The interpretation of limited entry decision table format and

relationships among conditions

By P. J. H. King*

Recent published material suggests that basic decision table format and the dependence/indepen-
dence of conditions in a table require clarification. These are separate matters but tend to be
confused. This paper emphasises the interpretation of basic format. Relationships among
conditions are discussed and it is shown that this is a separate matter from basic format. Some

formal definitions are proposed.

(Received March 1969)

In King (1967) the decision table shown in Fig. 1

G Y Y — N

G, Y — N —

Cs N Y N —

GOTO | Ri R, Ry Ry
Fig. 1

was given together with several possible sequential
testing implementations in flowchart form, one of which
is reproduced here as Fig. 2.

This flowchart is described as a ‘necessarily wrong’
conversion by Pollack (1967). He states that the
conversion implies that a “—’ is a “Y” with the suggestion
that this is somehow wrong. It appears that Pollack
regards ‘—’ as a legitimate condition entry only if used
in the sense of ‘either Y or N’. This interpretation is
not implied by limited entry table format but requires in
addition the assumption of the independence of con-
ditions in the stub.

A similarly confused interpretation of dash as a
condition entry is given by Chapin (1967) who states:

‘and blank or hyphen indicates that the condition to
be met is both “Yes” and ‘“No” and hence is either
ignored, or not considered, or irrelevant, depending
upon the context’.

This seems to accord with Pollack’s view that ‘— means
‘either Y or N°. If this view is correct then the table in
Fig. 3 cannot be regarded as a proper decision table
since the dash in R, never actually can ‘mean Yes’. This
is not a satisfactory point of view.

R; R R3
Age < 18 Y N N
Age > 65 — Y N
| A A As

Fig. 3

Before discussing basic format and dash as a condition
entry, it should be made clear that this writer regards the
flowchart of Fig. 2 as a perfectly satisfactory conversion
of the decision table of Fig. 1 and Pollack’s comment
that it is ‘necessarily wrong’ as mistaken. We note that
in its original context (King, 1967) it was observed that
the table is ambiguous (i.e. fails to specify a unique action
set) should all three conditions give a ‘No’ outcome on
testing and hence there must be relationships among the
conditions which make this impossible. If this is not
the case then the table has not been properly checked
out and conversion to program cannot yet take place.
The view taken is that when implementing a table it
should be assumed that it correctly specifies the problem
solution, and any apparent ambiguity will be resolved
automatically by relations among the conditions.
Implementation is regarded as quite a separate matter
from checking for correctness.

Two sets of conditions for which the table of Fig. 1 is
satisfactory are shown in Fig. 4. For either of these it
can be seen that the flowchart in Fig. 2 is a satisfactory

implementation.
x <S5 Y Y — N Age < 60 Y Y — N
x>2 Y — N — Age > 20 Y — N —
y>0 N Y N — Sex = ‘M’ N Y N —
| Ry R Ry Ry | G; G2 G; Gy
(@))
Fig. 4

* Computer Unit, University College of Wales, Aberystwyth, Cards.

¥202 IMdy 61 U0 1senb Aq 0618GE/0ZE/P/Z L/eIo1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumod

Limited entry decision table format 321

The table of Fig. 4 (a) divides the points of the cartesian
plane into the four mutually exclusive and exhaustive
regions shown in Fig. S. The table determines uniquely
for any point (x, y) the region to which it belongs.

Y x=5

R;3 R;

x=2
Fig. §

The table of Fig. 4 (b) divides a set of personnel
records into four groups with each record being in one
and only one group. These are: females between 20 and
60 (G,), males aged less than 60 (G,), females aged 20
or under (G;) and personnel aged 60 or over (Gy).

These two examples show that it is inappropriate for
Pollack (1967) to describe Fig. 2 as a ‘necessarily wrong’
conversion of Fig. 1. The so called ‘correct’ version
given by him and reproduced here as Fig. 6 is simply
not relevant. There is no question of unresolved
ambiguity in the examples of Fig. 4, in both of which a
‘No’ outcome to the first condition decides the case
finally and further testing is pointless. The implication
of Fig. 6 seems to be that table error checking may be
carried out as a by-product of conversion to program.
This philosophy has been adopted by many writers of
ALGOL, FORTRAN and other compilers but seems
unlikely to prove satisfactory for table processors.

UNRESOLVED
AMBIGUITY

Fig. 6

Basic format for limited entry tables

The basic structure for limited entry tables has been
given frequently in the literature, e.g. see Pollack (1963).
The format for the condition section of the table is shown
in detail in Fig. 7. C,;, C,, ..., C,, (the ‘conditions’),
denote logical propositions about some set of prime or
basic variables in the problem.

The if, and, and, . . ., then to the left of the table and the
rule references Ry, R,, . . ., R, are implicit in the format
and are normally not shown explicitly. The action sets

Ri R R; R,

if C e e e | e

and C; e e e | e

and C; e e e | e

and Cp | e | e | e | e
then

A A A | A,

Fig. 7

corresponding to each rule are shown briefly as
A, A, ..., A, Note that these are not all necessarily
distinct. Each ‘¢’ denotes a limited condition entry
which may be either ‘Y’ (yes), ‘N’ (no) or ‘— (dash).
Leaving an entry blank is frequently used as an alterna-
tive convention to entering a dash.

A ‘rule’ is specified by a single vertical column to the
right of the first vertical line. A rule ‘holds’ if, when
the table is activated in respect of some data, the relevant
conditions are found to be satisfied or not satisfied as
specified by the condition entries. (Some readers may
prefer to regard the condition part of a table as an
‘action set selection function’ which is ‘applied’ to data.)
The interpretation of the condition entries is:

(a) A dash specifies the corresponding condition to be
not relevant for the rule.

(b) A Y’ or ‘N’ specifies the corresponding condition
to be relevant for the rule. This means it must be
tested to determine whether the rule holds. More-
over, if the entry is ‘Y’ then the condition must be
found to be true for the rule to hold and if ‘N’ it
must be found to be false.

We take the table of Fig. 4(b) as a specific example.
The interpretation of the four rules is:

(1) if Age << 60 is true and Age > 20 is true and
Sex = ‘M’is not true then G,
(2) if Age < 60 is true and Sex = ‘M’ is true then G,
(3) if Age > 20 is not true and Sex = ‘M’ is not true
then G3
(4) if Age < 60 is not true then G,

The interpretation of the condition section of a table
for a particular rule derives directly from the basic
format described above. The interpretation of the dash
entry is that the condition is ignored for the particular
rule. Thus in the foregoing, the second condition
(Age > 20) is ignored in the process to decide whether
the second rule holds. Dash thus ‘means’ either that the
condition should not be tested for the rule or, if already
tested, the result obtained is not taken into account. In
Fig. 3, therefore, the dash in R; means that the second
condition is not relevant in deciding whether to take
action A;. The decision on whether to take this action
depends only on the first condition. If R; does hold
and the second condition is tested then it will necessarily
be found to be false but this is irrelevant.

We discuss five alternative conventions on the overall
meaning of a table. These are that the entries in the
table must be such that:

(i) one and only one rule will hold. In this case one
action set will be specified on each activation of
the table,

¥202 IMdy 61 U0 1senb Aq 0618GE/0ZE/P/Z L/eIo1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumod

322 P.J. H. King

(ii) either one rule holds or no rules hold. In this
case tables are an extension of the concept of the
simple if statements of ALGOL and COBOL
where no action results if the condition is found
to be false,

(iii) one and only one action set is specified. In this
case if more than one rule holds then these rules
must specify the same action set,

(iv) either one action set is specified as in (iii) or no
action set is specified,

(v) any number of rules may hold and more than one
action set may be specified, namely those cor-
responding to the rules that hold.

The first four conventions are similar in that they each
specify that not more than one action set is performed
on each occasion the table is applied to data. In terms
of implementation this implies a search for a rule which
holds and the performance of the corresponding action
set. Once a rule which holds is found no further rules
are tested. This is the approach adopted in the imple-
mentation of a recent decision table extension to ALGOL
by Bjork (1968). The last convention, although not
generally used, requires that every rule be tested and the
action set corresponding to every rule that holds per-
formed. This convention has been used by Barnard
(1969). Sprague (1966) suggests that conventions (iii)
and (iv), where the emphasis is on action set selection, are
preferable to (i) and (ii) and convention (iii) was assumed
by King (1967, 1968). We suggest that either this or
perhaps (iv) will prove more satisfactory than (v) when
implementation is to be on a computer with a single
central processor and systems analysis and design are
oriented to this end. It seems likely that the last con-
vention will prove most useful for specifying systems
and programs for multi-processor configurations.

It is worth noting that limited entry tables can be
implemented simply in languages with the facilities of
ALGOL by direct interpretation of the basic format.
We illustrate this implementation and the variations
corresponding to the semantic conventions (i), . . ., (V)
using Fig. 4(b). The G; are now regarded as action sets.
An implementation suitable for any of the conventions,
(i), (ii), (iii) or (iv) is:
begin boolean C,, C,, Cj;;

C, := Age < 60; C, := Age > 20; C; := Sex = type

(M),
if C; A C, A\ 1C; then G, else

if CiA\Cs then G, else

if {Co A 1C; then G; else

if 1C, then G,
end

In the case of conventions (i) and (iii) it may be desirable
to add after G4 ‘else ERROR’. 1t is clear that the rules
can be tested in any order. The implementation for the
fifth convention is:
begin boolean C,, C,, Cs;

C, := Age < 60; C, := Age > 20; C; := Sex = type

(‘M’);
if C; A C, A\ 1C; then Gy;

if C;AC, then G,;

if {\CoACs then G;;

if .C, then G,
end

Whilst the second implementation would suffice for
conventions (i) and (ii) considerations of efficiency
suggest that testing should cease on finding a rule which
holds. Note that this implementation would not be
satisfactory for conventions (iii) and (iv) as it may lead
to an action set being performed more than once.

Proposals have been made by Wirth (1966) for indi-
cating that statements in ALGOL may be carried out in
parallel. His proposal is to introduce a new separator,
and, to be used instead of ; to mean that the statements
either side can be carried out in parallel as opposed to
the sequential interpretation of ;. The symbol with is
used here to represent this separator in preference to and
as proposed by Wirth to avoid confusion with the earlier
use of and in this paper to represent A . We suggest,
and assume here, that the relationship proposed should
be transitive even though this is a matter which seems to
require further discussion. (It is easy to give examples
where S; may be carried out in parallel with S, and S,
with S; but parallelism between S; and S; seems likely
to lead to difficulty, e.g.

a:=a+ bwith x := ywitha :=a+ ¢)

Using this notation for parallelism then the imple-
mentation for convention (v) can be written:

begin boolean C,, C,, Cs;
C, := Age < 60 with C, := Age > 20 with C; := Sex
= type (‘M’);
if C; A C, A\ 1C; then G with

if Cl /\ C3 then G2 with
if {Co A 4Cs then G with
if 1C, then G,

end

This would also be suitable for conventions (i) and (ii)
but not for (iii) and (iv). The value of the parallelism
naturally depends upon the extent and complexity of the
actions denoted by G; and of the logical propositions in
the boolean assignments.

Table checking and implementation

The view taken in this paper is that a clear distinction
should be made between checking that a table is a
satisfactory specification of requirements and its imple-
mentation. We suggest that these two aspects should be
treated quite separately and dealt with independently.
Checking should be completed satisfactorily prior to
implementation so that during conversion to program it
is assumed the table is a correct specification of the
problem solution. It is not satisfactory to regard
checking as a by-product of this conversion.

Methods of checking clearly depend upon the con-
vention adopted for overall table meaning. The dis-
cussion in the remainder of this paper relates to the third
and fourth conventions of the previous section. It has
been argued previously (King, 1968) than when checking
a table adhering to one or other of these conventions it
is necessary to ensure that it is unambiguous. For the
third convention it is also necessary to ensure that the
table is complete in the sense that an action is specified
for every possible outcome.

It is important to realise that a decision table should
not be regarded as a statement of relationships which
hold in particular circumstances. When constructing the

¥202 IMdy 61 U0 1senb Aq 0618GE/0ZE/P/Z L/eIo1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumod

Limited entry decision table format 323

condition section of a table, sufficient entries must be
made to resolve adequately the decision situation.
Entries additional to these will lead to inefficient and
cumbersome program. Thus in Fig. 4(b) the entry for
the first condition in the third rule would be ‘Yes’ if our
aim were to make statements about relationships which
hold, since not being older than 20 implies being under 60.
Such an entry is undesirable, however, since the group to
which a person belongs is uniquely determined by the
table as it stands. Referring to the interpretation of
basic format we see that such an entry in the third rule
would imply that the first condition must be tested to
determine whether this rule holds. In fact, testing this
condition is not relevant in deciding on this rule.

To prevent unnecessary testing of conditions it is
desirable to maximise the number of dashes in the
condition section of a table consistent with fully
specifying actions to be taken. It is important to realise
that a Y’ or ‘N’ entry is stating that a condition is
relevant to a rule and therefore must be tested to deter-
mine whether it holds.

A useful way of indicating the outcome of conditions
which are not relevant in deciding whether a rule holds
but for which, when it does hold, the outcomes are
known, is to give these outcomes in brackets. These
bracketed entries have the same status as comment
statements in programming languages, i.e. their purpose
is to improve readability and they are ignored by pro-
cessors. Using this convention the table of Fig. 4(b) can
be written as shown in Fig. 8 in which it is noted that
personnel in G; are aged less than 60 and those in Gy
are aged more than 20.

Age < 60 Y Y (YY) N
Age > 20 Y — N (YY)
Sex = ‘M’ N Y N —

G G2 Gz Gy
Fig. 8

The bracketed entries are implied by other unbracketed
entries. We describe a table which only contains the
entries required to determine the rules as an algorithmic
table and one that includes all implied entries as a
descriptive table. The notation suggested above enables
these two forms to be combined.

Relationships among conditions of a table

In the introductory discussion of the tables of Fig. 4
the argument depended on the relationship which exists
between the first and second conditions. A simultaneous
‘No’ outcome to these two conditions is impossible and
hence the third and fourth rules are never simultaneously
satisfied and the table always specifies a unique action
set. In this section we attempt a formulation of relation-
ships between the conditions of a table in terms of the
first order predicate calculus (e.g. Stoll, 1963) and
suggest definitions for ‘dependence’ and ‘independence’
of conditions. A previous definition of independence of
conditions was given by Pollack (1963, pp. 33-34). The
reasoning behind Pollack’s definition is difficult to under-
stand. Under it the conditions in the table in Fig. 9(a)
would be ‘independent’, whereas those of Fig. 9(b)
would be ‘dependent’.

a <18 Y — N a> 18 N — Y

a>60'—‘YfN a<60|—{N’Y
|A1|A2’A3 |A1|A21A3
(@) ®)

Fig. 9

As these two tables are, for all practical purposes,
identical, it seems that any definition of independence of
conditions which regards them differently cannot be
satisfactory.

Denoting the conditions of Fig. 9(a) by C,(a) and
C,(a) respectively we can express the relationship
between them by the tautology (1).

I= (Va)(Ci(a) - 1Cx(a)) ()
= (Va)(Cy(a) — 1Cy(a)) ()
= ~(32)(Ci(a) A C4(a)) (€)

We note that (2) can be obtained from (1) by replacing
the sub-expression to which the quantifier applies by its
contrapositive and from either (1) or (2) we can derive
(3) by negation. (1), (2) and (3) are thus different ways
of expressing the same relationship.

This information can be included in the decision table
notation as shown in Fig. 10 where it has been added
to the algorithmic specification given in Fig. 9(a).

R; R> R3 Ry

CG@ | Y || N [

C (a) (N)[Y | N | ()
Al | Az | As | P
Fig. 10

In R, and R, the entries implied by (1) and (2)
respectively are shown using the notation already intro-
duced. R, has been added to the table with the notation
P* in the action section denoting the rule as a priori
excludable. That is, the indicated combination of con-
dition values will never occur and the rule will not appear
in the algorithmic form of the table. For consistency of
notation the entries in a priori excludable rules are also
bracketed. We note that the table of Fig. 10 is complete
in the sense that it covers all possible distinct rule entries
for two conditions. Note that the algorithmic version
of the table is obtained by first omitting all bracketed
entries and then rules with no entries.

We describe the table of Fig. 9(a) as being ‘algorithmi-
cally complete’ since it can be rendered complete in the
sense of covering all possible distinct rule entries by the
addition of implied and a priori excludable information.
An algorithmically complete table is one that satisfies
the third of the conventions on overall meaning given
above.

A similar type of analysis to determine completeness
is now given for a more complex table.

wi; > R Y| Y NIN|—|—|—|—|—
w; >0 — | —|Y|Y|—|—|N|N N‘
wi+w2+w3>0| —| —|—|—|N|N|Y | Y |Y
A>3X%XxR — | —|Y|N|—|—|N]|Y|—
A>6XxR N|Y|N|—|N|Y|—|N|Y

a1 a2 [a3 a1 | as | as | a1 | a6 | as |

¥202 IMdy 61 U0 1senb Aq 0618GE/0ZE/P/Z L/eIo1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumod

324 P.J. H. King

The table shown in Fig. 11 appeared in King (1968)
in less formal notation. The variables w,, w,, w3, R and
A which appear in the condition stub are always positive.
The action sets are abbreviated as a, a,, . . ., ag.

Denoting the five conditions in Fig. 11 by C,(w;, R)
C,y(wy), Cs(wy, Wy, W3), C4(A, R) and Cs(A, R) respec-
tively we note that there are four relationships among
the conditions which can be expressed by the tautologies
@), (5), (6) and (7) in which, for convenience, the con-
dition arguments are not shown.

= (Vw)(VR)(C; — Cy) @
= (VW(VW)(VW3)(VR)(C, — Cy))
= (Vw)(Vw)(Vw3)(C, — Cy) (6)
= (VA(VR)(-C4 —+Cs))

Four further tautologies can be obtained from these
by replacing the inner expressions by their contrapositives
giving (4a), . . ., (7a).

= (VW)(VR)(-C, —-C)) (4a)
= (VW(VW)I(VW3)(VR)(-C3; - C)) (5a)
= (VW(VW)(VW3)(:C3 — 1Cy) (6a)
= (VAXVR)(Cs — Cy) (7a)

The a priori excludable outcomes are given by

(4b), . . ., (7b) which can be obtained from either
4),...,(7) or (4a), . . ., (7a) by negation:
= 1(3w)(ARXC, A 1Cy) (4b)
= 1(3w)(Iw)(AwW)(IR)C, A C3) (5b)
= 1(Aw)(Aw)(IW3)(C, A -Cy) (6b)
=4(FANIR)Cs A\ Cy) (7b)

Fig. 12 shows the algorithmic table of Fig. 11 re-
written to include all entries implied by the tautologies
4), . . ., (7a) and the a priori excludable rules specified

by (4b), ..., (7b). The references to the tautologies
justifying particular entries are shown below the actions
in the same order as the implied entries. Thus (4) is
equivalent to the (Y) entry against C, in Ry, (5) is
equivalent to the (Y) entry against C; in R, (4b) justifies
the a priori excludable R, etc.

We can now assert that the table of Fig. 11 is
algorithmically complete if the table of Fig. 12 is
complete in the sense that all of the 32 (i.e. 2°) distinct
rule entries composed only of Y’s and N’s (i.e. not —’s)
are either explicitly included or implied. If the table is
such that for any two rules we can find at least one
condition for which one of the rules has a Y entry and
the other a N entry then the completeness or otherwise
of the table can be determined by a simple counting
process. This is immediately apparent when we note
that a rule with p dash entries can be satisfied by 2°
distinct outcomes if it is assumed that all Y, N com-
binations can actually occur, ie. that the conditions
are in some sense ‘logically independent’.

We see from Fig. 12 that every rule pair has at least
one condition for which one of the rules has a Y entry
and the other a N entry except for the rule pairs
{Rm, Rll}’ {Rlos R13}’ {Rll, R12}a {Rlla Rl3}9 {RIZ’ RIS}'
We note that all of the rules involved have the pseudo
action set P*. These pairings indicate that particular
Y, N combinations are covered by more than one rule.
This multiple inclusion of particular Y, N combinations
is eliminated if rules R,q, . . ., R are replaced by the
rules Ry, . . ., R;s of Fig. 13. These rules cover all the
Y, N combinations that were covered by Ryg, . . ., Ry3
but each combination is included only once.

In Fig. 13 the number of distinct rule entries composed
only of Y’s and N’s explicitly included or implied by
each rule is given below the action-sets. We see that
these total only 31 and the table is incomplete. The
table of Fig. 11 is not, therefore, algorithmically com-
plete and there is one logically possible outcome which

Ry Ry R3 Ry Rs R Ry Rg Rog Rio Rn Ri2 Ri3

Ci (w1, R) Y Y N N N) N N N N) Y Y — —

Cz (wy) xY) |) Y Y ™) gN; (N) (N) (N gN% (—) Y) —

C3 (w1, wa, W3) SO NING SINGY) N N Y Y Y — Ny N | —

C4 (A, R) — (Y) Y N — Y) N Y Y) — —_ — N)

Cs(A,R) N Y N | (N| N Y | N)| N Y — — — |

* * * *

Tautologies which justify 311 2112 a63 %1 g; g; 2&11 22 2&51 l;b IS)b I6’b]7)b

bracketed entries 5 5 7 6a 6a 7 Ta
Ta 7a
Fig. 12

R; R: R; R4 Rs R¢ Ry Rg Ro Ripp Rt Rz Riz Ry Rys
C1 (w1, R) Y Y N N N T N ®™N M) MMM Y| (N (N)
Cz (w1)) | M) Y Y MN) | (N) N N (TI:II M Y| DO
C3 (w1, W2, W3) M O MY N N Y Y Y — NI mMm = m
Ci(A,R) — M| Y N — || N Y | V)| — — — | MN) | (N) | (N)
Cs(A,R) 7 N Y N N) N Y N) N Y — — —) x) | V)
No. of distinct rule entries I a21 ’ a12 a]3 a11 a24 a15 a]1 a16 als 1 P8* I:t* ‘ P4’.= Pl* P2* Pl*

¥202 IMdy 61 U0 1senb Aq 0618GE/0ZE/P/Z L/eIo1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumod

Limited entry decision table format 325

it does not cover. We note that this is the outcome
shown in Fig. 14 which must be added to the rules of
Fig. 11 (with dashes replacing the (Y)’s) and an action
set specified if we require the table to be algorithmically
complete, i.e. to adhere to the third of the conventions
discussed previously.

Ci (w1, R) N
Cz (w1) Y
C3 (w1, wa, w3) (Y)
Cs(A,R))
Cs (A, R) Y
|
Fig. 14

The foregoing discussion has illustrated by example
in an informal way how relationships among the con-
ditions of a table may be taken into account in table
checking. There has been no attempt to enumerate
formal rules for carrying out such checking manually
since it is the author’s view that tables with five or more
conditions should normally be checked out by computer
and that this is desirable even with only three or four
conditions. The manual checking of tables is tedious
and error prone and suitable algorithms are available
upon which satisfactory checking programs can be based.
As some of these involve the enumeration of ‘Y, N’
combinations and pairwise comparisons of rules they
are not suitable for manual use. The determination of
rules Ry, ..., R;s of Fig. 13, as a non-redundant
equivalent of rules Ry, . . ., R;; of Fig. 12, is best left
to computer program, as is the detection of the rule
shown in Fig. 14 as the one not covered by Fig. 13 and
hence omitted from Fig. 11 and the tautologies (4),
*), ..., (7b).

We now attempt formal definitions of ‘logical
dependence’ and ‘logical independence’ for a pair of
conditions. We denote by x the prime or basic variables
in the problem about which C,(x) and Cy(x) are logical
propositions, i.e. entries in the condition stub of a
limited entry decision table. We say that C,(x) and
Cyu(x) are logically independent conditions if all of the
four statements (8), (9), (10) and (11) are true. If one
or more is false then we say the conditions are logically
dependent.

(@x)(Ca(x) A Co(x)) ®
@X)(Ca(x) A Co(x)) ©)
@x)(Ca(x) A Co(x)) (10)
@) Ca(x) A 1Co(x)) (1n

We have seen in the previous discussion that if a pro-
position of the form of (8), . . ., (11) is false then it gives
rise to a group of a priori excludable ‘Y, N’ combinations.
Moreover, if false, it is also equivalent to two tautologies
each of which gives rise to an implied entry in one or
more rules, e.g. if (8) is false then we have (12) and (13)

= (Vx)(Ca(x) — 1Co(x)) (12)
= Vx(Co(x) = 1Ca(x)) (13)

We note that if two of the statements (8), . . ., (11) are
false, then either one or other of C,(x) and Cy(x) is a
logical constant or they are propositions which either
always have the same value or always have opposite
values. If three of the statements (8), ..., (11) are false
then both propositions are logical constants. The
formulation is such that at least one of the statements

(8), . . ., (11) must always be true. If the conditions in
a table have been properly selected, therefore, only one
of the statements (8), . . ., (11) will be false when a pair
of conditions is logically dependent.

If a table is such that no pair of conditions is logically
dependent then there are no implied condition entries
nor any a priori excludable Y, N’ combinations. In this,
case the table must contain or imply 2™ distinct, Y, N’
combinations if it is to be complete, where m denotes
the number of conditions in the table. If it is to be
unambiguous then, if a particular Y, N’ combination is
included in more than one rule, these rules must
specify the same action set. If a table has one or more
pairs of rules which are logically dependent then the
problem specification should include statements of this
logical dependence which can be used in table checking
as indicated in the foregoing discussion.

It is important to distinguish logical dependence and
independence as defined above from dependence in a
probabalistic sense (stochastic dependence). With this
type of dependence, knowing the outcome of C,(x)
provides information on the likelihood of the outcome
of Cy(x). Thus a Yes outcome to ‘height greater than
6 ft’ means that we are more likely to get Yes than No
to ‘weight greater than 140 Ibs’. Whilst information on
stochastic dependence may be taken into account at the
implementation stage, to obtain efficiency it is not relevant
at the checking stage when we are concerned only that
there is correct provision for every outcome which may
occur, however infrequently.

Conclusions

It is important to distinguish between decision table
checking to establish that the problem solution is
adequately defined and the translation of a table to a
lower program level. Decision tables require checking
procedures which should be quite distinct from pro-
cedures to convert to other program forms. Recent
published material indicates that this is not fully
appreciated and that basic decision table format is not
properly understood.

If algorithms are to be efficiently specified by decision
tables then it seems necessary to take account of relation-
ships between conditions in the checking process. This
is particularly true of application in the area of com-
mercial data processing where the conditions are
frequently highly related. It seems clear that table
checking should be a computer function and that
statements of relations between conditions should be
supplied by the problem analyst in addition to the table
itself. It is not suggested that the notation used in this
paper is a suitable vehicle for supplying this information
in the d.p. field but it might help to give insight in
theoretical investigations. A simple more widely under-
stood notation is easily specified for practical d.p. work.

Translation from the usual type of branching speci-
fication to decision tables, followed by a checking of
the resulting tables, has been used as a method of
checking branching-type specifications (Harris, 1967). If
this method is used as a basis for producing warning
diagnostics, it would seem desirable for programming
languages to include facilities for making general state-
ments about a program in a notation equivalent to that
of the first order vpredicate calculus.

¥202 IMdy 61 U0 1senb Aq 0618GE/0ZE/P/Z L/eIo1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumod

326 P.J. H. King

References

BArRNARD, T. J. (1969). A new rule mask technique for interpreting decision tables, Comp. Bull. 13, pp. 153-154.

Biork, H. (1968). Decision Tables in ALGOL 60, BIT, 8, pp. 147-153.

CHAPIN, N. (1967). An Introduction to Decision Tables, DPMA Quarterly, April 1967, pp. 2-23.

Harris, F. T. C. (1967). The partial automation of systems analysis, contribution to Datafair *67.

KING, P. J. H. (1967). Decision Tables, Comp. J., 10, pp. 135-142.

KING, P. J. H. (1968). Ambiguity in Limited Entry Decision Tables, CACM, 11, pp. 680-634.

PoLLACK, S. L. (1967). CR 12948, Comp. Revs., 8, pp. 501-502.

PoLLack, S. L. (1963). Analysis of the Decision Rules in Decision Tables, Memo RM-3669, Rand Corp., Santa Monica,

California.

SPRAGUE, V. G. (1966). Letter to Editor (On Storage Space of Decision Tables), CACM, 9, p. 319.
StoLL, R. R. (1963). Introduction to Set Theory and Logic (Chapter 4), W. H. Freeman and Co., San Francisco and London.
WIRTH, N. (1966). A note on Program Structures for Parallel Processing, CACM, 9, pp. 320-321.

Book Review

Automatic Information Organization and Retrieval, by Gerard
Salton. 1968. 514 pages. (McGraw-Hill, 126s.)

The main theme here is reference retrieval. Straight-forward
mechanical aids to essentially manual methods are not really
considered, however—the emphasis is on the sophisticated
techniques needed to carry out the whole operation by
computer, both the initial analysis of each incoming document
leading to storage of a summary, and the subsequent retrieval
of references to those documents relevant to a particular
request. The main problem is to obtain an accurate picture of
the meaning or content of each document and request; each is
summarised as ‘a vector of content identifiers’, which vectors
can then be matched. Thus the techniques involved include
the construction and use of synonym dictionaries, syntactic
analysis of English text, cluster analysis, statistical phrase
analysis and structure matching techniques. Further, most
importantly, ways of measuring the effectiveness of the
various techniques are derived.

All these topics are explained, starting from a level to make
them comprehensible to a reader with a general understanding
of computer processing, but without specialist knowledge:
representation of tree structures and the binary search
technique, for example, are clearly explained. Rather more
mathematical background is necessary: matrix manipulations
appear without prior explanation, though the section on
mathematical retrieval models is prefaced by an introduction
to the necessary set theory.

Professor Salton being one of the pioneers in this research
area, these are topics on which he is well qualified to write.

The treatment is comprehensive, the material very well organ-
ised and the explanations clear. Many of the results tabulated
in support of the theories have been obtained on the Smart
experimental automatic retrieval system built up in the last
few years by Professor Salton and co-workers. This system
is indeed described, in a 65-page appendix, in the detail
needed for a user to punch the cards specifying the options to
be exercised on a particular computer run; do such details
really belong in a text of this kind?

Results quoted all seem to relate to quite small collections of
documents, which are adequate for comparison of various
automatic techniques But little attention is paid to a
comparison of either the effectiveness or the economics of
these automatic methods with manual systems. In addition
to the principal theme of reference retrieval, a chapter is
devoted to systems for storing and retrieving facts themselves,
rather than references. A number of auxiliary operations—
text editing, indexing, selective dissemination of information—
are touched upon in a further chapter. It is unfortunate that
the sample of output from a syntactic analyser program on
page 167 should show an incorrect analysis of the sentence
chosen, but this is an isolated flaw in a book where a great
mass of detail has been carefully assembled.

This book, then, gathers together the main theories and
results of recent work in automatic I.R.; over 300 references
are given, as well as a selective bibliography of another 300
items. In addition to those directly involved with I.R., pro-
grammers in other applications areas may well find some parts
of the text relevant, for many of the techniques explained have
wider application.

A. J. MrtcHELL (Leeds)

¥202 IMdy 61 U0 1senb Aq 0618GE/0ZE/P/Z L/eIo1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumod

