Eigenvalues of Ax=XBx with band symmetric 4 and B

By G. Peters and J. H. Wilkinson*

Describes an efficient algorithm for the calculation of specified eigenvalues of Ax = ABx with
band symmetric 4 and B, the latter being positive definite. Each eigenvalue is isolated using the
Sturm sequence property of leading principal minors of 4 — AB and is then computed accurately
using a modified version of successive linear interpolation.

(Received November 1968)

1. Introduction

In some engineering problems the eigenvalues of
Ax = ABx are required, where 4 and B are symmetric
and B is positive definite, (Gupta, 1968). When A4
and B are full matrices the reduction to the standard
symmetric eigenproblem is probably the most efficient
method. If we write

B = LIT, (1.1)

where L is lower-triangular, then Ax = ABx is equivalent
to
(L=1AL-T)(LTx) = A(LTx), (1.2)

or Py = Ay. (1.3)

(Here and later L—T has been used in place of the
cumbersome (L—!)T.) This has been described by
Wilkinson (1965) and an ALGOL version has been
published by Martin and Wilkinson (1968).

When 4 and B are band matrices and the band-widths
are much smaller than the order of 4 and Bit is important
to take advantage of the band form. This can indeed
be done in the above algorithm when computing L and P,
but although L is a band matrix, L~! is full and hence
P itself is a full matrix. Methods in which the band
forms of 4 and B are preserved throughout are of
particular interest. A number of such algorithms have
been developed at the National Physical Laboratory
over the last six years and in this paper we describe one
of the more efficient among them.

2. Sturm sequence property

It is well known that if P is real and symmetric the
leading principal minors of P — Al form a Sturm
sequence. Consequently the number of eigenvalues
greater than A is equal to the number of agreements in
sign between consecutive members of the sequence
det (P, — A)(r =0,1,...,n), where det (P, — AI) =1
by definition and P, is the leading principal sub-matrix
of order r of P.

We now show that if L and P are defined by (1.1) and
(1.2) then the sign of det (4, — AB,) is the same as that

of det (P, — AI). We write

L, 0
— LIT. L — |
B=LIT, L [ M, NJ 2.1)

where L, is the leading principal sub-matrix of order r;
clearly

LrLZ" =B, L= I:L,—I 0

— —1 -T
v le,P,—L, ALTT. (22)

Hence we have
det (A, — AB,) = det (L(L7'A,L7T — A)LT)
= det (L, (P, — AI)LT)
= (det L,)? det (P, — Al), 2.3)

and since det L, # 0 this means that det (4, — AB,)
has the same sign as det (P, — AI). The number
of eigenvalues of 4x = ABx which are greater than A
is therefore equal to the number of agreements in
sign between consecutive members of the sequence
det (A, — AB)(r=20,1,...,n).

An apparent difficulty arises with consecutive zero
principal minors. This may be illustrated by considering
an extreme form associated with diagonal matrices.
Suppose

4 1
A= 1 and B = [ 1 } 2.9
2 1

then with A = 4 all principal minors of 4 — AB are zero,
though it is certainly not true that there are three eigen-
values greater than 4. No problem arises in the compu-
tational algorithm since we do not actually determine
the principal minors explicitly but only the sign of
det (A, — AB, ) in terms of thesign of det (4, — AB,).
This is done by comparing the signs of the pivotal
elements, the products of which give the minors. The
effect is the same as would be achieved by replacing a
zero pivot by a very small quantity though in fact the
substitution is not performed explicitly.

Our problem then is to compute all the leading
principal minors of 4 — AB (i.e. 4,— AB,) in an
economical manner. We cannot use the Cholesky
decomposition of 4, — AB, because this matrix is not
in general positive definite; the LDLT decomposition
(Martin, Peters and Wilkinson, 1965) will in general be
unstable for the same reason. The LU decomposition
with interchanges is numerically stable, but unfortunately
this gives only the leading principal minors of 4, — AB,
with its rows permuted.

There are two triangularisations of 4, — AB, which
give the required minors. One is a modification of
Givens’ triangularisation, and the other is an elimination
type method. The basic feature of both is that the first
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Eigenvalues of band symmetric matrices 399

r rows are reduced as far as possible before introducing
row r + 1. They have been described by Wilkinson
(1965) pp. 236-240, for the case when the matrix to be
factorised is full, and an ALGOL version of the elimina-
tion method has been given by Martin and Wilkinson
(1967) specially designed for the band symmetric case.
In the ALGOL procedure the factors L and U were
preserved since they were required for the solution of
linear equations. Here we are concerned only with
determinants (for the calculation of the number of
eigenvalues greater than A, only the signs of the minors
are required), and the storage can be reduced. For a
band of full width 2m + 1, only m + 1 rows are involved
at each stage of the reduction and hence in addition
to the n(m + 1) storage locations required for each
of 4 and B (taking advantage of symmetry) only
(m 4+ 1)2m 4 1) extra locations are required. If,
however, the eigenvectors are required, the L and U
must be stored in order to perform inverse iteration.
The Sturm sequence property together with the
method of bisection can be used to locate the eigenvalues
of Ax = ABx exactly as described by Givens (1954) for
Ax = Ax in the case when A is symmetric and tri-
diagonal. An ALGOL version of this tridiagonal case
has been given by Barth, Martin and Wilkinson (1967).

3. Use of linear interpolation

When the bands are of appreciable width it is desirable
to restrict the number of evaluations of the Sturm
sequence. This can be done by switching to a technique
with a higher convergence rate when a suitable approxi-
mation to an eigenvalue has been determined. The

¢ my by b3 by |ap
¢ M Ay ay a3
C3 Cg ;2’5
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£
Fig. 1
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required eigenvalues are the zeros of det (4, — AB,) and
this function is provided by the factorisation algorithm.
Once an eigenvalue has been isolated it is attractive to
use some method of successive linear interpolation for
the corresponding zero of f(A) = det (4, — AB,).

Alternatively interpolation can be performed on the
function g(A) defined by

g(A) = det (An - )‘Bn)/det (An—l - ABn—l) (31)

This function has the same zeros as f(}), and since the
zeros of det (A,_; — AB,_,) separate those of f(A) at

.. d,
least in the weak sense, it is easy to show that f}\ < —1

for all A. Further if f(A) has a zero of multiplicity r then
det (A,_; — AB,_,) has this zero with multiplicity r — 1
and hence all zeros of g(A) are simple. As one might
expect from this g(}) is also more satisfactory when f(})
has pathologically close zeros. Finally the computation
of f(A) involves scaling problems which are largely absent
in the evaluation of g(A). In fact in the algorithm given
by Barth et al. (1967) for the tridiagonal problem A — A,
it was the function g(A) which was used, rather than
f(A), for precisely this reason.

Unfortunately it may well happen that a simple zero
of det (4, — AB,) is also a zero of det (4,_, — AB,_,)
or that det (4, — AB,) has a zero pathologically close to
a zero of det (4,_; — AB,_;). Such zeros are concealed
in the ratio and we would be forced to use the bisection
process all the time for their location.

It might be thought that this would be a comparatively
rare phenomenon, but experience shows this to be
untrue. It has been discussed in a somewhat different
context by Wilkinson (1958). A good example is given
by the tridiagonal matrices of order 21 defined by

a”: 11 — i, a," i+1 =a,~+1,,~= 1, b”: 1,
bi,i+1 = bi+l,i=0 (3.2)

A number of the eigenvalues of det (4,; — AB,,) agree
with those of det (4,9 — AB,,) to more than ten decimals
and hence are completely concealed in the ratio. Our
experience over the last six years would seem to indicate
that except when A4 and B are tridiagonal (in which case
the percentage of time involved in scaling problems is
higher) the use of f(A) is to be preferred.

Experiments have been made with two linear interpo-
lation procedures. These have been described by
Wilkinson (1967) but since they are still not readily
accessible in any standard journal, the second of these
procedures which has proved the more effective is
described in the appendix.

Kahan and Varah (1966) have described experiments
made in connexion with the problem 4 — Al where A is
symmetric and tridiagonal. They effectively work with
the function g(A) and use the first of the linear interpola-
tion procedures described by Wilkinson (1967). For
tridiagonal matrices the function g(A) may be determined
from the sequence

g =ay —AgN)=a;—A— (@i, i—0)*gi-1(N
and since the a7 ; | may be determined once and for all

this is particularly attractive. The Sturm sequence
count is given by the number of positive g;(A). This
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400 G. Peters and J. H. Wilkinson

method extends immediately to the problem 4 — AB,
with 4 and B tridiagonal, giving

g1(N) = ay; — Abyy, g(A) = a;; — Ab;; —
(ai,ifl - Abi,i—l)z/gi—l(A) g = g, () 34

and this has been used at the National Physical Labora-
tory on ACE and KDF9. The ALGOL procedure
given by Kahan and Varah contains a number of
attractive scaling and programming features which were
not included in our programs.

4. The preferred algorithm

The algorithm may best be described by considering
its use for the calculation of all eigenvalues between
aand b witha > b. The Sturm sequence counts x and y
are first determined for ¢ and ». Assuming that the
eigenvalues are ordered so that A, > A > ...> A,
this shows that A, . |, A, ,,..., A, lie in the given range
and a and b can be taken as upper and lower bounds for
all of them. To determine each eigenvalue the method
of bisection combined with the Sturm sequence count is
used until upper and lower bounds p and g are found
which contain that eigenvalue and no others. Every time
a Sturm sequence count is made, the upper and lower
bounds for each of the required eigenvalues is updated
as described by Givens (1954), and as given in the
ALGOL procedure by Barth et al. (1967).

When a simple eigenvalue has been isolated in this
way, f(p) and f(q) have opposite signs and the method
of interpolation can then be used to locate that eigen-
value to the required accuracy.

Notice that this means that multiple eigenvalues are
determined entirely by bisection since we never reach an
interval containing only one such eigenvalue. However,
if it is of multiplicity r, all r eigenvalues are found in the
one set of bisections. Similarly if there are close eigen-
values, bisection must be continued further than usual
before the first of them is isolated, but in isolating it we
obtain comparatively good initial upper and lower
bounds for the neighbouring eigenvalues. Simple zeros
of f(A) which are also zeros of det (4,_; — AB,_,) (or
close to such zeros) are of no special significance with
this algorithm.

Sometimes specific eigenvalues, A, > A, ;> ... > A,
are required rather than those between prescribed values.
In this case initial upper and lower bounds are required
for these eigenvalues. Such bounds are given by
+|A|/w where |A| is the eigenvalue of A4 of largest
absolute value and p is the smallest eigenvalue of B
(necessarily positive), but this involves substantial compu-
tation. The quantity k defined by

k=14« /]|B]w

is calculated and the Sturm sequence is determined for
A=k, 4k, 4%k, . . . until an upper bound is obtained
for A,. Similarly the Sturm sequence is determined for
A= —k, —4k, —42%k, . . . until a lower bound is
obtained for A,. The upper and lower bounds for
As ..., A, can, of course, be updated during this initial
stage.

5. Numerical examples and assessment

As illustration of the use of this algorithm we give a
number of numerical examples.

Example 1. A and B are of order 20 and are bands of
full width 7.

a;=1,0<]i—j|<3
by =1,0<|i—j|<3

aii:SI_i
bi[:4l—i

All eigenvalues between + 10 were required. In Table 1
we give the computed eigenvalues, and the number of
bisection and interpolation steps required for each one.
We stress that our interpolation routine is itself a
combination of interpolation and bisection, and bisections
do occur from time to time in these examples.

Table 1
NUMBER OF NUMBER OF
EIGENVALUES BISECTION INTERPOLATION
STEPS STEPS
-+1-2362 2996 622 23
-+1-2543 8078 474 10

+1-2619 2368 457
4-1-2694 3952 847
+1-2773 9754 724
+1-2856 3483 441
+1-2940 9698 102
--1-3030 1061 009
+1-3125 0454 161
-+1-3226 0009 164
-+1-3333 9423 801
+-1-3450 0343 860
+1-3575 7195 730
+1-3713 1462 185
+1-3866 8413 225
+-1-4034 7245 976
+1-4222 3523 837
+1-4475 1739 434
+1-4704 2713 163
+1-4952 1305 093

lr—t»—a —
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The total number of steps is 202 an average of 10-1 per
eigenvalue. Since the main work involved is in the
factorisation, the distinction between the preliminary
bisection steps and the interpolation steps is not
important.
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Fig. 2
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Example 2. A and B are of order 20, A is tridiagonal
and B= 1 A is defined by

__ 4 _— 4
ayi,2i = + 104 as;14, 21 = — 104

i iv1=a41,i=1

This example was used by Kahan and Varah (1966).
The eigenvalues occur in equal and opposite pairs, ten
being close to +10* and the other ten close to —10%
Table 2 gives the computed results. It will be seen that
most of the work is done in the initial sets of bisections
associated with the lowest root and the eleventh root,
that is

Table 2
NUMBER OF NUMBER OF
EIGENVALUES X 104 BISECTION INTERPOLATION
STEPS STEPS

—1-0000 0001 955 31 5
—1-0000 0001 826 0 2
—1-0000 0001 624 0 2
—1-0000 0001 366 3 S
—1-0000 0001 075 0 4
—1-0000 0000 778 1 5
—1-0000 0000 500 1 3
—1-0000 0000 267 0 4
—1-0000 0000 099 4 3
—1-0000 0000 011 0 6
+1-0000 0000 011 30 7
+1-0000 0000 099 0 3
+1-0000 0000 267 3 4
+-1-0000 0000 500 0 3
+1-0000 0000 778 0 S
+1-0000 0001 075 1 4
+-1-0000 0001 365 0 5
+-1-0000 0001 624 4 2
+-1-0000 0001 826 1 2
+-1-0000 0001 955 0 5

79 79

the first of each of the clusters. In all, 79 bisections and
79 interpolations were required for 20 eigenvalues. For
matrices of the same type but of order 100 the aver-
age was a little lower.

Example 3. A and B are of order 25 and are bands of
full width 11. A is the identity matrix and B is the
matrix defined by

X —I
—I X —I
B= I X —I
I X I
4 -1 0 0 0
-1 4 -1 0 0
X=] 0 -1 4 —1 0
0 0 —1 4 —1
[ 0 0 0 —1 4

This matrix arises in connexion with finite difference

o . %u Y
approximations to the eigenvalue problem ™ + N
= Au for a square region with a six by six mesh. Eigen-

values between 0-19 and 0-35 were requested. There
are four eigenvalues each of multiplicity two, and one
eigenvalue of multiplicity five, and hence all were located
entirely by Dbisections. Table 3 gives the computed
results. Notice that the higher the multiplicity the more
effective is the procedure. The presence of close or
multiple eigenvalues does not affect the accuracy. (The
problem Ix = ABx rather than Bx = Ax is given since it
provides the reader with a more complete test of the
procedure.) Matrix problems arising from the same
partial differential equation but using a finer mesh have
been solved to give a more severe test of the effectiveness
of the procedures on zeros of high multiplicity.

Table 3
NUMBER OF NUMBER OF
EIGENVALUES X 10 BISECTION INTERPOLATION

STEPS STEPS
-+2-0000 000 000 38 0
-+2-0000 6000 600 0 0
+2-1132 4865 405 35 0
+2-1132 4865 405 0 0
-+2-5000 GCGCO 0O 35 0
--2-5000 0000 000 0 0
--2-5000 6000 0CO 0 0
-+2-5000 00CO 00 0 0
-+2-5000 6000 600 0 0
+3-0600 2309 436 36 0
+3-0600 2309 436 0 0
+3-3333 3333 333 35 0
--3-3333 3333333 0 0

179 0

Example 4. A and B are of order 21, A is defined by
a;=11—i(i=1,...,10), a;=i—11(G=11, ..., 21),
a;;.1=a;.,,;=1 and B=1 This matrix has no
multiple eigenvalues but the largest eigenvalues are equal
in pairs to working accuracy and there are several other
close pairs. The first of a close pair requires a larger
number of bisections and fewer interpolations; the
second often requires no bisections. The eigenvalue
pairs which are equal to working accuracy are found in
one set of bisections, no interpolations being required.
Table 4 gives the computed results.

Our procedure usually gives eigenvalues of almost the
optimum accuracy for the precision of the computation.
For matrices of modest order the straightforward
reduction to the standard eigenvalue problem (Martin
and Wilkinson (1968)) will usually be faster particularly
if all eigenvalues are required.

However, this reduction has disadvantages when B is
ill-conditioned with respect to inversion (see Wilkinson
(1965), p. 344) and moreover when A and B are narrow
bands of high order, it may well be ruled out because of
the storage required by the full matrix P. Even when
this is not so our procedure will usually be more effective
for such problems when only a few selected eigenvalues
are required. The ability to select specific eigenvalues
is a great advantage.

When the matrices 4 and B are derived from differ-
ential equations the elements are usually given by quite
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402 G. Peters and J. H. Wilkinson

simple formulae and in this case there may be no need
to store A and B explicitly. In Example 3 it would
clearly be quite practical to compute each row of 4 — \B
as required. The storage requirements are then reduced
to (m + 1)(2m + 1) locations; notice that this is inde-
pendent of n.

An alternative method has been developed at NPL
which is based on inverse iteration and the use of the
generalised Rayleigh Quotient xTAx/xTBx. This has
the advantage of giving the corresponding eigenvectors.
However, it is necessary to store U at least when the
triangular factorisation is computed and hence the
extreme economy of storage cannot be achieved. It is
not easy to ensure convergence to specific vectors and
after finding r vectors it is usually necessary to ortho-
gonalise with respect to these in order to ensure that the
next computed vector is a ‘new’ vector. Experiments
are continuing with methods which combine inverse
iteration with the Sturm sequence count.

For the calculation of a small number of specific
eigenvalues of large band matrices the method discussed
in this paper is generally the most effective we have
used, though obviously there are matrices for which the
use of the function g() is to be preferred.

Table 4
NUMBER OF NUMBER OF
EIGENVALUES BISECTION INTERPOLATION
STEPS STEPS

—1-1254 4152 212, + 0O 1 18
+2-5380 5817 097, — 1 4 11
+9-4753 4367 529,, — 1 0 10
+1-7893 2135 269,, + 0 1 11
+2-1302 0921 9364 + 0 0 8
+2-9610 5888 418,, + 0 5 8
+3-0430 9929 258,, + 0 0 8
+3-9960 4820 137, + O 4 5
+4-0043 5402 345, + 0 0 12
+4-9997 8247 772,, + O 11 6
+5-0002 4442 501,, + O 0 9
+6-0002 1752 225, + 0O 17 9
+6-0002 3403 158, 4 0 0 10
+7-0039 5179 860,, -+ 0 20 9
+7-0039 5220 955, 4 0 0 5
+8-0389 4111 584, + 0 24 8
+8-0389 4112 280, + 0 0 10
+9-2106 7864 736, -+ 0 36 0
+9-2106 7864 736, + 0 0 0
+1-0746 1941 829,, + 1 35 0
+1-0746 1941 829,, + 1 0 0

158 157

|
|

Appendix

Modified successive linear interpolation

We describe here a method of successive linear interpo-
lation for the calculation of a zero of a real function f(x),
given values b and ¢ such that f()f(c) < 0 and f(x) is
continuous in (b, ¢). This method is due to van
Wijngaarden, Zonneveld, Dijkstra and Dekker (1963).
We shall not distinguish between interpolation and
extrapolation and refer to both as interpolation.

The algorithm is an extension of the process of
successive linear interpolation defined by

x=b,x,=c,

Xror = (XS 1) — X, SENN(fCx, 1) — f(x,).

When this process converges to a simple zero o of f(x)
we have ultimately

X,_1 — a~ C(x, — «)?, where p = 1(5Y/2 - 1).

The asymptotic convergence rate is therefore very satis-
factory; if the computation of f”(x) involves as much
work as that of f(x) (often it takes much more work) the
method is more efficient than that of Newton. However,
even when f(b) and f{(c) are of opposite signs, an extra-
polatory step may well give an iterate outside (b, ¢) and
lead to convergence to a value outside the interval or
even to divergence. (Newton’s method has a similar
weakness.)

In the modified algorithm this difficulty is overcome
by combining interpolation with bisection, the latter
being used to avoid unacceptable iterates resulting from
an interpolation. At the beginning of the rth step three
points a,, b,, ¢, are involved and these are such that

S,)f(c,) <0 and |f(b,)| < | f(c,)-
The initial points a,, b;, ¢, are chosen as follows:
If | ()| < |f(c)| then b, =b,c;=c, a =c.
If | f(b)| > |f(c)| then b;=c,c;=0b,a, =c.

Clearly these satisfy the required conditions. The rth
step is then as follows:

(i) Determine a point i, by interpolation between a,
and b,.
(ii) Determine m, the mid-point of b, and c,.
(iii) If i, is between b, and m, then it is ‘accepted’.
Otherwise the interpolated point is rejected and
m, is ‘accepted’ in its place.
(iv) Take as provisional new values
a,,1=>b,0b,., =1, or m, (whichever is
‘accepted’), ¢, .1 = ¢,.
(v) If b, and ¢, satisfy the conditions

S, Df(er1) <O0and |f(b, )] < [fle,))
we can proceed to the next step, otherwise the
provisional values are adjusted as follows.

If f(c,, )f(b,;1) >0 then we take c,,, = b,; this
ensures that f(c, 1) f(b,. ;) < 0 because of the conditions

20z Iudy 61 U0 1sonB Aq 98E8GE/86E/H/Z | /A10IME/|UlWO0/WOo"dNO"oIWBPEE//:SARY WOl Papeojumod



Eigenvalues of band symmetric matrices 403

established before the rth step. We now have to make
sure that |f(b,,1)] < |f(c,+1)| (with current values of
b,y and ¢, of course). If this is not so we can
interchange b, and ¢, and take a,, to be the same
as the new ¢, ;. The right conditions now hold for the
beginning of step r + 1.

Fig. 1 illustrates the importance of the use of bisection
steps. The first step gives an acceptable interpolate and
b, = i;. Inthe next step interpolation between a, and b,
gives a point outside the initial interval. Hence by = m,.
Similarly interpolation between b; and a; is unacceptable
and b, = m;. Interpolation between a4 and b, gives a
point inside the original interval but not between m, and
b, so that provisionally bs = m, and as = b,. In the
first four steps ¢y, ¢,, €3, ¢4 and cs are all at the initial
point. However, we now have f(bs)f(cs) > 0 and hence
this ¢s is discarded and is transferred to b, (i.e. as).
Since this leaves | f(bs)| > | f(cs)| the roles of bs and cs
must be interchanged. From this point onward no
bisection steps are necessary.

The stopping criterion is important in all iterative pro-
cedures. It is tempting to use the criterion |b, — i,| <,
but this is unreliable. For example in Fig. 1 if
| f(by)| < |f(cy)| the quantity |b;, — ;| will be very small
although neither b, nor i, is near the required zero. In
fact it is quite possible for i, to be equal to b, to working
accuracy.

Since the zero is between b, and c, at every step the
criterion |b, — ¢,| < € appears to be satisfactory, but
unfortunately it may never be satisfied. In Fig. 2 for
example one can see that ¢, = ¢(r > s), while b, tends
to the zero monotonically from above. Hence |b, — c,|
tends to a finite limit. A simple stratagem overcomes
this difficulty and also deals with the problem which
arises when i, = b, to working accuracy.

Suppose the stopping criterion is |b, — ¢,| < tol.
Then if |i; — b| < tol, the i, is replaced by i, 4 sign
(¢, — by) X tol. The effect of this can be seen in
connexion with Fig. 2. It ensures that a b, is finally
obtained which is beyond the zero. When this happens
S, )f(cr 1) = f(br1)f(c;) >0 and ¢, is switched
in the normal way, immediately giving a b, and ¢,
straddling the root with |b, . — ¢, | < tol.

The specification of the quantity ol presents some
problems. It has been our experience that some combi-
nation of a relative tolerance and an absolute tolerance
is desirable and we have taken

tol = 4eps,|b,| + eps,

where eps, is related to the machine precision and eps,
is the absolute error which is regarded as permissible in
the eigenvalue of smallest modulus.

In practice it is common for computed function values
to vary over a range which exceeds that permitted for
standard floating-point numbers. We therefore give
an ALGOL procedure which works with function values
f(x) which are represented by a two word aggregate (p, q)
of which p is an integer (positive or negative), a multiple
of 4, and ¢q is a standard floating-point number with
i < |q] <1 and f(x) = 2?q. ALGOL procedures for
computing determinants produced at the National
Physical Laboratory have been designed to give results
in this form.

real procedure fzero (a, b, macheps, atol, function);

value a, b, macheps, atol;

real a, b, macheps, atol;

procedure function;

comment This procedure finds the zero of a real function f(z)
given points a and b at which the function takes
opposite signs. It uses a procedure function (z, zf, zx)
which, given z, forms zf and zx such that
(1) zx is an integer, a multiple of 4
(2) zfis a standard floating point number,

0-0625 < abs(zf) < 1

Q) f@) ==z x2%}zx
macheps is the relative machine precision and atol is
the absolute tolerance;

begin integer ax, bx, cx;
real af, bf, c, cf, fb, fa, int, mid, tol, rtol;
rtol := 4 X macheps;
function(a, af, ax);
Sfunction(b, bf, bx);
goto entry;

cont: if ax > bx then
begin fa := af;
fb:=bf x 24 (bx — ax);

end
else
begin fa := af x 21 (ax — bx);
fb:=bf;
end;
int := (if fa 5= fb then (a X fb — b X fa)/(fb — fa)
else mid);

if abs(int — b) < tol then
int := b + sign(c — b) X tol;

a:=b;

af 1= bf;

ax := bx;

b := (if sign(int — mid) = sign(b — int) then int
else mid);

Sfunction(b, bf, bx);

if bf = 0 then goto root;

if sign(cf) = sign(bf) then
entry: begin ¢ := a;

of 1= af;
cx 1= ax;
end;
if bx > cx V bx = cx A abs(bf) > abs(cf) then
begin a := b; )
af := bf;
ax := bx;
b:=c;
bf := cf;
bx := cx;
c:=a;
of 1= af;
cx 1= ax;
end;

mid := (b + ¢)/2;
tol 1= rtol X abs(b) + atol;
if abs(mid — b) > tol then goto cont;
root: fzero :=b;
end fzero
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The following papers have been accepted for publication
but, owing to pressure of space, have had to be held
over to the next issue:

L. F. Blake, R. E. Lawson and I. M. Yuille. A ring
processing package for use with FORTRAN or a
similar high-level language.

This paper describes a software package that enables
associative data structures to be represented in a com-
puter store by means of rings of address pointers con-
necting blocks of data in an orderly manner.

D. Barton, S. R. Bourne and J. P. Fitch. An algebra
system.

This paper describes a computing system that enables
problems of manipulative algebra involving a number of
elementary functions to be simply and efficiently pro-
grammed. The system has been designed with particular
reference to the problems involved in the explicit
calculation of the Riemann tensor and associated
quantities.

M. J. M. Bernal and J. R. Whiteman. Numerical
treatment of biharmonic boundary value problems
with re-entrant boundaries.

Variants of the methods proposed by Motz and Woods
for producing accurate approximations to the exact
solution of a harmonic boundary value problem for
which the region of definition contains a re-entrant
corner are used to solve a similar type of biharmonic
problem.

M. M. Chawla. Estimation of errors of Gauss-
Chebyshev quadratures.

Estimation of errors of Gauss—Chebyshev quadratures
in terms of the Chebyshev coefficients of the integrand
is discussed.

S. McKee and A. R. Mitchell. Alternating direction
methods for parabolic equations in two space dimen-
sions with a mixed derivative.

An alternating direction implicit method, which
requires the solution of two tridiagonal sets of equations
at each time step, is derived for solving a parabolic
equation with variable coefficients in two space dimen-
sions with a mixed derivative.
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