Numerical methods for Volterra integral equations

of the first kind

By Peter Linz*

This paper contains a study of numerical methods for solving linear Volterra integral equations
of the first kind. A number of convergent approximation schemes are given, but it is found that
certain other ‘obvious’ approaches yield unstable algorithms. Means for improving the results
of the convergent methods are discussed.

(Received January 1969)

1. Introduction

The numerical solution of the Volterra integral equation
of the first kind

[, K 030t = £ (a0

may be accomplished by converting it, by differentiation,
to an equation of the second kind,

*K'x, 1) S (x)
0+, K O = K,

(1.2)

where we use the notation

) hI—Y
Ki(x, 1) = V8 o K& |z - x5 =+

Since there are many acceptable methods for solving
equations of the second kind, the problem, in principle,
is solved. However, because of their simplicity, direct
methods, that is, methods based on replacing the integral
in (1.1) by a numerical quadrature, are of interest and
are recommended by some authors (Collatz, 1960;
Mikhlin and Smolitsky, 1967). Most commonly, the
trapezoidal rule is used for this, and since it produces
good approximations it is often conjectured that higher
order quadratures lead to similar results. As we will
show, this conjecture is erroneous. Jones (1961) has
investigated the trapezoidal method for convolution
kernels K(x,t) = K(x — ), but apart from this very
little theoretical work has appeared in the literature.
The present paper contains a summary of some general
results obtained by the author.

2. Assumptions and notation

In the succeeding analysis we shall make the following
assumptions:

(a) 1(0) =0,

() K(x, x) 5 0 for all x in the range of integration,

() K(x,t) and f(x) are bounded and sufficiently
smooth so that all derivatives used in the succeed-
ing analysis exist.

It is a standard result that under these conditions
equation (1.1) has a unique and continuous solution.
Furthermore, provided K(x, f) and f(x) are sufficiently

smooth, the solution y(x) will also be sufficiently smooth.
This follows immediately from differentiating (1.2).

To solve (1.1) in an interval [0, a] we divide it into
smaller intervals of width A, the ith point of sub-
division being denoted by x;, such that x; = ih,
i=0,1,2,...,N and Nh=a. The approximate
solution will be defined at these meshpoints and denoted
by Y,.

Definition 1. Let Yy(h), Y (h), . . . denote the approxi-
mation obtained by a given method using stepsize h
Then the method is said to be convergent if and only if

max |Y;(h) — y(x;)| =0
0<i<N
as h— 0, N — oo, such that Nh = a.
Definition 2. A method is said to be of order p if p is

the largest number for which there exists a finite constant
C such that

max |Y;(h) — y(x;)| < Ch?

0<i<N

forall0 </ < a.
We shall also need the following lemma.

Lemma 1. If

n—1
€, < 4 X |&|+B, forn=1,2,...
i=0

with A>0,B>0,
then [€,] < (B + Al + Ay~ 1L 2.1
If A = hK and nh = x, then

1€, < (B + hK|&|)ex~. 2.2)

The proof of this lemma follows directly by induction.
Our main aim is the investigation of the convergence
properties of some common algorithms.

3. The rectangular method

The simplest approximation is obtained by using the
rectangular rule, where in each interval x; < t < x; 4
the kernel K(x, ¢) is replaced by K(x, x;). Then

WS, Ko %)Y, = 15 G3.1)
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or
— f(xn) _ n2 K(xm xi) Y
hK(x,, Xp_1) i—o K(xp x,_1) P
forn=12,... (3.2)

Theorem 1. The approximation method (3.2) is con-
vergent with order at least one.
Proof: Let €, = y(x,) — Y,. Then, from (1.1) and (3.1),

Yn—l

n—1 n—1
h _20 K(x,, x)e; = h 2 K(x,, ;) y(x;)
i= i=0

— [ KCx 300

If we subtract this equation for n from the same
equation for n 4 1 we have

n—1
K(xn+1: xn)en + gO{K(xn—H’ xi) - K(xmxi)}ei
1 Xn4l
= K1, %0906 — 7 | KGon1, DY
n—1
+ IEO {K(xn115 x;) — K(xp, x)} ()

1 (=
— 5 | K1, ) — KCxpp D) p(00,
forn=12,... (3.3)

Provided everything is sufficiently smooth the right-
hand side is clearly O(h). Since K(x,x) # 0, for
sufficiently small A, K(x, ,, x,) = 0. Thus, there exist
constants M, M,, M such that

n—1
el < BM, 3, Jei] + b,
iz
with |eg] < hM;. Then, according to (2.2),

len] < (AM, + B2MM)e™*,

which proves the theorem.

4. The midpoint method

Here we replace K(x, t) by its value at the centre point
t=x1+1/2=x,' +h/2. Then

n—1
h Eo K(xXp xi 112 Yig 12 = f(xn), @.1)
Y — f(xn) _ n2 K_()f_m xi+1/2)
-1z hK(xm xn—1/2) i=0 K(X,,, xn—1/2) il
4.2)

Theorem 2. The approximation (4.2) is convergent with
order at least two.
Proof: Again, from (1.1) and (4.1),

n—1 n—1
h i§0 K(xp, xi+1/2)€i+1/2 =h ;0 K(x,, xi+1/2)y(xi+1/2)

— "RG0y @yt

-0

n—1
K(Xp 415 Xny172)€n 1172 + -Zo {K(xp 115 Xi4172)
=

— K(x, xi+1/z)}€i+1/2

1 Xnsl
= K(Xpy 1> Xnr1/2)YXnt1/2) — 1_1J’ K(x,41, )y(t)dt

n—1

+ .§0 (K (X s 15 X 11/2) — K@ Xi 4120} Y(Xi172)

1 *
— 3 ) (KGe1: 0 = K D)3
forn=1,2,...

Since the midpoint method is a second order quad-
rature method the right-hand side is O(h?), and again we
can find constants N;, N,, N3, such that

n—1
lent 12| < ANy Z‘O leiy1j2l + ANy, n=12,...

With IGI/ZI < h2N3.
Thus
lens1/2l < (B2Nz + B3N N3)eM,

and the theorem is proven.

5. The trapezoidal method
Using the trapezoidal quadrature scheme we get

- JCxn)
%K(xm xO)YO +§:l K(xm xi)Yi + JiK(xm xn) Yn: h

5.1

_ 2f(xn) _ K(xm xO)
= hKGe %) KCew x) ©°
! K(xm xi)
-—ZEIWY, forn—1,2,....(5.2)
The first value Y, can be obtained exactly since
A
Y0 = x0,0).

Y,

Theorem 3. The approximation (5.2) is convergent with

order at least two.
Proof: The proof of this theorem can be carried out in

a fashion similar to the previous two cases, but it is more
tedious and hence will be omitted here. The proof for
convolution kernels was given by Jones (1961) and a
detailed proof for the general case may be found in Linz

(1967).

6. Higher order approximations

In general, one might attempt to use a gth order
quadrature formula with weights w,;. The corresponding
error equation is

ot wriK(xn X; €
i=0 W,,.K(x,, xr) !

€ = — 4 O(ha—1). 6.1
It is not at all obvious that €, — 0 as & — 0; indeed it is
frequently untrue. For example, take the third order
Gregory formula
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Weo = Wpp = 3/8’

Wet = Wy pt = 7/6:

Wey = W,, ,_p = 23/24,

w,; =1 otherwise.
For simplicity, take K(x,7) = 1. Then (6.1) yields
‘9_8‘ €r—1 + % €r—2 — 5 €3 + O(hq)

The homogeneous part of this equation has solution

€ — €1 = —

el = 127 4 ¢yz5 + 32},
where z,, z,, z; are the solutions of
x34+12x2—5x+1=0.
This equation has a root near x = —2-5, thus
le,| — co.

This indicates that the method diverges, and numerical
results bear out this prediction. Similar results hold for
Simpson’s rule and higher order Gregory formulae. In
fact, we have not found any convergent methods based
on higher order quadrature methods. While it is possible
that such methods do exist, it is clear that their conver-
gence properties have to be examined carefully. This
problem does not seem to have been recognised
previously, and one finds the use of higher order methods
suggested in some text-books. Hopkins and Hamming
(1957) encountered some difficulties with equations of
the first kind, but did not give any details.

7. Error estimation formulae

We can get a better idea of the behaviour of the
numerical solution by obtaining actual error estimates.
Since the manipulations required to derive these esti-
mates are somewhat tedious and not very instructive we
shall sketch the derivation only for the simplest case, the
rectangular method. We will give the final results for
the other two methods; the derivations can be found in
Linz (1967).

Rectangular method

From (3.3), replacing differences by derivatives, and
remembering that €; = O(h), we get

n—1
K(x,, x)e, +h X K'%x,, x,)e;
i=0

h
— 2 5 KGon ©7( O,

hZ n— 1
bg [Klo(xm f)y(g)]i =Xi + O(hZ)
. 1 .
Introducing the scaled error e, = 7 € this becomes
"o K(x,, x)
ot 2 K, )
1

- m {KOI(xm xn)y(xn) + K(xn, x,,)y’(x,,)

+h E [K 0% OYO] z-x} + Oh). (7.1)

Let e(x) be the solution of

e(x) = — j Ii(ixx;) e(t)dt

- ﬁxx) {KO(x, x) y(x) + K(x, x)y(x)

J [K19(x, ) (e}, (1.2)

then the rectangular approximation to (7.2) differs from
(7.1) only by terms of order A.

Thus
€, = he(x,) + O(h?).

This also shows that the rectangular method is exactly
of order one.

Midpoint method
If e(x) is the solution of
o) = — [ R et — et (KO
+ 2K°%(x, x)y'(x) + K(x, x)y"(x)
+ K'(x, x) y(x) + K'°(x, x) ' (x)
— K'!(x, 0)¥(0) — K'%x, 0)y"(0)}, (7.3)
then
€ns12 = h%e(x,112) + OR3). (7.9
Trapezoidal method

In this case we find that the results can no longer be
represented in the above form. Indeed, it is obvious
from numerical results that the approximation shows
some small oscillations about the true solution. This
phenomenon was pointed out by Jones, who. also
suggested a method for smoothing the results.

If we introduce the ‘averaged’ error

N, = 3er 1 + €),
then it can be shown that
n, = h*n(x,) + O(H’),
where 7(x) is the solution of

10
909 = — [ e ot + 13y K090

+ 2K (x, x)y'(x) + K(x, x)y"(x)
+ K'(x, ) p(x) + K'%x, x)y'(x)
— K''(x,0)3(0) — K'x, 0)y(0)}. (7.6)

This result provides a rigorous justification for Jo.n'es’
smoothing method which is as follows. Given the initial
solution Yy, Yy, . . . one forms

Y =31+ Yiyd)
and
Y, — 3T, + Y.

It is easy to show that if €, denotes the error in ¥y, then

~ h?
€r = Mg + Z y'(xp) + 0(h3),

that is, the .Y are smooth to order 2.
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8. Improving the accuracy of the approximations

The error estimates of the previous section provide a
justification for the use of extrapolation methods for
improving the accuracy. For instance, using Richard-
son’s extrapolation with the mid-point method, we
compute solutions using step-size 4 and 3k (to make
meshpoints coincide). Then

Y, (h) = ¥(x,) + he(x,) + O(h),
Y,(3h) = y(x,) + 9h%(x,) + O(h’),
and an improved solution Y§ is given by
Y, = 309Y,(h) — Y,(3h)),

where Y¢ = y(x,) + O(h3).

Similar results can be obtained for the trapezoidal
method, but only after the results have been smoothed.
Alternatively, the method of deferred corrections may be
used with similar results.

9. Numerical examples

. In this section we give some numerical examples to
illustrate the above points. In all cases the numerical
results show the predicted behaviour.

Example 1. (from Jones, 1961)

J-ocos (x — t)y(t)dt = sin x.

Exact solution: y(x) = 1.

Table 1 contains the results by the midpoint method.
The error, somewhat surprisingly, stays constant, but
this is predicted by the error equation (7.3). From (7.3)
we find

h2
€, — ﬁ + 0(h3)

Table 1
Example 1 by the midpoint method

X h=10-1 X h=0-05
0-45 0-99958 0-475 0-99990
0-95 0:99958 0-975 0-99990
1-45 0-99958 1-475 0-99990
1-95 0-99958 1-975 0-99990

Table 2 contains the results by the trapezoidal method.
The oscillations and the effect of the smoothing method
are apparent.

Example 2.
X
I cos (x — )y(t)dt = 1 — cos x.
0

Exact solution: y(x) = x.

The results, using the midpoint method with Richard-
son’s extrapolation, are given in Table 3.

Table 2
Example 1 by the trapezoidal method with & = 0-1

X INITIAL APPROX. SMOOTHED RESULTS |

1-00083
1-00083
1-00083
1-00083
1-00083
1-00083

1-00166
1-00000
100166
1-00000
1-00166
1-00000

o000
AW AW~

Table 3

Example 2 by the midpoint method with Richardson’s
extrapolation

x h=03 h=0-1 EXTRAP.

0-14999
0-45000
0-74999
1-05000
1-34999
1-64999
1-94999

0-15006
0-45019
0-75031
1-05044
1-35056
1-65069
1-95081

0-15057
0-45171
0-75285
1-05398
1-35512
1-65626
1-95740

— O O O
O ANANWO IR~
(R NV, RV RV, RV R |

10. Conclusions

We have shown that approximations to Volterra
integral equations of the first kind can be obtained by
using certain simple numerical quadrature rules, but
that many of the higher order quadrature methods lead
to unstable algorithms. From a computational point of
view we have found the midpoint method, combined
with Richardson’s extrapolation, quite satisfactory. It
is generally reasonably accurate and also provides some
estimate of the error. The trapezoidal rule, while fre-
quently proposed in the literature, is somewhat less
satisfactory because of the oscillations in the results.
Even after smoothing it tends to be less accurate than
the midpoint method. This may be seen by comparing
equations (7.3) and (7.6): the nonhomogeneous term in
(7.6) is exactly twice as large as the corresponding term
in (7.3).
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