A syntax for ALGOL input/output formats

By W. A. Zaremba*

The desirability of simple and yet comprehensive input/output formats is postulated. A possible
grammar for ALGOL formats is given and shown to be of a simple precedence type. A reduced
precedence matrix has been included and the meaning of major constructs explained and illustrated
using the regular expression language. The proposal is contrasted with the relevant part of a
report by Knuth (1964) on ALGOL input/output conventions, and various trade-offs are briefly

discussed.
(Received January 1969)

Basic (primitive) procedures in terms of which the input
and output of ALGOL programs can be described have
been defined in the report of Working Group 2.1 of
IFIP (1964). In any practical application these pro-
cedures have to be augmented by a comprehensive set of
other conventions and one such set has been defined and
published as a report of a Committee of the Association
for Computing Machinery (Knuth, 1964). Included in
it are the proposals for formats, input/output procedures
and control variables. It would be rather hard to
improve on the scope of those proposals, in this article
therefore we want to examine a much narrower field of
format specifications only, and to exclude all discussions
of input/output procedures, etc. The motivation for
this work is twofold:

(a) There is a lot to be said for the simplicity of
FORTRAN type format in which a prefix letter
determines the type of conversion and the digits
denote the field width.

(b) The full generality of formats defined by Knuth
(1964) is unlikely to be required in practice, while
some rather important cases of output such as the
replacement of leading zeros by asterisks (for
cheque protection, etc.) cannot be specified at all.

The object of this article then is to describe a set
of alternative standard conventions for input/output
formats. In particular, the syntax will allow for both a
full pattern specification by picture as in Knuth (1964),
and also a very compact FORTRAN:-like representation,
if so desired. Further, because of the use of a so-called
line-up format as separator for the editing formats, a
one-to-one picture pattern of entire line may be possible
in many cases. The syntax given in the next section is
unambiguous and follows the method of Wirth (1966).
It was possible to make it a simple precedence type as
well, thus its parsing is immediately available using the
well-known standard algorithm. The full specification
is rather lengthy with 166 productions rather than just 81
of Knuth (1964), this however is forced by the require-
ment of non-empty right parts in all productions and a
“linear’ arrangement with just two terms in each definition
(except in the last production No. 166).

We shall now informally describe the type of coding
that might be desirable in specifying the output. The

* Standard Oil Co. of Calif. WOI, La Habra, California

point of departure is a FORTRAN format like, say,
F6.2. It would be natural to interpret this (unlike in
FORTRAN) as implying a fixed point conversion with
six fields ahead and two behind a decimal point. If
we now wanted to separate the thousands to make
for easier reading, we would wish to write something
like F3S3.2 where S would indicate a blank field.
A moment’s reflection shows that there is really no need
to distinguish the types integer and real by means of
different formats, thus the next step is to adopt the
approach of Knuth (1964) and to encode both fields
by D; hence D3 indicates an integer field while D3.2
denotes a real field. For further generality we may
include the ‘picture formats’ by allowing the repetition
of code letters, thus D3 = DDDand D3.2 = DDD.DD,
and adding the possibility of octal or binary conversions
by the use of some obvious codes (say Q and B
respectively) the system can be made quite powerful.
(Note that the system described by Knuth (1964) could
also be so extended, in principle though at the cost of
adding more code letters.)

The standard interpretation of format should be the
one most frequently required: i.e. a number after editing
would be aligned at the decimal point and then printed
in its field with all the leading zeros suppressed and the
sign, ‘—’ for negative and a blank for positive, in the
rightmost suppressed digit position. Since for a zero
value output nothing at all would then appear—so in
order to force a visible entry we would like to indicate
by means of some obvious code (say Z for ‘zero’) that
starting with that position zeros are to be printed whether
significant or not. Thus, for instance, D3S3 with a
value of zero would give an all blank field of 7 columns
but DZ2S3 would produce ‘00 000°.

Introducing now a special code, say F for ‘fill-up’
followed by * we could indicate that the non-significant
zeros rather than being suppressed, assuming no Z code
in the format, are to be instead replaced by the asterisks,
and in general, by allowing for other special characters
to follow the F we would trigger any special editing
requirements left unspecified in the current work (e.g.
F-+ might print ‘4> or ‘—’ rather than a blank or a
‘¢, etc.).

For the output of character strings the A-formats can
be introduced in a standard manner and with the same
type of replication and internal separations, or even
insertion literals, as for the numbers.

¥202 YoJe\ g uo 1senb Aq e¥Z8GE/ZE P/ L /e1o1e/|ulod/woo dno-olwepeoe//:sdiy wouj papeojumoqd

A syntax for 1|0 formats

Lastly, by allowing the formats to be nested and the
repetitions to be specifiable by remote elements through
a code letter R (say), we obtain the complete system.

Syntax and precedence matrix

The syntax is presented here in a way similar to that
used by Wirth (1966). The exact rules are:

1. All basic and non-basic symbols are written as
contiguous strings of characters without embedded
blanks.

2. One or more blanks must separate the symbols on
the right side of productions, i.e. the blanks act
there as concatenation symbols.

3. Successive productions with the same left part are
listed below one another, i.e. a transfer to the next
line acts as a metalinguistic ‘or’ and is equivalent
to the | of ALGOL report.

For ease of machine representation some liberties were
taken with the naming of basic symbols, e.g. LQ stands
for ‘left string quote’, STRN for ‘string’, UINT for
‘unsigned integer’, 10 for ;o etc. The non-basic symbols
have been assigned coded names only since most of them
are forced by the precedence requirements and do not,
of themselves, denote any conceptual objects. Those
few that do will be assigned special names in the next
section of the article (see: ‘Interpretation and examples’).
The precedence matrix (Fig. 1) following the syntax
specification (Table 1) has been reduced by collapsing
all identical rows (or columns) to list them just once.

More formally, if the range of bound variables is
1,...,nand K is any one largest set of indices of
dissimilar columns of the precedence matrix M, we
have the predicate colset (M, K) indirectly defining the
set K:

(k1)(k2){k1€eK N k2€K N k1#k2—(A (M, 11 E M, 1))}
A (kD){k1¢ K—(Tk2)(k2€K N ()M, =M, 15))}
= colset(M, K)

Similar expressions can be written for the rows of the
n X n precedence matrix M. This procedure has
decreased the size of matrix from 99 X 99 to just 85 x 35,
i.e. to about 30-49% of the original size. Since each
element can be coded 0, 1, 2 or 3 a natural idea would
be to use just two bits for its representation and to pack
the entire matrix into only about 186:32-bit words,
though of course because of multiple column (row)
headings the indexing gets more complex.

To save space and to get by using only the standard
character set, the column headings in Fig. 1 read verti-
cally down. Those reading as integers followed by :’
are to be correlated to entries in all the rows bearing
these same integers, and denote the ‘multiple’ columns.
For instance: 2: read vertically stands for the set (C3 C4)
etc. Where a number followed by ‘:* appears in a row
heading it applies to all symbols that follow behind until
possibly another such number. Thus for example
‘6:H1 9:LQ’ means that H1 is included in the column
headed by 6: (read vertically), while LQ is in the column
under the heading 9:.

The syntax specification and the precedence matrix
follow. Note that there exist no precedence functions
for this system.

R1 1N0:R UINT
C1

c2

2:C3

2:C4

cs

3:D1

3:D2

3:D3

3:D4

3:D5

3:D6

3:D7

3:D8

3:D9
3:D10
3:D11
3:D12
3:Q1

3:Q2

3:03

3:Q04

3:Q5

3:Q6

3:Q7

3:Q8

3:99
3:Q10
3:Q11
3:Q12
3:B1

3:B2

3:B3

3:B4

3:BS

3:B6

3:B7

3:B8

3:B9
3:B10
3:B11
3:B12
3:A1

3:A2

3:A3

3:A4

T3 F1 4:E
S:X1 /1 P1
S:x2 /2 P2
5:X3 /3 P3
5Lt

L

6:PX

6:H1 9:LQ
6:H2 9:F7
T:T1

T7:T2

g:F2

8:F3

8:F4

FS

6:F6

9:F8

F9

S

STRN

c

D

o

s s I e =
vADTw
A x

~

v

'ig‘ NbDbOQON=DWD=e* N

343

11SRCC2C345L67TFRF9FSS1CDZ. 1QBA1IC,RT

1:3112:S 22

£231:5:9 TO 0

Re

1H

Q

R R N N N B B R
v

T<c<c<c<c<c<=
I

I
T<<c<c<c<=
1

I
T<c<c<c<<<=
I

1
T<<c<cc<c<=
1

I
T<<<<c<<=
1

1
I<<<c<c<c<=
I

I
I<<<cc<<=
1

1
I<<<<<<=
I

I
T<<<c<c<c<=
1

I
I<<<c<c<c<=
I

I
I<<<<<<=
I

1
I<<<c<c<c<=
I

I

I<==

I<=

>
>

I1>>>

I>>>>>>>
I>>>>>>>
I>>>>>>>
I>>>>>>>
I>>>>>>>
I>>>>>>>
I1>>>

Pt bt bt bt bt bt bt bt bt bt bt bt b et e bt bed bl bt b

P bt b et b et
n

>>3>>>>>>

>>
>>
>>
>>
>>
<=

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>>>
>>>>
>>>>
>>>>
>>>>

>>>>> >>>
<<<<< <<=

<<
<<

>>
>>

<=

>>

>>
>>
<>>=
< =
>>
>>
<=

>>

2333353 >3>>>

>>
>>
>>
>>
>>
>>
>>
>>

>>
>>
>>
>>
>>
>>
>>

==>>>>>>>>
= >>>>>>>>
>=>>>>>>
>> >>>>>>>
<<> >>>>3>>
> >>>>>>
< >>>>>>
€< <>>>>>>
>>>>>>
€<<<>>>>
>>>>

<€<<<> >>

> >>
<<<<> >

> >
<<<<>

<<<< >>>

<<<< >>

<<<<

<<<< >>>

<<<< >>

<<<<

<<<<

W vYyviuvviivvyvivy

>>
>>
>>
>>
>>
<<
>>
<<

AVAYVVYY

<<

A

<<
< <<

233>>>>>>>
> >3>>>>>>
>>> >>>>>>
>33>3>>>>
>3>>> >>>>
>>>>> >>>
>>>>> >>
>>>> >>>>
>>3>> >>> >
>>>

>> > >>

> >>

> > >>
<

> >>

>>
>>
>>
>>

VVVVYVVVVVVYVVYVVVY¥VYVVVVVYVVVVVVVVVVVRVVVVYVYVYVY

>>
>>
>>
>=
>

<

>>
<<

<
<

>>
>>
>

>
>
>
>
>

>
>>
>>

>
>>

vVvVvy

Fig. 1. Reduced precedence matrix for the format syntax

¥202 YoJe\ g uo 1senb Aq e¥Z8GE/ZE P/ L /e1o1e/|ulod/woo dno-olwepeoe//:sdiy wouj papeojumoqd

344 W. A. Zaremba

Interpretation and examples

The syntax given in the last section defines an un-
ambiguous language, but it gives little insight as to legal
constructions; in the discussion to follow we shall,
therefore, use regular expressions for that purpose.
These can also serve as another definition, especially if a
recognizer be available. All regular sets have been
defined so that they contain no empty strings, and

this eases their recognition. In the terminology of
Brzozowski (1964) we have:

8(G) = ¢ for all G.

In the current section we shall use the same conventions
as before with the addition of scope brackets and the
iteration operator, respectively: { } and *. The conca-
tenation of regular sets is denoted by separating their

Table 1
Precedence syntax for I/O formats
1: S1—> S 42: DI2 - DIO 126: P2— P1 RI
2: Sl S 43: - DIl 127: - P3 Rl
3 =828 PRODUCTIONS 44-66 128: P3-> Pl STRN
4: S2-> STRN SIMILAR TQ 21-43 129: — P2 STRN
5. - SI STRN BUT WITH LETTER “Q” . .
6: S3-> SI REPLACING *“D”. 131: —X2
7. > S2 PRODUCTIONS 67-89 132: X3
SIMILAR TQ 21-43 133 — /1
8: RI— UINT BUT WITH LETTER “B” [34: —» /2
9: —R REPLACING “D”. 135: — /3
10: C1 = C 90: Al — A 136: — P1
11: —-S3 C 91: A4 A 137: — P2
138: — P3
12: C2— S3 92: A2—> Al RI
13: —Cl 93: A3 RI 139: L — L1
14: —>Cl 83 g‘slr A3—>25 S3 140: PX—> F CHAR
15: C3—=C2 P> S3)
16: —>C4 C2 96: A4 Al }Z;Z Hl:éx (
17: C4—>R1 97Z — A2 ’
I 98: — A3 143: H2 —> HI1
18: —>C3 RI
, 144: —>Hl STRN
19: C5— C3 99: E — D3
0 Ca 100: —D6 145: T1->) Rl
: 101: D9 146: — T2 RI
21: DI D 102: —DI2 _
) 104: — Q6 148: T3 — T1
24: D3 — D1 106: —QIl2
s Do 107 — B3 150: F1— E
108: — B6 151: —-PX E
26: D4—->D3 Z 109: — B9 152: — F6 T3
27: —>D6 D 110: — BI2 153: F2— L
28: D5—>D4 C5 1. — A4 154: —F4 L
29: D6 — D4 112: X1 —X 155: F3 - F4
: 113: =Ll X
30: —~D5 156: F4— Fl
31: D7 D3 e XN 157: —F2 Fl
32: —~D6 . 116. X3 XI STRN 158: —~ F3 Fl
33: D9 D : X3 —
~ 117: —X2 STRN 159: F5— F2
34: D8 — D7 C5 160: — F4
118: /1 |
35: D9 — D7 119: L1 / 161: F6 —H2 FS5
36: —D8 120: /2 /1 Rl 162: F7— LQ
37: DI0—>D3 10 121: - /3 RI 163: — LQ STRN
38: D6 10 122: /3— /1 STRN
: 164: F8 — F7 F5
39: —~D9 10 123: - /2 STRN -
40: —~>DI2 D 124: Pl P 165: F9— F8 RQ
41: D11 ->DI0 C5 125: L1 P 166: FT->T F9 T

¥202 YoJe\ g uo 1senb Aq e¥Z8GE/ZE P/ L /e1o1e/|ulod/woo dno-olwepeoe//:sdiy wouj papeojumoqd

A syntax for IO formats 345

names by one or more blanks, ¢ is an empty set,
while | now denotes the set union. We shall again
proceed from the constituents to the final expressions
and consider first and foremost the action during output.

Insertion: S3—S S* | S* STRN {S S* STRN}* S*

Examples: S

SS‘CR’S

‘KG’S*M’, etc.
This is an alternating sequence (at least one element) of
subsequences of code S—each standing for a blank
insertion, and/or strings—which are moved unchanged
to the output. Insertions are intended for use within
the subfields corresponding to the same edited item.
(The spaces outside or between the items are to be
specified by code X.) If a non-significant zero is sup-
pressed to the left of S, that S-position will be replaced
by a fill-up character (if within the scope of one). Note
that S code cannot be replicated, i.e. S4 does not imply
the expression SSSS, hence this code should only be
used to obtain a reasonable amount of subfield separation.

Replicator: R1-UINT | R

Examples: 3
R, etc.

Indicates a repetition of a parenthesized list or the
nearest conversion code letter (or a line-up code, but not
an S or a string) to its left and is either an unsigned
integer constant or a letter R denoting a ‘remote’
specification of value. The consecutive R’s in the
format string are associated left to right with the con-
secutive elements of an integer array or a list of pro-
cedure arguments (cf. Knuth (1964) sect. B.3.1), which
can be preset before the activation of input/output and
then counted down by one on each execution of the
relevant item, the editing action ceasing when the count
reaches zero. The method used is irrelevant here, except
that if negative initial values were allowed, we would
obtain the equivalent of an infinite loop terminated only
when the input/output list has been exhausted. If so,
then the action on a next call of the same format would
be as described later (see: ‘Format’).

Subfield Separator: C2—>S3 | {¢|S3} C {S3|4}
Examples: SSS

C

‘KG’S‘M’SCS, etc.
In a numeric item this is either an insertion as discussed
above or a single code C possibly surrounded by
insertions. C will cause a comma to appear in the
indicated position unless the nearest digit field to the
left had a suppressed zero whence a blank or a fill-up
character would be substituted for the comma.

Subfield: C5->C2 | {$|C2} R1 {C2 R1}* {C2|¢}

Examples: 2
SCS
SC2S82, etc.

This is either a subfield separator or an alternating
sequence (in particular a single element) of replicators
and subfield separators. All replicators refer to the
same nearest left code letter or line-up mark and each

one is individually interpreted as explained before.

Decimal Integer: D3—D {{¢|C5} D}* {C5|4}
Examples: DD
D3SD3
D2C2C2, etc.

Decimal integer format starts with a D (to indicate
decimal conversion) and continues with more D’s or
subfields separated by D’s. Each D not followed imme-
diately by a replicator stands for a single digit position
in the edited number, while a D followed by replicator
stands for as many positions as indicated by the value of
that replicator. Thus D3S = DDDS while DS3 =
DSDDD. This interpretation accords better with the
intuitive meaning of code. Standard editing suppresses
all leading (i.e. non-significant) zeros and places the sign
of the number (‘—’ if negative or a blank if positive) in
a D field immediately to the left of the first non-
suppressed digit of the aligned number expansion; hence
the integer format field width should be at least 2. If a
value of zero is output either nothing will appear at all
or the fill-up characters only will be printed, in case the
item is within the scope of a prefix F, as explained later.
A real number will be rounded-off to the nearest integer
before editing. If the field width allowed is insufficient
to accommodate the expansion an overflow condition
will be raised; the action in such case is undefined.

Decimal Z-integer: D6—>D3 Z {{$|C5} D}* {C5|4}

Examples: DDZ
DS3SZ3
DZC3C38S3, etc.

The purpose of decimal Z-integer format is to print the
number including some or all of its leading zeros, i.e.
this guarantees a visible entry regardless of the edited
value. Z code acts as a trigger indicating that the
leading zeros, normally suppressed, are to be printed
starting with the digit position associated with the Z
itself. Note that otherwise Z is treated within the format
asa D, i.e. Z3 expands to ZDD. For further illustration
see also the conversion examples at the end of this
section.

Decimal Real: D9—{D3|D6} . {{¢|C5} D}* {C5|}

Examples: DD.3S2
D3S3.2S°KG’
D.DDDD, etc.

This consists of a leading decimal integer or decimal
Z-integer subfield followed by a decimal point and
possibly a fractional subfield specification. The latter
has exactly the same pattern allowed for the integer part.
If the output value is zero, the integer part will be
suppressed and only the strings, which are parts of
insertions, if any, will come out—unless zeros are forced
by the Z trigger, or other fill-up characters by the
prefix F. Fraction will be printed in any case.

Decimal Exponential:
D12->{D3|D6|D9} 1, {{#|C5} D}* {C5|¢}

Examples: D543
D3S3.2,42, etc.

¥202 YoJe\ g uo 1senb Aq e¥Z8GE/ZE P/ L /e1o1e/|ulod/woo dno-olwepeoe//:sdiy wouj papeojumoqd

346 W. A. Zaremba

This format must start with either an integer, Z-integer
or a real decimal field followed by a ;, and an exponent
subfield constructed again according to the same pattern
used in the earlier parts. For this type of editing there
is never any zero suppression; the mantissa of number
is aligned from the left, sign is placed in the first position
and the exponent adjusted suitably. The prefix F code
and the Z trigger will thus have no effect on editing.

Constructions similar to D3, D6, D9 and D12 can be
defined for octal and binary conversions indicated by
codes Q and B respectively. These are not discussed
further but some examples will be found at the end of
this section.

Alpha Format:

Ad—>A {{$|S3} {R1 S3}* {|R1} A}*
cont. {$|S3} {R1 S3}* {R1|4}

Examples: A27
AAASINITIALS’S3SS‘NAME’SS20, etc.

Alpha formats are used for the transmission of strings.
Again the interpretation of replicators and insertions is
as for the decimal number formats, except that C codes
are not allowed here. The output of Boolean values
would normally be done through the alpha formats, the
conversions being specified by string procedures within
the output list. If the transmitted string is shorter than
the field width allowed, the edited string is padded on
the right with blanks; if longer, then an overflow condi-
tion must be raised and the action is undefined. An F
prefix over the alpha field has no meaning unless that is
specified outside the standard system.

Editing Format:
E—D3|D6/D9|D12|Q3| . . ., etc. . . .|A4

This is simply a collective category for all format items
specifying the editing of values as opposed to the ‘line-up’
formats not associated with editing.

Line-up Format:

L—{X|/|P} {¢|R1} {STRN R1}*
cont. {STRN|¢} {X]|/|P}}*
cont. {¢|R1} {STRN RI}* {STRN|¢}

Examples: X27

/1]
PX115‘NOTES’/3, etc.

These formats specify the device form control and
possibly the printing of constant titles. X code is used
to indicate the skipping of spaces within a given line,
/ stands for a carriage return followed by a line skip,
P will position the form at the top of the next physical
page. Again the sequences of replicators separated by
strings and trailing each code character are interpreted
similarly to those trailing the editing codes. Note that
S’s and C’s are not allowed as separators within the
line-up replicator sequence as they would make no sense
in this context. In place of S we can use X with the
same effect; also X can be replicated while S can not.

t The examples for F1 and F5 will not be carried down to the
level of basic symbols so as not to obscure the patterns.

Primary:

Fl—{¢|PX} E | {¢|PX} ({¢|STRN} F5) R1
cont. {S3 RI1}* {S3|4}
Examples: 1:E
PX E
(LE,L(ELE)RIS3)RI,etc.

A primary is either an editing format possibly prefixed
(PX) or a ‘chain’ (F5) of format items enclosed in
parentheses, possibly preceded by a prefix and always
followed by at least one replicator or an alternating
sequence of replicators and insertions. Since each item
in a chain may again be a primary, the definition is
necessarily recursive. The prefix PX consists of a
letter F (for: ‘fill’) followed by a single character code
(‘CHAR’ in the syntax part) which indicates a particular
editing function to be applied to all items within the
scope of prefix, i.e. either a single editing format or the
parenthesized list. In particular F* will fill all sup-
pressed zeros and S’s included within their sequence
(but not the strings!) with asterisks. Other characters
may specify special editing functions—these are undefined
within the general system. The replicator (sequence)
applies to the entire parenthesized expression and means
a sequence of repetitions of fields generated by this
expression, separated by blanks or insertions copied
from the replicator sequence. This simplifies the speci-
fication of grouping on the edited line, e.g. (D2S)2SS2
expands to DDS,DDSXXDDS,DDS. Note that the
automatic insertion of separating commas and the
transformation of the replicator S’s into X’s is necessary
since it is the parenthesized editing format that is to be
repeated and not its component subfields.

Chain: F5—L | {¢|L} F1 {{L|,} F1}* {L|¢}

Examples: L
F1
L F1
L F1, F1 L F1, etc.

This is either a line-up format or an alternating sequence
(possibly a single element) of format primaries, and
either the line-up formats or commas, the latter used
when there is no line-up action between the successive
primaries. When primaries are separated by at least
one blank, or a line or page skip, and when there are no
insertion literals, the use of expanded line-up formats
permits an exact match between the format and the
output string. (See the last conversion example.)

Format: F9—° {¢|STRN} F5°

Examples: ‘P°CONT’//(D10.2X8)6/)56’
“//D3S3.2,(D2S2.2SS)2SS2’, etc.

Finally, format is a chain of items possibly preceded by
a literal and enclosed in string quotes. During execu-
tion, successive editing format items from left to right,
allowing for parenthesized list repetitions, are used to
edit the successive items of an input/output list while the
line-up formats control the layout. In most situations
the number of editing items in a format will probably be
the same as the number of items to be edited in the
input/output list; if not so then we have to consider three
cases:

¥202 YoJe\ g uo 1senb Aq e¥Z8GE/ZE P/ L /e1o1e/|ulod/woo dno-olwepeoe//:sdiy wouj papeojumoqd

A syntax for 1|0 formats 347

(a) The end of format is reached before the input/
output list is exhausted—then the format should
simply repeat from the beginning.

(b) The values list is exhausted before the end of
format is reached—then the format should be
executed as far as possible (i.e., including any
line-up actions following the last editing item
activatedt), and on its next invocation, presumably
with some other values list, it should start at the
beginning again, and not at the point where it left
off earlier.

(¢) There are no values to be edited at all—then the
format should execute only the line-up actions, if
any, up to the first editing item.

Additional line-up actions may have to take place
automatically where forced by the physical properties of
the external medium (e.g. line or page overflow, tape
end, etc.), no automatic line skip is invoked though
merely because of repeated activation of the same
format, hence a print line may be built up, piecemeal,
by appending the edited text generated through those
activations. The exact specification of the automatic
actions caused by interrupts remains outside the scope
of the article (cf. Knuth, 1964).

On input, the action of all defined above constructs is
in general the same as during output, but less format
conformance is required. Thus, for a numeric input a
number located anywhere in the field indicated by the
format would be accepted with its decimal point and/or

1 This takes care of a frequently encountered case when a line-up
action is required after editing and is in line with sect.A.2.3.6.
of Knuth (1964), but contrary to the current interpretation of
formats in PL/1.

overriding the format specified positions, while the fields
corresponding to literals in the format would simply be
skipped; also a leading plus sign would be accepted in
lieu of a blank.

A few general remarks should be made on the system
as a whole: the syntax has been set up so as to allow a
literal almost anywhere within the format string. The
entire system is conceptually based on a kind of prefix
coding with each character like D, A, X, /, P determining
the meaning of all subsequent constructions trailing it,
until a new interpretation is triggered by a different
character. The last production (No. 166) is needed only
for the parsing; symbol T being an arbitrary marker to
help start and end the process simplifying thereby the
analysing algorithm. At the end of parse the stack
configuration is: T F9 T. The syntax still allows some
rather unusual constructions which, while not wrong in
that they permit unambiguous interpretation, would
seldom if ever be used in practice. Thus a comma may
precede or follow a period (D3C.C2 yields, say, 27,.,66
[sic.] Commas can also be specified within exponent
fields, though it was unlikely that exponents huge
enough to warrant it would ever be used. For compari-
son the report Knuth (1964) also allows some such
constructions so that the syntax defined here is com-
patible with some of his proposals; on the other hand
one could probably eliminate such cases by further
elaboration of the production system.

The examples showing the editing of numbers and
demonstrating the flexibility of the proposed system
have been collected in Table 2, while those given in
Table 3 illustrate the illegal constructions.

Table 2
Examples of format editing of numbers

In each block: 1st "line is a ‘short’ format,

2nd line is an equivalent ‘expanded’ format
3rd line is the result from a value 80247.5625 dec = 234567.44 oct.

4th_line is the result from a value —17.765625 dec = —21.61 oct.

D6 D3C3.5 B10.4
DDDDDD DDDCDDD. DDDDD BBBBBBBBBB. BBBB

80248 80,247.56250 Overflow

-18 -17.76562 —10001.1100

D4.3 D2DSD3.252SD2 B3.8,,5
DDDD. DDD DDDSDDD.DDSDDSDD BBB. BBBBBBBB,,BBBBB
Overflow 80 247.56 25 00 10.01110011,,+1111
-17.766 -17.76 56 25 —10.00111000,,+0011
D503 DZDC3C3.2 D3SZ3S3.2
DDDDD,,DDD DZDCDDDCDDD. DD DDDSZDDSDDD. DD
8025,,+01 00,080,247.56 080 247.56
-1777,~02 —00,000,017.77 —000 017.77
D.6,3 Q4S5QQQ.2 F*D3C3C3.2
D.DDDDDD,,DDD QQQQSsSQQQ.QQ F*DDDCDDDCDDD. DD

.802476,,+05 234 567.44 **xxxx80 247 .56

—.177656,,+02

—21.61

D4S ‘KG’S83.18 ‘G’

per
pppDsXCsppD. ps®

80 KG 247.6 G
KG -17.8 G

80,247.56

DDDCDDD. DDXXXXDDD. DDDSDDD

Line picture

—17.765_625 Edited line

¥202 YoJe\ g uo 1senb Aq e¥Z8GE/ZE P/ L /e1o1e/|ulod/woo dno-olwepeoe//:sdiy wouj papeojumoqd

348 W. A. Zaremba

Conclusions

It remains to compare the system as described above
with the one defined in Knuth (1964) and serving as a
yardstick, and in particular to discuss those features of
the latter which are not available here:

A. Sign Control: The sign at the left of a number will, in
general, be floating. The option to provide other
sign conventions is deliberately left open through the
possible specification of prefix code (see ‘primary’).
The sign following a number can be provided easily
by means of alpha field and a corresponding output
list item keyed to the signum function, and by out-
putting the absolute value of the number. Note,
however, that the position on the left where the sign
normally would have been, is wasted.

B. Truncation: The standard action here is to round the
numbers. Truncation can be easily achieved by
modifying the value of the list item itself, hence a
separate control through the format is not really
needed.

C. Virtual Decimal Point: This again can better be done
through the multiplication of the value in the output
list by a proper power of 10 so as to shift it left,
rather than by complicating the format system. On
input we might use the FORTRAN type convention:
i.e. a decimal point, if present in the input stream,
overrides the position specified by format; if not
present, then a virtual point is assumed just ahead of
the first digit field of format indicated fraction.

D. String Formats: These were evidently forced into
Knuth’s Report by the need to distinguish string
literals appearing in the program from those input to
the program. The need for any distinction should
disappear, however, when string-handling facilities
are added to ALGOL.

E. Boolean Formats and Non-formats: It did not seem
worth while to introduce special codes for these.

Boolean quantities can be mapped on input and out-
put into the representing character strings, which are
handled through alpha formats, while the non-
formats for transmission of values in the internal
machine form might perhaps be better considered as
I/O commands not associated with any formats.

F. Indefinite Replication: No special construction covers
this purpose although the effect could be obtained by
either a sufficiently large remote element R, or by
allowing the initial value of such element to be
negative and then counting it down. The latter
solution introduces some incompatibility, since
unlike R, an explicit (literal) replicator cannot be
negative. In any case, on exit from the loop through
an end of file or termination of output list the next
activation of the same format starts again at the
beginning, as explained before.

G. Standard Formats: The choice to provide these is
entirely arbitrary and does not affect the specification.

On balance, it would seem that sensible choices have
been made as most features omitted can be compensated
for by the modification of output values through expres-
sions, while the facility to obtain at will either the octal
or the binary editing, in addition to the decimal, might
prove useful in practice. Coding of report generators
should be easier with the possibility of exact one-to-one
match of position with the expanded line picture, while
the use of replicator sequences within editing items or
after the parenthesized lists adds much flexibility and
power to the specification. An ‘escape’ mechanism
obtained through the use of prefix code might enable
one to tailor relatively easily the general system to the
particular needs, and the general idea of having the
complexity of specification to reflect the complexity of
desired editing, should provide all the necessary
gradations of coding for the majority of situations
encountered in practice.

Table 3
Examples of formats disallowed by the syntax

D3'P*Q’3 Adjacent strings not allowed.
F(D3.2)2 Unbalanced parentheses: The opening parenthesis (after the F) is parsed into the prefix.
(D3.3,D4.3), At least one replicator must follow each parenthesized list.
D3R2SS.D Replicators must be separated by insertions or D’s.
D3XD3 This implies editing formats for two items. If only one item was intended, use D3SD3.
D3CSSC3 Comma insertion codes must be separated by replicators or D’s.
.D3C3 There must be at least one numeric field ahead of decimal point to allow for the sign.
/ISS'PAGE 1'S// No S codes are allowed within the line-up formats, use: //X2‘PAGE 1’X//.
X3, X5 The line-up formats may not be separated by commas.
DZz3723.272 Only one Z may appear to the left of decimal point and none to the right.
References

BrzozowsKl, J. A. (1964). Derivatives of regular expressions, JACM, Vol. 11, p. 481.

IFIP/WG 2.1. (1964). Report on input-output procedures for ALGOL 60, Comm. ACM, Vol. 7, p. 628.

Knuth, D. (Ed.) (1964). A proposal for input-output conventions in ALGOL 60, Comm. ACM, Vol. 7, p. 273.

WIRTH, N., and WEBER, H. (1966). A generalization of ALGOL, and its formal definition: Part I, Comm. ACM, Vol. 9, p. 13.
(1963). Revised report on the algorithmic language ALGOL 60, The Computer Journal, Vol. 5, pp. 349-367.

(1966). ASA FORTRAN, New York: American Standards Association.

¥202 YoJe\ g uo 1senb Aq e¥Z8GE/ZE P/ L /e1o1e/|ulod/woo dno-olwepeoe//:sdiy wouj papeojumoqd

