earlier work the objective function

N
maximise Zn CjX;
iz
was used where c; was defined as the minimum of the b,
values of the columns in arrangement j and hence is an
upper bound for x;. This was an attempt to give
preference in an outline timetable to arrangements which

could occur to a higher multiplicity, and hence to reduce
the number of different arrangements occurring at non
zero level in a solution. Such an objective function,
however, has little relation to the criteria normally
quoted by headmasters and has been dropped in favour
of producing a number of alternative (integer) solutions.

The computational method

In the first version of the method, all variables were
generated prior to the Linear Programming run which
used a code, written in ALGOL for the ICL 1905,
incorporating Gomory’s Method of Integer Forms
(Gomory, 1958) and making use of the objective function
mentioned above.

In the current version of the method, variables are
generated only as required, no objective function is used,
and Gomory’s MIF, while still incorporated, is supple-
mented by an ad hoc procedure, described below, which
first rounds a rational solution to integer values and then
completes the partial solution thus obtained using an
enumerative procedure. The Method of Integer Forms
has been retained along with the ad hoc procedure
although no longer strictly necessary. It serves, how-
ever, as a means of moving from one feasible solution to
an essentially different solution and hence produces
different starting points for the ad hoc procedure. The
program of this method is also in ALGOL except for a
few procedures, one for double length integer arithmetic,
written in PLAN. It has solved successfully a number
of problems of which those listed in Table 5 are typical.

Table 5§
Data relating to schools studied

Schools B D G W
Number of pupils 1,060 | 700 | 980 | 490
Number of staff 74 45 62 31

Pupil : Teacher ratio 14-3 | 15-6 | 15-8 | 15-8

Number of layouts 5 5 3 4

Number of lines 37 45 28 48

Total number of 1,454 | 1,459 | 210 (2,363
arrangements

Teaching periods 2,960 (1,890 {2,480 |1,395
available

Teaching periods 1,789 | 1,282 {1,208 | 905

specified in layouts

Percentage of available | 60-4 | 67-8 | 48-7 | 64-9
teacher periods
specified

Computer running 2:7111-9| 1-3| 7-0
times (minutes)

Y202 YOJBIN € U0 189nB Aq GG 18GE/L0E/¥/Z | /BI0IME/|UlWO0/WOoo" dNO"dIWSPEDE//:SARY WOl PEPEO|UMO(

314 N. L. Lawrie

The inverse matrix of the basis is held in explicit form
as a matrix of integers with their common denominator,
D, held separately. Variables generated for entry into
the basis are numbered in order of their entry and have
their coefficients in the constraints of the problem stored
in compact form with zeros omitted.

The program consists of a Phase I procedure at the
end of which cuts are made, one at a time, unless the
solution found at the end of Phase I is in integers. After
each cut there is an immediate return to Phase I in order
to restore primal feasibility. Cuts are made until either
the program terminates with an integer solution as a
result of a cut, or sufficient integer solutions have been
obtained by use of the ad hoc procedure which is called
prior to each cut.

Generation of variables

In Phase I the simplex multipliers, =y, 75, . .., m, are
available at each iteration and the problem of finding
the best variable to enter the basis at the next iteration—
taken to be the variable pricing out most negative—is a
zero-one Integer Linear Programming problem. We
define

y;=11if the arrangement selected involves the ith column

= 0 otherwise. i=1,2,...,m
The problem then is to
minimise Y, mp; ?2)
i=1
subject to the constraints
yi=1 k=12,...,K
iclayoutk
m 3
2 d,y; <D, r=1,2...,8
i=1

where D, is the number of staff in the rth department,
d;, is the number of staff in the rth department used in
column i, and S is the number of departments in the
school. D, and d,, are tabulated for school B in Table 3
(S =13).

The method of solution employed for this sub-problem
is one of partial enumeration. The constraints

> oyi=1 k=12,...,K
ielayout k

express the condition that only one line from each layout
may be selected. Lines in each layout are examined in
increasing order of their w; values and an enumerative
scheme set up capable of examining all possible combina-
tions of lines, one from each layout. In the case of the
problem of Table 3 where there are 5 lines in the 1st lay-
out, 6 in the 2nd, and 10, 8, 8 lines respectively in the
3rd, 4th and 5th layouts, complete enumeration would
involve the examination of 5 X 6 X 10 X 8 x 8 = 19,200
combinations of y; values. However, only combinations
—arrangements—which satisfy constraints (3) are enu-
merated. In addition, the value of

> ™y = 7, say

is calculated for the first arrangement found, and the
constraint

Ty <

is then added to the constraints (3) so that branches with
a lower bound > 7 need not be examined. This con-
straint is successively sharpened if further arrangements
are found with smaller values of =, until the arrangement
minimising (2) has been found.

After Phase I has been completed and the first cut has
been made, the problem of generating variables to enter
the basis is more complex. It has the same form as
during Phase I (with additional, nonlinear terms in the
objective function) and may be solved in the same way.
It has not been programmed and is not discussed further
here. In the present version of the method only those
variables already generated by the end of Phase I are
used during the derivation of cuts and the re-entries to
Phase I required.

The ad hoc procedure

This procedure may be used following a rounding
procedure to obtain one or more solutions in integers
from any non negative, non integer basic solution. It
has been developed because the use of the Method of
Integer Forms on its own did not lead readily to an
integer solution. Runs made on the larger problems
(e.g. schools B, D and W) were allowed to continue until
several cuts had been made and until a considerable time
had elapsed without reaching an integer solution. The
same experience was repeated when one of these problems
was run using two commercially available ILP codes.
For these runs all the variables of the problem were
generated prior to using the codes.

The usefulness of the procedure depends on the fact
that the coefficients of the constraint equations are all
non negative and that, if values of certain variables are
fixed in such a way that one of the equations is satisfied,
the value of all remaining variables in that equation
must be zero.

It has one parameter, g, in the control of the user.
g is the number of arrangements to be found by the
ad hoc procedure. Alternatively, since the sum of the
basic variables is N, the number of periods in the week,
the rounding procedure must round basic variables to
integer values until the sum of the rounded variables
equals N, — q. Typically, g has been set to 4, 5 or 6.

Suppose that the variables of some non integer basic
solution are x,, X,, . . . , X,,. The rounding procedure
rounds down these values to the nearest integer, int[x;],

N
i=1,2,..., m,and terminates if 3, int [x;] > N, —gq.
i=1
Otherwise fractional parts are examined in decreasing
order of magnitude and the corresponding variable
values increased by 1 until the sum of these rounded
values equals N, — q.

Denote by b* the vector of right-hand sides which is
obtained when the rounded variable values are substi-
tuted in the basic equations (1) of the problem. b* is
compared with b, the vector of true right-hand sides. If
b* > b; for any i, the partial solution obtained by
rounding cannot be completed by adding non negative
variables and the ad hoc procedure is not entered. If
however b* < b; for all 7, the partial solution may be
completable by adding non negative integer variables and
the ad hoc procedure is entered. Constraints for which
b¥ = b; may be dropped from consideration as may all

Y202 YOJBIN €1 U0 1s8nB Aq GG 18GE/L0E/b/Z L /BI0IME/|UlWOo/Woo" dno-olwapede/:sdpy woly papeojumod

Integer programming and school timetabling 315

variables which have non zero coefficients in such
constraints.

The problem remaining is to find integer solutions to
the equations

N

J— *
Z a,jxj — bi - bi.
Jj=1

The number of constraints with non zero right-hand
sides is generally about half the number in the original
problem (for ¢ = 4, 5, 6); the number of variables which
can occur at non zero level is greatly reduced; and
instead of requiring to find a solution involving N,
arrangements (or variables) only g arrangements have
to be found.

This problem can be tackled readily using an enumera-
tive or branching procedure similar in its logic to the
procedure for generating arrangements. This is the
ad hoc procedure which forms part of the present pro-
gram. It is worth noting that in generating arrange-
ments the variables branched on are the y,. In the
ad hoc procedure the variables branched on are the x;,
i.e. arrangements themselves. It should be noted too
that there are no bounds to calculate in the ad hoc
procedure since there is no objective function associated
with the constraints. A particular branch may only be
ignored if it can be shown there are no feasible solutions
along it. As in the main program x; variables are
generated as required.

Results

During the summer of 1968, timetabling problems
were examined in detail in four six year, comprehensive
schools listed in Table 5. Layouts were prepared in
conjunction with the headmasters of the schools (one
set of layouts, for school B, is shown in Table 2), and
one or more outline timetables was constructed for each
school using the program already described.

In two cases, the layouts prepared in the first instance
gave rise to the result ‘no feasible solutions’ at the end
of Phase I of the program, and this led in one case
(school D) to alterations and corrections to the layouts,
and in the other (school W), where an attempt was being
made to devise a curriculum and form of organisation
for the school using substantially fewer teachers than at
present, to small increases in the number of staff specified
as being available. Layouts were prepared as shown
below.

. SCHOOL
D G w
YEAR _

1 L1 L1 omitted L1
2 L2 L2 L1 L2
3 L3 L3 L2 L3
4 L4 L4 L4
5 L5 L3 .
6 } L5 omitted } omitted

The reasons for omitting certain years from the study
were partly educational and partly to simplify the
subsequent computing problem. For example, in
school D, only 40 pupils were involved in year 6 and it
was felt that their requirements could best be met after

an outline timetable had been formed. In school G,
the first year is taught largely in mixed ability groups
which it was felt could be fitted in in a variety of ways,
against a specified outline timetable. The same reason
(teaching in mixed ability groups) led to the simplification
of layouts for years 1 and 2 in school B.

It is worth noting that the size of computing problem
which arises in finding an outline timetable for a school
depends more on the complexity of curriculum and
organisation in the school than on its size. This shows
clearly in Table 5 where the smallest school, W, requires
more lines to express its requirements in years 1-4 than
does school B for its entire 6 years. Running times in
Table 5 exclude times spent in the ad hoc procedure.

All the schools studied had a relatively low pupil
teacher ratio but were not simpler to deal with for this
reason, since schools with a good staffing position tend
to commit their staff to as much teaching (to smaller
classes) as schools which are less well staffed.

The ad hoc procedure has been used extensively on a
limited number of problems and the results of certain
tests are tabulated in Table 6. Machine running times
are very variable, but half of the 42 completed runs took
10 seconds or less. Runs were terminated after 10 solu-
tions had been found, after all solutions had been found
if the number of solutions was less than 10, or after it
had been shown that no solutions existed.

Some running times were long, but, since most entries
to the procedure produced several solutions quickly, there
seems a case for setting an upper limit, say 20 seconds,
to the running time of the procedure and returning to
the main program after that time if no solutions have
been obtained. Running times decrease as g decreases
but the number of solutions decreases also. A good
value for ¢ would seem to be 3 or 4 if the rounding
procedure were modified (as it could be readily) to
ensure that it invariably produced a partial solution
for which b* < b.

Table 6
Results of using the ad hoc procedure
t< 10 10 < ¢ t>20
R(I{Iml?tc)' SECS < 20 secs SECS UNKNOWN

NO OF CASES 22 9 7 4
q= 3 3* 1 - —
4 4 5* - 1

5 6 - 3 -

6 5 1 2 2

7 4 2 1 1

8 - - 1 -

* One run in each of these categories gave rise to no solutions.

Acknowledgements

The author is grateful to the Scottish Council for
Research in Education for a grant in support of this
work, to the headmasters of the schools co-operating in
the study, and to Miss S. J. Turner for assistance in the
collection of data and in computer programming.

Y202 YOJBIN €1 U0 1s8nB Aq GG 18GE/L0E/b/Z L /BI0IME/|UlWOo/Woo" dno-olwapede/:sdpy woly papeojumod

316 N. L. Lawrie

References

BARRACLOUGH, E. D. (1965). The application of a digital computer to the construction of timetables, The Computer Journal,
Vol. 8, p. 136. ‘

CLEMENTSON, A. (1968). Computer Timetabling Data Manual. Published by the Local Government Operational Research
Unit,

Cox, N. S. M. (1969). Final Report on the Research Project into the Construction of Timetables by Automatic Computer. To
be published by the University of Newcastle upon Tyne Computing Laboratory, 1969.

GILMORE, P. C., and GoMoRy, R. E. (1961). A Linear Programming Approach to the Cutting-Stock Problem, Operations Research,
Vol. 9, No. 6, p. 849.

GoMoRYy, R. E. (1958). An Algorithm for Integer Solutions to Linear Programs, Recent Advances in Mathematical Programming,
ed. R. L. Graves and P. Wolfe, McGraw-Hill, New York, 1963.

Jounston, H. C., and WoLFENDEN, K. (1968). Computer Aided Construction of School Timetables, paper presented at IFIP
Conference.

LAwrig, N. L. (1968). School Timetabling by Computer, Aspects of Educational Technology, Vol. 1I, Methuen, London, 1968.

Lews, C. F. (1961). The School Timetable, Cambridge University Press.

Lions, J. (1967). Construction of Timetables for Ontario Schools Using a Computer, O.E.C.D. paper, Paris.

Local Government Operational Research Unit (1967). The Use of Computers for School Timetabling. Report No. C19. Reading.

Book Review

The Art of Computer Programming, by Donald E. Knuth
Volume 1—Fundamental algorithms. 1968. 634 pp. 182s.;
Volume 2—Seminumerical algorithms. 1969. 624 pp.
(Addison-Wesley, 173s.)

These two heavy volumes are the first to be published of a
series of seven forming a work with the general title ‘The Art
of Computer Programming’. When completed, this work will
be an immense achievement. It is impossible to do justice
even to the first two volumes in a short review, and it would be
presumptuous to attempt a full evaluation without giving them
a long and detailed study. I can only attempt to define the
scope of the work and its flavour, and to make one or two
scattered comments.

The books are addressed to people who approach things
from the mathematical point of view. Such people enjoy proofs
and like to be set puzzles. They will find plenty here. Some
259; of Volume 1 is taken up either in setting problems or in
indicating their solutions. The author has taken the trouble
to classify the exercises according to their difficulty and degree
of mathematical orientation.

There is no doubt that, as well as being a mathematician,
Dr. Knuth is a practical man when it comes to dealing with a
computer. He discusses programming down to the level of
assembly language, and uses for this purpose an imaginary
computer known as MIX, whose assembly code is fairly
typical of real assembly codes. He does not attempt to cater
for the complete beginner, but he does give a comprehensive
treatment of the finer points. I was delighted, for example, to
find the first comprehensible account that I have seen of
co-routines (although we shall have to wait for Volume 4 for a
treatment of recursive co-routines). Nevertheless, the fact
remains that the overwhelming, almost overbearing, atmos-
phere of the book is one of mathematics. It would be unfortu-
nate if some ordinary mortal, attracted by the title and
charmed by the style, were, nevertheless, led to conclude that
he needed a high standard of mathematical knowledge in order
to understand programming.

The first 119 pages of Volume 1 are about general mathe-
matics and could just as well have appeared in a book on, for
example, quantum mechanics. After that, the author goes on

to describe his imaginary computer MIX, and in terms of it to
discuss fundamental programming techniques such as
subroutines, interpretive routines, trace routines, etc. He then
discusses information structures, including stacks, queues,
linked lists, trees, and so forth. However, it is not long before
he passes from programming to mathematical problems
suggested by programming, such as the enumeration of trees.

Volume 2 deals with random numbers and with algorithms
for performing arithmetic operations. It is stated in the preface
to contain a noticeably higher percentage of mathematical
material than other volumes in the series. Methods of generat-
ing a series of pseudo-random numbers in a computer are
exhaustively discussed. It is pointed out that some methods
are better than others, and statistical techniques for evaluating
them are developed.

In the next chapter, the author goes systematically through
floating-point arithmetic, multi-precision arithmetic, radix
conversion, rational arithmetic, and polynomial arithmetic.
The material partly concerns the designer of the algorithms
that are wired into a computer, and partly the designer of
subroutines or procedures that are incorporated within
programming languages. These subjects are of basic import-
ance, and much time and money has been wasted because
people have not understood them properly.

Here and there in the volumes there are historical notes.
These, like everything else, are flavoured with the author’s
personality; they are adequate for their purpose, but not
necessarily definitive from an historian’s point of view.

There can be few people in university computer depart-
ments who will not get some value and pleasure from brows-
ing in these volumes. Those who are able to learn by studying
details, and who like to follow up interesting side issues, will
read them systematically. Others will perhaps recall the story
of the man who apologized for writing a long book, saying
that, unfortunately, he could not spare the time to write a
short one. However, Dr. Knuth, generous with his time as
with his scholarship, has foreseen this criticism and plans to
publish later a shortened version of the series. I hope that in
preparing this he will have the non-mathematician in mind.

M. V. WiLkEs (Cambridge)

Y202 YOJBIN €1 U0 1s8nB Aq GG 18GE/L0E/b/Z L /BI0IME/|UlWOo/Woo" dno-olwapede/:sdpy woly papeojumod

