Design and testing of the System 4 random number generator

By J. D. Beasley and Kathleen Wilson*

The design of the System 4 random number generator is described, and test results given. No
particular originality is claimed, but a few conclusions by previous authors are commented on.

(Received March 1969)

1. Object

The purpose of this paper is to describe the tests used on
the random number generator for the ICL System 4
series of computers, to describe the reasons underlying
the choice of generator, and to present a summary of the
results obtained. It is felt that these results may be of
interest both to actual or potential System 4 computer
users and to anybody wishing to produce a generator for
use on some other machine with convenient facilities for
32-bit arithmetic; we do not claim to have made any
striking advances in the subject, although we make
comments on one or two conclusions by earlier writers.

2. Outline of generator

The generator is of ‘shuffled’ type, obtained by com-
bining two ordinary congruential generators

U = ku; (modulo p)
and

v;p1=Ml; +1 (modulo q)

where k, I, p, q, u; and v; are integers.

The u sequence provides the numbers actually given to
the user; the v sequence decides the order in which they
are presented. The purpose of the shuffle is to reduce
the risk of correlations between nearby members of the
generated sequence, a problem which frequently occurs
with single congruential generators. The choice of p and
q was determined largely by machine considerations, to
avoid division instructions. If p = 2" the formation of
remainders is trivial, but the resulting numbers have a
short-period cyclic behaviour at the less significant end;
if p =27 1 1 the formation of remainders is almost as
easy and there is no regular bottom-end behaviour. In
particular 23! — 1 is a prime, so that there exist values
of k such that u; covers all integers between 1 and p — 1
before repeating itself. We therefore took this value for
p; the choice of k is discussed in Section 4. The choice
of q is easier, since short-period cyclic behaviour of the
bottom end of the v sequence does not matter; we
therefore took g = 232 as being the simplest value for the
machine, and took / = 27 4+ 1, which has been quoted
as giving a ‘satisfactory’ sequence for ¢ = 233, so that
we might expect it to be satisfactory for our limited
purposes with ¢ = 232, We list all our sources in
Section 5 at the end, for convenience.

The tactical details are straightforward. The generator
contains an internal table with space for 128 integers.
On an ‘initialisation’ entry, which must always be made
before the user attempts to form any numbers, the user
supplies some value u, satisfying 1 < 1y < 23! — 2 and
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the routine fills the table with u; to u;,g; it also sets vy
to a standard value. Subsequent entries to the generator
may obtain numbers in floating-point or integral form,
a prime intention being to produce them in forms suitable
for use in high-level languages. For a floating number,
the routine obtains the next member of the v sequence
and uses its top seven bits to indicate an element of the
table; it scales this number by 23!, giving a result in
the range 0 to 1, and puts the next member of the u
sequence into the table instead of it. For an integer, the
user supplies a value n; the routine forms an inter-
mediate result in the range 1 to 23! — 2 as above and
then multiplies it by n.2-3! discarding the fractional
part, giving a result with an almost exactly uniform
distribution in the range 0 to n — 1 inclusive. Notice
that n may be changed on each entry. (Because the u
sequence cannot produce the values 0 or 23! — 1 the
floating numbers produced cannot take the values
0,1 —2-31 or 1; apart from this the distribution is
uniform in the range 0 to 1, and the edge effect is of no
practical importance. Similar unimportant departures
occur with the integral distributions. There are actually
two forms of floating point number on System 4: ‘long’
(56-bit mantissa) and ‘short’ (24-bit mantissa). For
‘short’ numbers one can simply discard the bottom seven
bits, and for ‘long’ ones it is worth remembering that the
bottom 25 bits will be zeros; this is rarely of importance
—if it is the number may be padded out with 25 bits
from a second random number—and the extra generation
time for a 56-bit generator did not appear to be justified.)

3. Testing strategy

The intention of the testing strategy was to make
reasonably certain that the routine was fit for publication
without spending a disproportionate amount of effort on
this particular software item. We had an existing
KDF9 program which had proved effective in the past at
sorting out inferior generators, and we therefore decided
to code the System 4 generator for KDF9 and use this
existing test program either unchanged or with only
minor modifications; in the event the minor modifica-
tions proved to have no particular worth and were
dropped for some of the later runs. The only testing
done on a System 4 computer was to ensure that the
sequence produced on it was correct and the same as
that produced on KDF9. There is always the risk that
the next test tried on a hitherto satisfactory generator
will blow it sky-high; there also comes a time when effort
that might be spent on providing another fresh test will
probably be more profitable if released for use on some
other software problem.
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The main tests used were similar to those used by
MacLaren and Marsaglia (1965), and in their standard
form were as follows:

1. Uniformity on a line (128 cells): each number was
obtained as an integer in the range 0 to 127, and a
count was made of the numbers falling in each cell;
the 2 statistic was then computed and tabulated,
together with the probability of exceeding the
tabulated value at random. This is of course the
interesting figure, and should itself show a random
variation over a large sample.

2. Uniformity on a square (16 cells each way): each
number is obtained as an integer in the range 0 to
15, and each pair of numbers defines one point (so
that 2n are needed to define n points); the x?2
statistic is computed as before. This and the next
five tests are designed to show up correlations
between adjacent or nearby numbers.

3. Uniformity on a cube (8 cells each way): similarly,
with 37 numbers defining n points.

4. Maximum of two on a line (32 cells): the larger
member of each pair was taken, 2z» numbers
defining n points.

5. Minimum of two on a line (32 cells): similarly.

6. Maximum of three on a line (32 cells): similarly,
3n numbers defining » points.

7. Minimum of three on a line (32 cells): similarly.

MacLaren and Marsaglia also used some ‘sums’ tests,
which we did not copy because they were satisfied, in
their paper, by some generators which did not satisfy
the tests above.

In all the above tests 8,192 points were taken; in the
tests for the maximum and minimum of three the three
least popular cells were counted as one for the purposes
of the y? test. The tests were performed in succession,
different numbers being used for each test. The pro-
babilities were calculated by assuming +/(2y?) to have a
normal distribution with wunit variance and mean
4/(2v — 1) where v (large) is the number of degrees of
freedom; comparison between this approximation and
the table given in ‘Cambridge Elementary Statistical
Tables’ showed it to be quite adequate for our require-
ments. From time to time we tried these tests with

different cell sizes and other variations; these never
showed any significantly different behaviour from the set
above, and for ease of comparison between different
generators we ultimately settled on this set of tests as a
standard.

The probabilities thus calculated were expressed as
percentages, and are denoted by ‘P(x?)’ in the tables
following. A run in order through the above set was
called a ‘cycle’, and the basic pattern was to initialise
the generator using some value u, and run one or more
cycles, reinitialise with a new u, and repeat, and so on.

4. Generators tested

The first generator tried used k = 227 — 1, with the
shuffle, and was tried with the following tests:

1. Sequence as above, u, = 1(1)75, one cycle each;

2. Sequence as above, u, = 24,25(25)100, five cycles
each;

3. Various other tests involving distribution within
rectangles, cuboids and four-dimensional volumes
of various sizes.

The results appeared essentially satisfactory; one or
two bad results (e.g. four results below the 109 level
out of a batch of seven, or eight below 209 out of a
batch of twenty) were obtained, but there was no
apparent systematic excess of bad results. (A set of 75
batches each of seven results may be expected to produce
at least one batch with four or more results below the
109, level about one-fifth of the time. In principle, on
meeting such a case one would perform similar runs ten
or more times to see if the pattern is systematic; in
practice the machine time required soon becomes
prohibitive.)

The results were tabulated to one decimal place if
below 109, and to the nearest integer if above 10%;;
this aids both legibility and the detection of small values,
and the suppressed digits are not of any real importance,
particularly in view of the approximation made to x2.
The original intention was to tabulate them in this form,
but it soon became obvious that this would be an
unacceptable use of much space, and we have therefore

Table 1
k =2Y — 1, p =23 — 1 with shuffle; u, = 1(1)50, one cycle each

TEST ‘ NUMBER OF OCCURRENCES OF P(y2) IN THE GIVEN RANGES (SEE SECTION 3)
| 0 9-95 19-5 29-5 39-5 49-5 59-5 69-5 795 89-5
to to to to to to to to to to
9-95 19-5 29-5 39-5 49-5 59-5 69-5 79-5 89-5 100
1 3 4 2 5 6 8 6 4 6 6
2 5 3 9 5 5 3 4 7 4 5
3 4 6 2 5 4 5 5 6 6 7
4 3 4 7 7 7 6 2 3 6 5
5 6 4 3 9 7 3 5 5 3 S
6 7 5 5 4 7 5 6 3 2 6
7 6 1 ) 4 6 3 6 8 4 7
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resorted to summarising. A copy of the full results may
be had on application to either author. The obvious
summaries, with blocks 0-10, 10-20 and so on, gives a
slight problem with results such as 20°, which give no
indication of which of two adjacent cells they should be
counted in, so we summarised into ten blocks with
boundaries at 9-95, 19-5, 29-5, 39-5,...,89-5. The
blocks are thus not quite of equal size, but even if they
were the probabilities would not be exactly equal due
to the approximation used for x>—in fact the two errors
cancel out to some extent; the reader can, we hope, allow
for the slight distortion without difficulty. The results
of the first test for u, = 1(1)50 are summarised thus in
Table 1; this particular set appears quite typical and
lines up closely with later results.

Although these results were in themselves satisfactory,
Downham and Roberts (1967) had shown that some
‘unshuffled’ generators (i.e. generators using a u
sequence only, with no internal table or shuffling v
sequence) appeared satisfactory under a sequence of
tests which, on our previous experience, we would have
thought them likely to fail. Their generators were
produced for coding in KDF9 ALGOL—they would

probably not be codeable in System 4 ALGOL as they
appear to involve intermediate integers outside the
System 4 integer range. We therefore felt we should
try their three best generators, given by

k = 8192, p = 67101323
k = 8192, p = 67099547
k = 32768, p= 16775723

under our tests, and found them apparently satisfactory.
The results for the standard test above, u, = 1(1)50 (one
cycle each), for the first of these generators are sum-
marised in Table 2. They are essentially typical, with
the possible exception of the first line. (We have found
that several generators give too few ‘bad’ results on the
‘uniformity on a line’ test, without having enough
evidence to claim this as a definitely significant pattern.
This particular test is of course virtually unaffected by
shuffling the generator.)

As a consequence of the satisfactory behaviour of
these three generators we decided to try k = 227 — 1,
p = 23! — 1 without the shuffle, and again the results
for the standard test, u, = 1(1)50, one cycle each, are
given in Table 3. The fourth and fifth lines of this speak

Table 2
k = 8192, p = 67101323; u, = 1(1)50, one cycle each

TEST NUMBER OF OCCURRENCES OF P(%2) IN THE GIVEN RANGES
0 9-95 19-5 29-5 39-5 49-5 59-5 69-5 79-5 89-5
to to to to to to to to to to
9-95 19-5 29-5 39-5 49-5 59-5 69-5 79-5 89-5 100
1 0 2 4 9 5 6 7 5 7 5
2 6 5 3 7 5 4 6 7 4 3
3 6 6 4 5 5 3 3 6 4 8
4 9 3 3 6 4 2 6 3 9 5
5 5 2 3 5 7 4 7 3 8 6
6 5 3 6 7 4 6 6 4 5 4
7 4 2 9 5 7 6 4 4 7 2
Table 3
k=2 —1,p=2—1; u, = 1(1)50, one cycle each
TEST NUMBER OF OCCURRENCES OF P(%2) IN THE GIVEN RANGES
0 9-95 19-5 29-5 39-5 49-5 59-5 69-5 79-5 89-5
to to to to to to to to to to
9-95 19-5 29-5 39-5 49-5 59-5 69-5 79-5 89-5 100
1 3 4 2 5 5 8 6 5 6 6
2 9 3 4 3 8 8 4 5 3 3
3 5 1 9 6 3 4 6 8 6 2
4 32 7 2 5 1 2 1 0 0 0
5 39 2 3 3 0 2 0 1 0 0
6 9 7 3 6 4 4 8 3 5 1
7 8 5 2 6 3 8 6 3 4 5
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for themselves, and indicate that this generator is
definitely unsatisfactory without the shuffle.

Some stocktaking was now needed. We had certainly
failed to show the superiority of our shuffled generator
over the Downham and Roberts unshuffled ones. How-
ever it is a property of unshuffled generators that there
are always values of k& for which their behaviour is
unsatisfactory, and if, for some # not impractically large,
k" is such a value then the generator using multiplier k&
may produce successive n-tuples of numbers which are
not independent of each other. This cannot be tested
satisfactorily without tests on n-tuples, and the time taken
for such testing for all reasonable n is prohibitive. If],
therefore, the user has a problem requiring the use and
relative independence of n-tuples, and the tests quoted
for the generator do not include tests for this value of n,
he ought for safety to do his own. The ‘shuffle’ sub-
stantially reduces, perhaps to vanishing point, the risk
resulting from not doing this, so that it remains firmly
our opinion that a generator intended for standard
library use should include a shuffle. There is, however,
no good reason for using a proven bad value of k, such
as 227 — 1 above, if a better one can be found. We

therefore tried another value from the literature,
k = 13!3 = 455470314 modulo 23! — 1, and ran our
standard test on the unshuffled generator for uy = 1(1)50,
one cycle each, obtaining satisfactory results, as we did
from the same test with k = 1326, k = 133% and k = 1352
(which correspond respectively to taking u,, uy, ug . . .,
Us, Ug, Ug . .. and wuy, ug, uy, . .. from the generator
given by k = 1313, thus getting at least some indication
of possible correlations between successive n-tuples for
n > 3, a simple technique which is of course not possible
with shuffled generators).

On this evidence we regarded k = 13!3 as a clearly
better choice than our original £ = 227 — 1, and modi-
fied the generator accordingly. We then ran one cycle
of the standard test for u, = 1(1)100, and ten cycles for
up = 1(1)10, including the shuffle in each case, giving
results which are summarised in Tables 4 and 5. The
first cycle of each group of ten has been ignored in
Table 5, since it already contributes to Table 4. The
values 2 and 19 in the first column of Table 4 were both
unexpected, but in all the circumstances we are inclined
to regard them as casual curiosities rather than genuine
trends; the machine time needed to repeat the runs

Table 4
k = 1313, p = 231 — 1 with shuffle; u, = 1(1)100, one cycle each

k =138, p = 23 — 1 with shuffle; uy = 1(1)10, ten cycles each omitting the first cycle of each group of ten

TEST NUMBER OF OCCURRENCES OF P(%2) IN THE GIVEN RANGES
0 9-95 19-5 29-5 39-5 49-5 59-5 69-5 79-5 89-5
to to to to to to to to to to
9-95 19-5 29-5 39-5 49-5 59-5 69-5 79-5 89-5 100
1 7 10 11 13 9 10 8 9 10 13
2 10 12 12 15 17 3 6 11 10 4
3 6 10 16 11 9 11 15 7 9 6
4 2 8 5 12 12 14 13 14 11 9
5 19 10 10 9 10 12 9 12 5 4
6 15 8 10 10 10 10 12 4 11 10
7 14 9 6 6 9 11 9 12 13 11
Table 5

TEST NUMBER OF OCCURRENCES OF P(%2) IN THE GIVEN RANGES
0 9-95 19-5 29-5 39-5 49-5 59-5 69-5 79-5 89-5
to to to to to to to to to to
9-95 19-5 29-5 39-5 49-5 59-5 69-5 79-5 89-5 100
1 10 13 9 11 8 10 9 6 9 5
2 11 5 10 6 9 12 10 7 13 7
3 12 2 6 11 11 9 9 8 13 9
4 7 9 8 10 10 8 8 10 10 10
5 9 6 10 10 11 10 12 9 5 8
6 5 5 13 10 11 10 7 7 5 17
7 15 9 6 9 9 4 11 12 6 9
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enough times to prove this is quite unavailable at
present. We therefore regarded the shuffled generator
with k = 1313, p = 231 — 1 as, on the strength of these
results, fit for general release.

5. Sources

A good deal of interesting information is contained in
a descriptive paper by Hayes (1960), which also contains
a substantial list of early references. Hayes quotes
Greenberger (1959) for k =227 — 1, p=23' — 1 and
Edmonds (1960) for k = 1313, p=1231—1; and
Rotenberg (1960) for / =27 4+ 1, g = 235. The value
17596 68861 for v, is a sequence of random numbers
from Cambridge Elementary Statistical Tables.

6. Conclusions

The immediate and most relevant conclusion is that
the S4 generator is, in our opinion, fit for general release.
This does not, in passing, mean that it will produce
systematically ‘nice’ results; in fact we hope it will
produce about the correct number of ‘bad’ results. A
random number generator produces unpredictable
numbers, not ‘nice’ numbers, a point the user must
always bear in mind. If, however, any test is found on
which this generator gives significantly and systematically
bad results we would like to know.

Some slight comments on our sources may be worth
making. Hayes quotes Greenberger as stating, though
without giving details, that the generator k = 227 — 1,
p =23 —1 ‘has passed the standard frequency and
correlation tests’, which cannot be maintained in the
light of our results. Obviously Greenberger’s standard
tests did not include our ‘maximum’ and ‘minimum’
tests, but we remarked earlier that the risk always exists
that the next test tried will blow a generator sky-high.
Hayes had some criticism of / = 27 + 1, g = 235 (‘Tests
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have been carried out, with satisfactory results, for
a=717.... A larger value of a would seem preferable,
however, from a statistical point of view’, ‘a’ here being
the power of 2 used in forming /); we did not ignore
this, but felt that as it was only used for the shuffle mild
bad behaviour would not seriously affect the final
generator.

Our results here do not themselves provide a strong
case for abandoning single congruential generators, in
the way that MacLaren and Marsaglia’s—or for that
matter our own earlier experience—seemed to. How-
ever it remains our opinion that a single congruential
generator throws a greater burden on the user to verify
the adequacy of the numbers for his particular applica-
tion, so that we definitely think the shuffle should not be
omitted from a standard library routine even though it
costs some space and a little time; reliability is more
important than either of these.

Our final remarks concern the testing procedures which
should be used on similar generators to these. The
approach used here has one serious disadvantage—there
is no obvious criterion which tells one where to stop.
For single congruential generators Coveyou and Mac-
pherson (1967) propose quite a different approach based
on Fourier analysis. For more complicated generators,
as here, no similar approach is known to us, and one is
therefore forced back entirely upon tests similar in spirit
to the above. The extension of a priori methods,
including Fourier methods, to multiple congruential
generators could be a substantial advance; it is also not
obvious how this could be done in practice.
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