The runs up and down test

By D. Y. Downham*

The ‘runs up and down’ test has been shown to have certain advantages for testing a sequence of
pseudo-random numbers for ‘randomness’. The test is discussed in some detail: certain results,
that have in the past been proved asymptotically, are derived exactly.

(Received May 1969)

1. Introduction

The need for long sequences of random numbers for
use in Monte Carlo and simulation investigations is
today usually met by the use of ‘pseudo-random’
sequences, i.e. sequences generated in a deterministic
manner whose members display ‘random-like’ proper-
ties. In practice every sequence is not checked for such
properties, but many sequences from a particular
generator are checked before that generator is used.
The most frequently used generators are of the form

X1 = kx; + cmodim),i =0,1,2, ... )

where i, k, ¢ and x, are integers less than the integer m;
the sequence {x;/m|i = 1,2, . . .} is then considered to be
effectively a random sequence from the uniform distri-
bution in (0,1). A generator of this form is called
multiplicative congruential if ¢ =0 and mixed con-
gruential if ¢ %= 0. A suitable choice of k, ¢ and m
ensures that the members of the sequence are not
repeated until a sufficient number have been generated,
and also that the members pass certain statistical tests.
Many papers discuss the choice of k, ¢ and m (e.g. Hull
and Dobell (1964), Kuehn (1961), Rotenberg (1960)).
Downham and Roberts (1967) showed that if a sequence
generated by this type of generator failed any of the tests
usually applied, then almost always it failed the so-called
‘runs up and down’ test, which may therefore be said,
in this sense, to be ‘sensitive’ for generators of the
multiplicative and mixed congruential type.

Miller and Prentice (1968) have reopened investiga-
tions into additive congruential generators of the form

Xip1 = X;_s + X;_, mod(m), i= max(s,t), max(s,t)
+1,... (2

where 7, s, t, m and the x’s are integers. Their results
suggest that the ‘runs up and down’ test is also
‘sensitive’ for this type of generator.

The various expressions for the lengths of runs are
derived in this paper for sequences, in which no two
members are the same. For sequences generated by
relation (1), the choice of k, ¢ and m is intended to ensure
that no number is repeated in a sequence of sufficient
length. Thus, the expressions for run lengths are valid
for all such sequences. Two members in a sequence
generated by relation (2) may be the same, and, even
worse, may be consecutive. If m is much larger than the
required length of a sequence of random numbers, then
few members are likely to be the same; only a small
proportion of members taking the same value are likely

to be consecutive. Thus, for sequences of random
numbers to be used in simulation investigations, the
expressions derived in this paper will usually be satis-
factory. However, for the very long sequences that are
sometimes required for Monte Carlo studies, these
expressions are not necessarily valid, although they do
hold for sequences generated by relation (2) provided
that repeated numbers are omitted.

2. The ‘runs up and down’ test
Consider a sequence {x;|i = 1, 2, . . ., n} generated by
a pseudo-random number generator. A subsequence

XiotsXis oo 5 Xivp Xigrpn @<i<n—r—1)

of (r + 3) consecutive numbers is said to form an inside
run ‘up’ of length r if
Xiog =X < Xjog <.oo < Xjpp > Xigryd

Between the ‘>’ signs there are r ‘<<’ signs. An end up
‘up’ of length r is defined either by

X <Xy <...<X1>x., 1<, <n—2)
or
Xpep Al S Xy <Xy < ...<x,(1<r<n—-2
A complete run ‘up’ is defined by
X <X <...<Xx,

and since there are n — 1 ‘<<’ signs such a run is of
length n — 1. Runs ‘down’ are defined similarly.
For example, consider the sequence

S = {22, 37, 81, 14, 42, 35, 20, 6, 19|n = 9};

reading from left to right, there is a run up of length 2,
a run down of length 1, a run up of length 1, a run down
of length 3 and finally a run up of length 1.

The ‘runs up and down’ test is based on a comparison
of the expected and actual numbers of runs of various
lengths. Some relevant results, which have hitherto
been derived only by asymptotic arguments, or approxi-
mately, can be derived easily by regarding runs as
‘special arrangements’ of monotone sequences. Consider
a sequence

{wli=12,...mu>u <=>1i>j} (3)

i.e. a sequence of m unequal quantities in ascending order
of magnitude. A sequence

{xili=1,2,...,m},
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obtained by permuting the sequence (3), is said to be a
‘special arrangement’ of uy, u,, . . ., u,, if

X1 >xZ<X3<. .. <xm,1 >xm.
It is easily seen that the number of special arrangements:

with (x, = u; and x,,_; = u,,) = (m — 2)(m — 3);
with (x; = u,, and x, = u;) = (m — 3);
with (x,, = u; and x,,_; = u,,) = (m — 3);
and
with (x,, = 4; and x; = u,,) = 1.

Hence, the total number of special arrangements
= m? — 3m + 1. If each arrangement is equally likely
the probability of any particular arrangement is 1/m!,
so that the probability of a special arrangement
is (m? — 3m + 1)/m!. In a pseudo-random sequence
of length n there are (n—r — 2) subsequences
X;_1»Xiy .- X,_,. Since an appropriate choice of
constants will ensure a cycle long enough to rule out
repeated numbers in a sequence of any required length,
the elements of any such subsequences can be assumed
all different, and the ‘special arrangements’ argument
applies. Thus if

Xy X <Xy <o <X, > X (4

the subsequence is a ‘special arrangement’ of (r 4 3)
numbers: but (4) is the condition defining an inside run
up of length r. Hence the expected number of inside
runs up of length r is equal to

(r+32—=3r+3)+Dn—r—2
(r + 3)!

_(r2+3r+1)(n—r—2)

- (r +3)! i

and, by symmetry, this expression is also the expected
number of inside runs down.

r<n-—2 )

By considering arrangements of the form
X <X <...<Xp_1> Xy

it can easily be verified that the expected number of end
. (r+1
runs of length r, forr <n — 1, 1s 4m.

As there are n! possible arrangements of » numbers,
2
the expected number of complete runs is o
Collecting these results, the expected number of runs
of length r, E(r), is given by,

[ P +3r+Dn—r—2) (r+1)
2 x o+ 3)! TAX G
_, P +3r+Dn—@E+3r2—r—4)
Er)=< (r + 3)! )
r<n-—1
2
al r=n—1.
(©)
The expected number of runs of length r or greater,
n—1
E(r)= Z_ E(a).

3
Now for any (a_,, a,, a;, a», as) such that > a, =0

i=—1
define

n—2 3 a;
Sr(afla ay, ay, a, 03): Er i:z_[m, r> 1
o a a_;+ay, a_y+a +a
—r=D T T exn
+a_1+a0+al+az ao+al+(12—|—a3
(r+2)! (n — 2)!
a+a+a;  a;+a a;
n—10  a Twmr ™

Consider now E(«), for « <n — 1. The two terms
in the numerator of (6) can be written as

o2+ 3 +1=(x+3)(x+2) —2(ax +3) + 1
and
a4+ 302 —a—4 = (a4 3)(¢ + 2)(x + 1)
—3(e + 3 +2) + 3(x +3) — 1,
whence
E(r)=2 X

1
{nsr(O’ 0’ 13 _2’ 1) - Sr(oa 19 _3’ 37 _1) +;l—'}

1 1 1
=2><[”X{(r+1)!_(r+2)!""_!

1 1 2 1 1

+m}_ﬁ+(r+1)!"(r+2)!+(n—1)!
2 1 1
_;ﬁ+(n+1)!+a}

ZZX{(r—i—l)n—(rz—{—r—l)

)] } 1< r<n—1.

®

Herrman (1961) derived this result for large n.

3. Further discussion

Certain other asymptotic results have been found for
sequences of numbers, but they could have been derived
directly, in a manner similar to the derivation of E’(r).
2n — 1

3 0@
result derived independently by Bienayme (1874) and by
Andre (1884).

The expected number of runs = E’(1) =

3 n—1
The mean length of a run = —~—> >, rE(r)
2n — 1 r=1

6 n=2 (nr(r2 4+3r+1) —r(r3 +3r2 +r —4)
T 2n—1 (r +3)!

r=1

6
= —{nsl((), 1, -3,5, —3) - Sl(l, _3: 6, —7, 3)

2n — 1
n—1
+ n!
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using (7) from Section 2,

3n—1)
== ©)

n—1 n—1
[Alternatively, > rE(r)= X E(r
r=1 r=1

1
= 2{nS1(0: 09 19 _19 O) - SI(O, 1’ _23 1; 0) + m}
=n— l.]

This is in agreement with Kermack and McKendrick
(1938), who showed that for an infinite sequence the
mean length of a run is 3/2. (They, in fact, defined the
length of a run by the number of terms, so that they
derived a mean length of 5/2.)

If one considers the totality of runs in the n! different
permutations of any sequence, then the proportion of
runs of length r < n — 1, P,(n) say, is equal to

6 (mr24+3r+1)—(+3rr—r—4 10
2n——1\ (r +3)! }( )

whence

2
A, = lim P,(n) = w

Jim ) (1)

in agreement with Fisher (1926) and Kermack and
McKendrick (1938). Levene and Wolfowitz (1944)
warned against considering A, as ‘the probability of a
run of length r’ and, in fact, showed that this phrase has
no meaning.

To illustrate these results consider a sequence of
length 4. As the inequality signs, rather than the sizes
of the differences between consecutive numbers, are
considered in proving these results, it is sufficient to
consider the different arrangements of the integers
1,2,3,...,n. Let M; = the total number of runs of
length i, amongst the different possible arrangements of
theintegers 1,2, .. .,n. Withn =4, M, =42, M, =12,
M; = 2 and the total number of arrangements = 24.

42 12 2
ThuS, E(l) = ﬂ9 E(2) = 2'—4 and E(3) = ﬂ.

42 12
P1(4) == 5_6 and P2(4) = %.

The expected number of runs per arrangement
M M+ M T

41 3

The mean length of a run

=42 +2x 12+3><2)/56=,2/-

These results are consistent with the expression (6), (8),
(9) and (10).

4. Statistical tests

A sequence of numbers is generated and Ny, N,, . . .
evaluated, where N, is the number of runs of length r
in the sequence. Levene and Wolfowitz (1944) have
shown that for n large the statistic

(N — E(2))?/E(2)

is distributed as y2. Cochran (1954) suggested that such
approximations are only satisfactory when 809, of the
expected values are greater than 5. As « increases E(x)
rapidly becomes less than 5, so that

(Em—m@%w

must be calculated. Hence,

n—1 2
~wm—mw+awm”“® .
Z E@ 0

is distributed as x2 on r — 1 degrees of freedom, since
there is one constraint—viz.

Y aE(e) =Y aN, =n — 1.

o

For this test a sequence need be considered only as a
series of inequality signs, e.g. the sequence 5, defined in
Section 2, may be reduced to <<><>>><.

Consider a sequence of n = 500 numbers with
N, =180, N, =90, N;=30, N, =8, Ns=2, Ng=0
and N; = 1. (As a check it can be easily verified that
YiN; = 499.)

From (6) E(1) = 208-4, EQ2) = 91-4, E(3) = 26-3,
E(@) =5-71 and E(5) = 1-01. Hence, in expression
(12), r may be taken as 5 and from (8) E’(5) = 1-18.

x3 = (28-4)%/208-4 + (1-4)%/91-4 + (3-7)%/26-3
4+ (2-29)%/5-71 + (1-82)%/1-18
= 8-13.

Hence, there is not enough evidence to reject, at the
59 significance level, the hypothesis that such a sequence
of runs could have occurred randomly. (In practice if a
generator is unsatisfactory one usually gets many long
runs, and a huge y2-value.)

Acknowledgement

The author is grateful to Professor M. R. Sampford
for many valuable suggestions during the preparation of
this manuscript.

20z Iudy 61 U0 1sonB Aq B0EBSE/ELE/P/Z L /BIOIME/|UlWO0/WOo" dNO"dIWBPEE//:SARY WOl Papeojumod



376 D. Y. Downham

References

ANDRE, D. (1884). Ann. Sci. Ec. norm. sup. Paris, Ser. 3, Vol. 1, p. 121.

BIENAYME, J. (1874). Bull. Soc. Math. France, Vol. 2.

CocHRrAN, W. G. (1954). Some methods for strengthening the common ¥? tests, Biometrics, Vol. 10, p. 417.
DownHAM, D. Y., and RoBerTs, F. D. K. (1967). Multiplicative congruential pseudo-random number generators, Comp. J.,

Vol. 10, No. 1, p. 74.

FisHER, R. A. (1926). On the random sequence, Quart. Jour. Roy. Met. Soc., Vol. 26, p. 250.
HERRMAN, R. G. (1961).The statistical evaluation of random number generating sequences for digital computers, Office of Technical

Services, U.S. Dept. of Commerce, APEX—635.

Hurw, T. E., and DoBeLL, A. R. (1964). Mixed congruential random number generators for binary machines, JACM, Vol. 11,

p. 31.

KEerRMACK, W. O., and McKENRICK, A. G. (1938). Tests for randomness in a series of numerical observations, Proc. Roy. Soc. of

Edin., Vol. 57, p. 228.

Some distributions associated with a randomly arranged set of numbers, Proc. Roy. Soc. of Edin., Vol. 57, p. 332.
KuenN, H. G. (1961). A 48-bit pseudo-random number generator, CACM, Vol. 8, p. 350.
LEVENE, H., and WoLrowITz, J. (1944). The Covariance Matrix of runs up and down, Ann. Math. Stat., Vol. XV, p. 58.
MILLER, J. C.P., and PRENTICE, M. J. (1968). Additive congruential pseudo-random number generators, Comp.J., Vol. 11, p. 341.
ROTENBERG, A. (1960). A New pseudo-random number generator, JACM, Vol. 7, p. 75.

Book Review

Error Correcting Codes, Edited by Henry B. Mann, 1969, 228
pages. (John Wiley & Sons Ltd., Price 75s.)

The reader must first be warned that a more informative title
for this book would have been ‘Recent Advances in Error
Correcting Codes’: being neither introductory nor encyclo-
paedic, it is not to be regarded as a manual or textbook. For
example the first chapter is a Historical Survey by Mrs. F. J.
MacWilliams which is delightful reading for anyone know-
ledgeable in the subject, but the lack of any bibliography
makes it tantalising to the outsider; but of course it was
addressed to experts, since the book is a record of the pro-
ceedings of a symposium organised by the Mathematics
Research Centre of the U.S. Army at the University of
Wisconsin. The computer user may be astonished that
whereas he is accustomed to having one parity bit and 31
information bits in a word of 32 bits, a typical code discussed
in this book provides 6 bits of information in each block of 32
bits; but the key words in the sponsorship of the symposium
are mathematics and U.S. army. It is particularly for space
vehicles that these elaborate codes have been designed, because
the premium on weight and power is so high that almost any
degree of complexity in the ground station can be tolerated if
it allows some reduction in radio transmitter power on the

space vehicle. Whether such tactics will ever be economic for
terrestrial communication is another matter. But the mathe-
matical interest is great and involves very varied topics. For
example, the code discussed in Chapter 2 is presented graphi-
cally as a rectangular matrix of black and white squares: this is
particularly appropriate since its construction is based on the
Hadamard matrix which was first described in connection
with the design of tessellated pavements.* The ‘Fast Fourier
Transform’, which is a product of computer programming,
has proved invaluable in the de-coding of certain types of code.
The construction of error correcting codes may be based on
combinatorial algebra or on topology. If some British mathe-
maticians can be persuaded to read this book, and if as a
result they become interested in the mathematical problems of
error correcting codes, this may help to bring Britain forward
in a subject in which we lag sadly behind the space-inspired
Americans and Russians.

D. A. BELL (Hull)

*SYLVESTER, J. J., ‘Thoughts on inverse orthogonal matrices,
simultaneous sign successions, and tessellated pavements in two or
more colours, with applications to Newton’s rule, ornamental tile-
work and the theory or numbers.’

Phil. Mag. (ser.4), 34, 461475 (1867).
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