Initialising Geoffrion’s implicit enumeration algorithm for
the zero-one linear programming problem

By J. L. Byrne* and L. G. Prollf

This paper describes a method of initialising Geoffrion’s algorithm for the solution of linear

programs in zero-one variables.

The modification proposed involves three modules, one or all of

which may be employed in a particular computation. A computational comparison is made
between the original and modified algorithms.

(Received December 1968, revised April 1969)

1. Introduction

In a recent paper Geoffrion (1967) has proposed an
implicit enumeration algorithm for the solution of the
general linear programming problem in zero-one variables
which is computationally attractive because of its sim-
plicity and modest storage requirements compared with
the related algorithms of Balas (1965) and Glover (1965).
However, the computational experience with Geoffrion’s
algorithm provided by Freeman (1966) and Byrne (1967)
shows that the time required to reach termination may
be considerable even for relatively small problems. The
aim of this paper is to show how this time may be
considerably reduced by means of a modification of the
non-iterative part of the algorithm. The modification
proposed consists of three modules, one or all of which
may be employed depending on the path along which
the computation flows.

In the following sections the general linear program-
ming problem in zero-one variables is referred to in the
following form:

minimise z = ¢’. X

subject to Ax > b, 1)
x;=0o0rl,(j=1,2,...,n),
c>0,

where ¢, x are n-vectors, b is an m-vector and A4 is an
m by n matrix. The coefficients in (1) are not restricted
to being integers. Any linear programming problem in
zero-one variables can be written in the form of (1) by
means of a series of simple transformations (e.g. see
Balas, 1965). The above form differs slightly from that
considered by Geoffrion in the expression of the con-
straints but appears more natural to the authors.

2. Some aspects of Geoffrion’s algorithm

In this section some aspects of Geoffrion’s algorithm
which are necessary to the development of the proposed
modification are reviewed.

A solution of (1) is any binary n-vector. A solution x
of (1) is feasible if Ax > b and a feasible solution which
minimises z over the set of feasible solutions is said to
be optimal. The objective of an implicit enumeration
algorithm is to obtain and verify an optimal feasible
solution whilst explicitly enumerating as few as possible
of the 2" solutions of (1). This latter point is an
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important one since the experience of Freeman (1966)
and Byrne (1967) shows that, in a number of cases,
Geoffrion’s algorithm may quickly find an optimal
feasible solution but the subsequent verification that this
solution is indeed optimal may take a considerable time.

The progress of Geoffrion’s algorithm is governed by
a sequence of ordered sets of indices, S, called partial
solutions. For example, if n = 5 then S = {3, 5, — 2}
implies that x;, x5, x, have been assigned values 1, 1, 0
in that order; the remaining variables x,, x4, are said to
be free. A partial solution is determined from its
successor by one of the two major steps of the algorithm,
namely fathoming and augmentation. If an S can be
fathomed, all solutions of (1) containing S have been
implicitly enumerated and need no longer be considered;;
a new S is then constructed by backtracking which
involves negating one positive element of S. If .S cannot
be fathomed, the value 1 is assigned to a variable, chosen,
according to some criteria, from those free variables
which decrease infeasibility in at least one constraint and
which leave the cost of the current solution lower than
the upper bound on z*, the minimum value of z.

In the algorithm described in Geoffrion (1967), the
initial partial solution is taken to be null and the aug-
menting variable is chosen so as to leave least total
infeasibility, i.e. if the solution associated with § is
defined by

S . .
x;=0j¢Sor —jeS| .
xS =1,jeS (j=12,...,n
and y;=Xayx5 —b,(i=12,...,m) @)
J

then the chosen variable is that which yields
max {2 min (0, y$ + aij)}. 3)
i i

Thus those variables, assigned the value 1, which are
imbedded early in the sequence of partial solutions are
those which make an apparently large contribution to
feasibility without regard to cost. Considerable back-
tracking may therefore be necessary to change the
assigned values of such variables with a consequent
adverse effect on computation time. In addition, the
feasibility measure (3) is calculated relative to the current
partial solution so that, at each stage, only those variables
which have previously been assigned a value are taken
into account. However, assignments occurring later in
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the sequence may render much of the contribution of
the earlier assigned variables redundant in the sense that
some constraints become oversatisfied. Thus variables
which, earlier in the construction of S, appeared to be
good contributors to feasibility may not now be so,
given that the value 1 has since been assigned to other
variables. Once a feasible solution has been constructed,
this phenomenon can be detected and corrected for, e.g.
consider the problem

min 6x; -+ 4x, + 8x3 + 3x4 + 8xs

s.t. 23 35 28 11 32 X1 60
30 20 13 7 15 X2 > |30
17 5 22 9 19 X3 50

X4

Xs

Starting with S = ¢ and using (3) to select the augmenting
variable, a feasible solution is obtained when § = {1, 5, 3}.
Corresponding to the above partial solution,

¥ =(23, 28, 8),
z = 22.

Comparison of the components of y with the coefficients
of x, shows that, although x; appeared to be the best
contributor to feasibility, the subsequent assignments,
x5 = 1, x3 = 1, have rendered much of the contribution
redundant. Inspection of the coefficients of the remain-
ing free variables shows that x; could be replaced by x,
to obtain

S=4,5,3}

which also yields a feasible solution to the above problem
and sets a lower upper bound on z*.

The absence of cost in the augmentation criterion (3)
has been noted by Geoffrion (1967) and Freeman (1966)
but, as far as the authors are aware, no computational
experience with alternative criteria has been published.
The authors believe that the lack of an element of cost
in the augmentation criterion is particularly disadvanta-
geous in the initial stages of the algorithm since, in the
absence of a priori information about the initial solution,
an effective upper bound for z* is set only when the first

feasible solution is found. If (3) is used in the initial
stages, the first feasible solution may well be an ‘expensive’
one so that until a better one is found, (i) it is relatively
difficult to fathom S and (ii) the augmentation set is
relatively large since the third of the required qualifica-
tions is trivially satisfied. The determination of a
relatively low cost initial feasible solution may be
expected, therefore, to be computationally advantageous.

In the tri-modular modification of Geoffrion’s algo-
rithm described here, two new measures of feasibility
contribution are introduced. The first of these measures
is used in the first module to construct an initial partial
solution, if this is feasible then the second and third
modules are applied. The second module attempts to
sharpen the upper bound on z* by eliminating redundant
as-ignments while, in the third module, the second
measure of feasibility contribution is used to reorder the
assignments.

3. Determination of an initial partial solution

Given a partial solution to (1), an assignment of 1 to
any one of the free variables results in a contribution
(which may be positive or negative) towards feasibility
and in a new partial solution. The sequential feasibility
factor (SFF), p;, is proposed as a measure of this contri-
bution corresponding to the current partial solution S
for each free variable x; and is defined by

D= Y, min (a;;, —,V}q) +Z min (0, a; + .V}q) )

iel iel,
where
I_ ={i:y§<0},1+ ={i:y§> 0}

and y$ is calculated from (2). The first sum in (4) is
taken over the currently unsatisfied constraints and each
term measures that part of the contribution of x; which
is necessary in order that the ith constraint is not over-
satisfied, i.e. that part of the contribution of x; which is
redundant is discounted. The second sum in (4) is taken
over the currently satisfied constraints for which the
contribution of x; to the ith constraint is redundant
unless the assignment x; = 1 makes the ith constraint
unsatisfied when there is a negative contribution to

Table 1

Description of test problems

% DENSITY OF
2‘8;;:;‘ C’g‘;ﬁf&ﬁs T,ﬁ“m'f:[_g; NON-ZERO COEFFS. PROBLEM TYPE
OF A
1 10 15 96 Capital
2 10 20 94 Budgeting
3 10 28 94 Problems
4 10 28 94
5 22 20 14 Storage
6 25 33 10 Problems
7 53 30 10 Determination of contents of
extraction files
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feasibility. Those variables for which the SFF is
positive will increase overall feasibility if assigned the
value 1 although possibly decreasing the feasibility of
the solution for individual constraints, similarly variables
with negative SFF tend to decrease overall feasibility and
so it would seem reasonable not to consider such
variables as candidates for a 1-assignment. Clearly, in
the sense of contribution to feasibility, the free variables
increase in importance as their SFF increases.

An initial partial solution may be constructed iteratively
by reference to a sequence of entry coefficients e; defined
over the set of free variables. Definition of the entry
coefficients involves a reference to the SFF and cost of
each free variable. Inthecasec; >0,(j=1,2,...,n),
the entry coefficients could be defined on the lines
suggested by Glover (1965) and Petersen (1967) as the
ratio of SFF to cost; the definition adopted here covers
thecase c; > 0, (j=1,2,...,n). In constructing an
initial partial solution, it is clearly hoped that a low cost
feasible solution will be found. The entry coefficients
should thus be chosen so as to rank those variables with
zero cost and positive SFF before those with positive
cost and positive SFF and should rank those variables
with zero cost in order of their SFF’s. By a suitable
choice of scaling factor, (1) can be transformed so that

ci=0o0rc>1,((=12...,n). %)

Given (5), a set of entry coefficients having the desired
properties is

pi— % 5, if ¢;=0and p; > 0,
i=1

7= Pj/cj . if ¢ > 0 andpj = Os (6)

Dj , if p; <O.

The first module consists of the following sequence of
steps and yields an initial partial solution:

(a) set S = ¢,
(b) for all free variables x;, calculate p;, e; from (4)

and (6) respectively,
(¢) determine a J such that

e; = max {e;}.

If e; < 0, exit from the initialisation routine and
proceed with the usual steps of Geoffrion’s algo-
rithm. Ife, > 0, set

S={S,J}
and recompute j*.

(@) if y* > 0, a feasible solution has been found and
module 2 is entered with S as the partial solution.
Otherwise, if any free variables remain, return
to step (b); if not, exit from the initialisation
routine and proceed with the appropriate steps of
Geoffrion’s algorithm with S as the partial solution.

4. Improvement of an initial feasible solution

If module 1 produces an initial partial solution
yielding a feasible solution to (1), an attempt is made to
derive a related feasible solution yielding a lower upper
bound on z*. This may be achieved by applying the
concept of redundant contributions to feasibility, intro-
duced above, in a simple manner.

Define x§ = 1 to be a redundant assignment if

¥W—a;>0,(i=12...,m).

Similarly x7 =1 is a replaceable assignment if there
exists a free variable x, such that

ij_aik>0a(i:1925"'9m)'

At each iteration of module 2, S is altered by that
deletion, corresponding to a redundant assignment, or
exchange, corresponding to a replaceable assignment,
which gives the greatest reduction in cost. Module 2
terminates when no further reduction in cost is possible
by such alterations.

a

5. Reordering of the initial partial solution

Apart from possible alterations incurred in module 2,
S is still ordered in terms of the SFF of the appropriate
variables. In module 3, S is reordered in terms of the
second measure of feasibility contribution, namely the
non-sequential feasibility factor, defined for each je S by

g = gl max (0, a;; — »5). @)

Table 2

Computational results for original and modified algorithms

ORIGINAL ALGORITHM MODIFIED ALGORITHM
PROBLEM z*
NOMBER ITERATIONS TIME ITERATIONS TIME UP;:E)ISI?S;J FD UPJSS;&U;D
1 179 6 112 4 1150 1150 1150
2 1851 77 585 27 2615 2535 2535
3 25963 1165 4730 245 3315 3315 3095
4 25545 1456 3274 217 7795 7795 7315
5 1293 75 874 55 323 323 323
6 19345 18001 7971 770 215 215 191
7 45 14 27 14 104000 104000 104000

t Termination not reached, upper bound on z* = 224 at premature termination.
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The object of reordering S is to ensure that the first
element in S to be changed at the backtracking stage
corresponds to that variable which contributes least to
feasibility according to (7). Thus, on exit from module 3,

S={kl....n=>=qaw>q9>...>4q. @

The appropriate feasible solution and the corresponding
value of z are then recorded and the backtracking stage
of Geoffrion’s algorithm entered. Because of the struc-
ture of S, the amount of infeasibility associated with the
next partial solution should be small and so the con-
struction of a new feasible solution should be relatively
easy. Additionally, those variables which contribute
most to feasibility according to (7), will be the ‘early’
elements of S and hence may be expected to appear in
many of the subsequent partial solutions. Again such
partial solutions should be relatively easy to fathom.

6. Computational experience

The modifications described above were coded in
ALGOL and incorporated in the authors’ ALGOL code
for Geoffrion’s algorithm, the central part of which
appears in Byrne and Proll (1968). The original and
modified algorithms were then run on the ICL 1907
computer at Southampton University with several test
problems, the main characteristics of which are listed in
Table 1.

Test problems 1-4 are capital budgeting problems
transformed into the form of (1); test problems 1, 2 and 3
correspond exactly to problems 3, 4 and 5 respectively
in Petersen (1967), test problem 4 has the coefficient
matrix and objective function of Petersen’s problem 5
but has the right-hand side corresponding to Petersen’s
problem 4. Test problems 5 and 6 consist of constraints
arising in the dynamic programming solution of a
problem of purchasing and storing steel beams (Wiseman,
1968) together with random objective functions. Test
problem 7 concerns a problem in data processing
formulated on page 210 and uses the data given on
page 212 of Seppala (1967). Test problems 5-7 have
the sparse and highly structured coefficient matrices
which frequently occur in practical problems.

Comparative results for the original and modified
algorithms using the test problems are recorded in
Table 2 in terms of the number of iterations and the time
taken, in seconds of cpu time, to termination. In
addition the values of the upper bound for z* attained

References

in modules 1 and 2 of the modified algorithm are
recorded against z*.

Apart from problem 7, the results indicate that the
modifications discussed in this paper result in a sub-
stantial improvement in the performance of Geoffrion’s
algorithm in both the number of iterations and the time
to termination, time savings varying between 27 9%, and
859%. Module 1 has produced a feasible solution in all
cases and, at worst, one whose associated cost is within
139 of the minimum. Comparison of Table 2 and
Table 3 indicates that module 3 makes a significant
contribution to the overall saving in several of the test
problems.

Table 3

Computational results for the modified algorithm
without module 3

?83'};:;‘ ITERATIONS TIME
1 112 4
2 733 34
3 5646 294
4 5004 342
5 874 55
6 7971 770
7 65 23

With the exception of problem 2, where its use resulted
in the initial partial solution being optimal, module 2 has
had no effect and this may be taken to indicate that its
inclusion in the algorithm is not worthwhile. This may,
however, be due to the quality of the solutions produced
for the test problems by module 1. In principle,
modules 2 and 3 can also be applied to any feasible
solution and if an augmentation criterion which dis-
regards cost is used, as in the current version of the
algorithm, module 2 might be more useful. Work is in
progress to establish ways of implementing this idea and
to investigate alternative augmentation criteria.

Further experimentation is needed to establish limits
on the size of practical problems which can be economi-
cally solved by the present code. However even for those
problems which are too large to be run to termination,
the modified algorithm can be expected to have recorded
a good sub-optimal solution if the algorithm is pre-
maturely terminated.
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