Algorithms Supplement

Previously published algorithms

The following algorithms have recently appeared in the
Algorithms Sections of the specified journals.

(a) Communications of the ACM (April-June 1969)

348 MATRIX SCALING BY INTEGER PROGRAM-
MING

Uses scaling to precondition matrices so as to improve subse-
quent computational characteristics.

3499 POLYGAMMA FUNCTIONS WITH ARBITRARY
PRECISION

Computes the polygamma function through the asymptotic
series

W ([@ =D nl 2 2k +n—D)!
P(z) ~ (—1) 1[pr +W+k§‘1B2k—(2k)!22kT:|

except for n = 0, when the first term is —In(z)

350 SIMPLEX METHOD PROCEDURE EMPLOYING
LU DECOMPOSITION

Attacks the linear programming problem

maximise dTx
subjectto Gx = b and x > 0

351 MODIFIED ROMBERG QUADRATURE
Calculates the approximate value of the definite integral

B
= JF(X)dX
A

together with an error bound, by a modified form of Romberg
quadrature which is less sensitive to the accumulation of
rounding errors than the customary method.

(b) BIT (January 1969)
PARTITION FUNCTIONS (MODULO d)
Computes p(k) (mod d), where p(k) = p_,(k), and p,(k) where

TMB

Op,,(k)x" = (¢(x))"
and (x) = ﬁ (1 —xb
=1

(¢) Applied Statistics (September-December 1969)
AS18 EVALUATION OF MARGINAL MEANS

Transfers values to an n-way table (array) allotting space for
margins which are then filled with marginal means.

AS19 ANALYSIS OF VARIANCE FOR A FACTORIAL
TABLE

Given an n-way table with margins filled with the marginal
means, produces tables of corrected sums of squares and
associated degrees of freedom for all main effects and inter-
actions. A minor modification of part of this procedure gives
the Yates® algorithm for forming effects from a 2" table.

AS20 THE EFFICIENT FORMATION OF A TRIANGU-
LAR ARRAY WITH RESTRICTED STORAGE
FOR DATA

N
All (5) pairs of N equal vectors may be required when only

M(<N) can be held simultaneously in core. This algorithm
comes near to minimising the number of transfers from backing
to core store and, when the backing store is magnetic tape, is
particularly good in minimising tape winding.

AS21 SCALE SELECTION FOR COMPUTER PLOTS

Chooses a reasonable scale for plotting one- and two-dimensional
data for a given number of intervals.

AS22 THE INTERACTION ALGORITHM

Computes one cycle in transforming an n-way array (factorial
table) into effects according to a specified orthonormal contrast
matrix. The full transformation to effects can be achieved by
using the subroutine n times.

AS23 CALCULATION OF EFFECTS

Similar to AS22, using procedures described in AS1. Complete
algorithms are given for both the 1-cycle operation and the
calculation of effects using all n-cycles.

AS24 FROM NORMAL INTEGRAL TO DEVIATE

Computes the deviate corresponding to a given area under a
normal curve.

AS25 CLASSIFICATION OF MEANS FROM ANA-
LYSIS OF VARIANCE

Uses Tukey’s method to divide a set of means into distinguish-
able groups at a chosen significance level.

The following papers, containing useful algorithms, have
recently appeared in the specified journals.
(a) BIT (January-April 1969)

A PROOF OF HAMBLIN’S ALGORITHM FOR TRANS-
LATION OF ARITHMETIC EXPRESSIONS FROM
INFIX TO POSTFIX FORM (Bind 9, Hefte Nr. 1, pp.59-68)

SMOOTH CURVE INTERPOLATION (Bind 9, Hefte
Nr. 1, pp. 69-77)

ALGORITHMS OVER PARTIALLY ORDERED SETS
(Bind 9, Hefte Nr. 2, pp. 97-118)

¥202 IMdy 61 U0 1senb Aq | L ¥8GE/S0Y/P/Z L/eIoie/|uliod/woo dno-olwepeoe//:sdiy wolj papeojumoq

406 Algorithms Supplement

SOME EFFICIENT FOURTH ORDER MULTIPOINT
METHODS FOR SOLVING EQUATIONS (Bind 9, Hefte

Nr. 2, pp. 119-124)

COMPUTER CARTOGRAPHY RANGE MAP (Bind 9,
Hefte Nr. 2, pp. 157-166)

New algorithms

Algorithm 43

A LISTED RADIX SORT
A. D. Woodall
Reading College of
Technology
Author’s Note:

Radix sorting, which is the method used to sort punched
cards mechanically, has some attractions when programmed
for a computer. In particular, the time taken is a linear
function of the number of items to be sorted: the sort can be
very fast for large numbers of items.

As often described—for example by Gotlieb (1963)—the
procedure has the disadvantage of using a great deal of
storage space, and also of taking a lot of time on a collection
phase, when items are assembled into a single stack after
each pass. In the present procedure, this is overcome and
the storage used (apart from the program itself and work
space) is 2n + 2b words, where n is the number of items to
be sorted, and b is the radix. b has been included as a
parameter of the procedure. Its value, which may be very
large, can be chosen to optimise the procedure on any
particular computer and for any given word length of items
to be sorted. b would normally be chosen of the form 2%,
so as to make use of the computer’s ability to select sequences
of bits from a word.

In order to optimise the sort it should be noticed that the
time taken is Cynm 4 C,mb + Cin where the constants Cj,
C, and Cj; are best found empirically. m is the number of
passes, and depends on b and the word length of items to be
sorted. The speed is unaffected by the initial order of the
data.

Reference

GoTLIEB, C. C. (1963). Sorting on Computers, Communica-
tions of the ACM, Vol. 6, p. 195.

procedure sort (a, n, b, m, digit, use); value b, n, m;

integer array a; integer b, n, m; integer procedure digit;
procedure use;

comment the n items to be sorted are held as a[1] to a[n]. b is
the chosen base of enumeration, or radix. digit(x, k, b) is the
kth digit to the right in the representation of x in the scale of b: in
other words it has the value x--b %} (k—1)—(x=b} k)< b.
If this Algol expression is used to evaluate digit, it would be
more efficient to incorporate it in the program, rather than
calling a procedure (digit appears in only one statement).
Further it would be better to arrange to compute b* (k — 1)
and b 1 k only once for each value of k, also to avoid evaluating
x-~1 when k =1 on the first pass. However, for most
compilers, the program will be much better if digit is realised in
the machine instructions used to unpack sequences of bits from
a storage location. The parameter m is the number of digits
in the representation of the items ali]l (m corresponds to the
number of passes in the mechanical punched card sort). If the
greatest a[i] has value max, then m must not be less than the
logarithm of max to base b. For example with items all less

than 1,000,000 it might be convenient to use b = 1,024, m = 2.
The procedure sort will activate the procedure use(x) with x
taking the values of the n items of the array a sorted into order.
As an example, if use(x) is a statement causing the value of x
to be printed on a new line, the procedure sort will print out
the values of the items in order;

begin integer array list[0: n), start, last[0: b — 1];

comment lists corresponding to the stacks of cards in the
various stages of a punched card sort are described by the
array list. The successor of any item alil of a list will be
allist[i1]. The end of a list will sometimes be alk] where
list[k] = 0, and sometimzs alk] where k is held as the last
item of that list;

integer i, k, w, j, x, bl;
bl :=b—1;
fori:=n — 1step — 1 until 0 do list[i] :=i+ 1;
list[n] := 0;
comment the initial listing, starting from a(list[0]], corre-
sponds to a stack of cards in the order they have arrived,
for k := 1 step 1 until m do
begin
comment the kth digit from the right is to be used for
sorting;
fori := b — 1 step — 1 until 0 do srart[i] := 0;
comment the list starting from start[i] will correspond to a
stack of cards whose kth digit is i. The index of the end of
this list will be held as last[i];
w:.=0;
for w := list[w] while w = 0 do
begin
Jj 1= digit(alw], k, b);
if start[j] = O then srart[j] := welse list[last[j]] := w;
last[j] :=w
end of the compound statement describing the placing of
a[w] in its stack for this pass;
x :=0;
comment now the lists will be joined to form a single list,
starting at a(list[0]] and ending at a[x] where list[x] = 0,
for j := O step 1 until b1 do
if start[j] # O then

begin
list[x] := start[j]; x := last[j]
end;
list[x] :=0
end. The items are now in a single list;
ji:=0;
for j := list[j] while j 5= 0 do use(a[;j])

end

Algorithm 44

SOLUTION OF NONLINEAR SIMULTANEOUS
EQUATIONS

C. G. Broyden
University of Essex

Author’s Note:

The two algorithms give alternative methods of solving
nonlinear simultaneous equations using a particular form of
Broyden’s method used in conjunction with a particular form
of Davidenko’s method. The method is described in
Broyden (1969). nonlinb is a longer, more complicated
procedure and is intended to be used in cases where nonlina
does not work.

Reference

BroYDEN, C. G. (1969). A New Method of Solving Non-
linear Simultaneous Equations, The Computer Journal,
Vol. 12, No. 1, pp. 94-99.

¥202 IMdy 61 U0 1senb Aq | L ¥8GE/S0Y/P/Z L/eIoie/|uliod/woo dno-olwepeoe//:sdiy wolj papeojumoq

Algorithms Supplement 407

procedure nonlina(equs, order, tol, maxf, FAIL, type);

value equs, order, tol, maxf; real tol;

integer equs, order, maxf, type; label FAIL;

comment this procedure solves the nonlinear simultaneous
equations flil(x[1], x[2], . .., x[a) =0,i=1,2, ..., n.
It assumes that two n X 1 arrays, x and f, and a procedure
computef(equs, FAIL) have already been declared. Using the
contents of array x as data the procedure computef should
calculate the appropriate residuals and assign these to the
array f. Before calling nonlina initial values of the elements
of x should have been assigned. Of the two formal parameters
of computef the first, an integer, indicates which set of nonlinear
equations is to be solved, i.e. which particular mapping of x
onto f should be carried out by computef. This enables any
one of an arbitrary number of sets of nonlinear equations to be
solved. The second formal parameter, FAIL, is a label to
which control should be transferred in the event of failure
during execution of computef. The formal parameters of
nonlina are as follows:

(1) equs (integer), fulfils the same function as the first formal
parameter of computef.

(2) order (integer), the number of equations and unknowns in
the set of equations selected by equs.

(3) tol (real), the largest acceptable value of ||f|| 1 2.

(4) maxf (integer), the maximum acceptable number of evalua-
tions of f.

(5) FAIL (label), the label of the failure exit.

(6) type (integer). See below.

The integer type is a guide to the kind of failure that may have
occurred. It assumes the following values:

0. No failure.

1. Maximum number of function evaluations exceeded.
Possible causes: tol or maxf too small, problem too non-
linear, initial matrix too inaccurate. Possible action:
inspect ||f|| and if small increase either maxf or tol. If
||f]| large, use nonlinb.

2. Division by zero while updating h, store elements of f in
different order and if this fails use nonlinb.

3. Failure in computef. Use nonlinb.

4. Division by zero while initialising h. Compute elements of
fin different order.

5. Failure in computef while initialising h. Choose improved
initial estimate of solution;

begin real sa, sb; integer i, j, k, fcount;
array y, p, v[1: order], h[1 : order, 1 : order];
procedure step(F1, F2); label F1, F2;

begin

for i := 1 step 1 until order do
begin
x[i]1:= x[i]1 + pli; vli] := fIiL;
end;

computef (equs, F1); fcount := feount + 1;
for i := 1 step 1 until order do y[i] := f[i] — v[i];
sa :=0;
for i := 1 step 1 until order do
begin
sb :=0;
for j := 1 step 1 until order do sb := sb + h[i,j1* y[j];
v[i] := sb — plil; sa := sa + sb * p[i]
end calculation of hy — p and phy;
if sa = 0 then goto F2;
for j := 1 step 1 until order do

begin

sb :=0;

for i := 1 step 1 until order do sb := sb + pli1* i, j1;
sb := sb/sa;

for i :=1 step 1 until order do h[i, j1:=hli, j1— sb*v[i]
end of modification of h

end of procedure step;
type := 0;
computef(equs, F5); fcount := 1;
for i := 1 step 1 until order do
begin
plil:=0; Ali,i]l:=1-0;
forj := i + 1step 1 until order do hli,j] := h[j,i] :=0
end of initialisation;
for k := 1 step 1 until order do

begin
plk] := 0-001; step(F5, F4);
plkl:=0

end of calculation of initial iteration matrix;
REPEAT: for i := 1 step 1 until order do
begin
sa :=0;
for j := 1 step 1 until order do sa := sa — hli,j1* flj1;
plil :=sa
end calculation of step vector p;
step(F3, F2); sa := 0;
for i :=1 step 1 until order do sa := sa + f[i]1* fli];
if sa << rol then goto EXIT;
if fcount > maxf then goto F1;
goto REPEAT;
FS:type .= 5; goto FAIL;
F4:type := 4; goto FAIL;
F3:type := 3; goto FAIL;
F2:type := 2; goto FAIL;
Fl:type := 1; goto FAIL
EXIT:end of procedure nonlina;

procedure nonlinb(equs, order, tol, maxf, maxint, lamda, FAIL,
type);

value equs, order, tol, maxf, maxint, lamda; real tol, lamda;

integer equs, order, maxf, maxint, type; label FAIL;

comment this procedure is used in an identical manner to

nonlina. The formal parameters of nonlinb are the same as

the corresponding ones of nonlina with the following exceptions:

(1) maxf (integer), the maximum number of function evalua-
tions permitted for solving each intermediate problem
excluding those required to establish the initial approxima-
tion to the iteration matrix.

(2) maxint (integer), the maximum permitted number of
intermediate problems excluding the first two.

(3) lamda (real). See Broyden (1969). A good value to start
with is 0-5.

The integer type assumes the following values:

0. No failure.

1. Permitted number of intermediate problems exceeded.

2. maxf exceeded. Possible causes: tol or maxf too small or
lamda too large. If ||f|| small either increase tol or
increase maxf. If ||f|| large reduce lamda.

3. Division by zero when updating h. Reduce lamda.

4. Failure in computef. No satisfactory automatic remedy.
A new set of initial values could be tried or lamda could
be reduced.

5. As 2 but occurrence during first two intermediate problems.
Possible cause, initial iteration matrix inaccurate. Possible
remedy, store elements of f in a different order.

As 3 but during first two problems. Remedy as 5.
As 4 but during first two problems. Choose a new initial
solution;

begin real s, sa, sb, sc, s1, s2, theta, thetal, theta;

array g, y, p, v, vl, x1, x2[1 : order], h[1 : order, 1 : order];

integer i, j, k, fcount, intcount;

procedure step(F1, F2); label F1, F2;
begin
for /i := 1 step 1 until order do
begin

N

¥202 IMdy 61 U0 1senb Aq | L ¥8GE/S0Y/P/Z L/eIoie/|uliod/woo dno-olwepeoe//:sdiy wolj papeojumoq

408 Algorithms Supplement

x[i] := x[i]1 + pli1; v[i1 : = fIi]
end;
computef(equs, F1); fcount : = fcount + 1;
for i := 1 step 1 until order do y[i] := f[i] — v[i];
sa :=0;
for i := 1 step 1 until order do
begin
sb :=0;
for j := 1 step 1 until order do sb := sb + h[i, j1* y[j];
v[i] := sb — plil; sa := sa + sb * p[i]
end calculation of hy — p and phy;
if sa = 0 then goto F2;
for j := 1 step 1 until order do
begin
sb :=0;
for i :=1 step 1 until order do sb := sb + p[i]* hli, j]1;
sb := sb | sa;
for i := 1 step 1 until order do hli, j] := h[i,j] — sb * v[i]
end of modification of h
end of procedure step;

procedure inival;

begin

thetal := thetal; thetal := theta;

theta := sa,

for i := 1 step 1 until order do
begin

sa:=s*x[i]+ sl * x1[i] + s2* x2[i]; x2[i] : = x1[i];
x1[i] := x[i]; x[i] : = sa;
glil := flil * theta | thetal
end of calculation of new initial values
end of procedure inival,

procedure jacobian(F1, F2); label F1, F2;
begin
computef (equs, F1);
for k := 1 step 1 until order do

begin
plk] := 0; v1[k] := f[k]
end;

for k := 1 step 1 until order do
begin
plk] := 0-001; step(F1, F2);
plk]:=0

end of main loop;
for k := 1 step 1 until order do
begin
x[k] := x[k] — 0-001; f[k] : = v1[k]
end
end of procedure jacobian;

procedure solve (F1, F2, F3); label F1, F2, F3;
begin
feount := 0;
REPEAT: for i := 1 step 1 until order do
begin
sa = 0;
for j := 1 step 1 until order do
sa :=sa — hli, j1* (f[j]1 — gliD; plil := sa
end of calculation of step vector p;
step(F1, F2); sa := 0;
for i := 1 step 1 until order do
begin
sb := f[i] — gli]; sa := sa + sb * sb
end of calculation of norm;
if sa << rol then goto EXIT;
if fcount > maxf then goto F3;
goto REPEAT
EXIT: end of procedure solve;

type :=0;
for i := 1 step 1 until order do

begin
hli, i]1:=1-0;
for j := i + 1 step 1 until order do
hli,jl1:=hlj,il1:=0
end of setting up unit matrix;
Jjacobian(F1, F2); theta := 1-0;
sa:=099;s5s:=1-0;
sl :=52:=0;
comment set up data for inival,
inival; solve(F1, F2, F3);
sa:=0-98;s:=2-0;
sl:=—1:0;
comment set up data for inival;
inival; computef(equs, F1);
solve(F1, F2, F3); intcount := 0;
REPEAT:s := (theta2 — theta) * (theta — thetal);
s1 := (theta — thetal) * (thetal — theta2);
52 := (thetal — theta2) * (theta2 — theta);
sa .= sb :=0;
for i := 1 step 1 until order do
begin
sc:=x[i1/s + x1[i1/ sl + x2[i]/ s2; sa := sa + sc * sc;
sc := (theta — thetal)* x2[i]/ s2 + (theta — theta 2)* x1[i]
/s1 + (2:0 * theta — thetal — theta2) * x[i]/ s;
sb :=sb + sc * sc
end of calculation of vector norms;
sa .= theta — lamda * sqrt(sb) | sqri(sa);
comment next value of theta,
if sa < 0 then sa := 0;
s := (theta2 — sa) * (sa — thetal) | s;
s1 := (theta — sa) * (sa — theta2) | s1;
52 1= (thetal — sa) * (sa — theta) | s2;
inival; jacobian(F4, F5);
solve(F4, F5, F6);
if theta = 0 then goto EXIT;
intcount .= intcount + 1;
if intcount > maxint then goto F7;
goto REPEAT;,
Fl:type := type + 1;

F2:type := type + 1;
F3:type .= type + 1;
Fa:type := type + 1;
F5:type := type + 1;
F6:type := type + 1;

F7:type := type + 1; goto FAIL
EXIT: end of procedure nonlinb;

Notes on Algorithms 25, 26

25 SORT A SECTION OF THE ELEMENTS OF AN
ARRAY BY DETERMINING THE RANK OF
EACH ELEMENT

26 ORDER THE SUBSCRIPTS OF AN ARRAY SEC-
TION ACCORDING TO THE MAGNITUDES OF
THE ELEMENTS

(1) The strategy used in these sorting algorithms has the
property that they become slower as more of the elements to
be sorted are equal. In the limiting case when all the elements
are equal, the time needed to sort is proportional to the
square of the size. This criticism applies also to the algorithm
‘Quickersort’ (Scowen, 1965) and has been cured by R. C.
Singleton (1969). The accompanying table illustrates this
effect for ‘Quickersort’.

(2) When the procedure ‘keysort’ is asked to sort an array
with only one element, no assignment is made to the result
array ‘r’. This error is easily cured by reordering the state-
ments at the beginning of the procedure body; i.e.:

begin integer size, i, k;
size:=n—m+ 1;
comment initialize rank index vector;

¥202 IMdy 61 U0 1senb Aq | L ¥8GE/S0Y/P/Z L/eIoie/|uliod/woo dno-olwepeoe//:sdiy wolj papeojumoq

Algorithms Supplement 409

for i := mstep 1 until » do r[i] :=i;
if size > 2 then
begin
comment compute size of address arrays;
k:=0;
fori:=1,i+ 1 while i <sizedok :=k + 1;
begin integer j, p, ri, rj, rm, rn; real d;
integer array f, g[1: k];
k:=1;
comment deal with subsets of order 2 separately;

Table
n tl r t2 t3
100 0-29 23 0-47 1-39
200 0-71 29 1-32 5-26
500 1-94 83 5-87 31-9
1,000 4-33 188 12-8 128
n number of elements in the sorted array.

t time to sort array when all elements are different.

r,t, t, is the time to sort an array of size n with only r
different elements.

t3 time to sort an array of size # when all elements have
the same value.

References

BooTHROYD, J. (1967). Algorithms 25, 26, The Computer
Journal, Vol. 10, pp. 308-310.

Scowen, R. S. (1965). Algorithm 271, Quickersort, Com-
munications of the ACM, Vol. 8, pp. 669-670.

SINGLETON, R. C. (1969). Algorithm 347, An efficient
algorithm for sorting with minimal storage, Communica-
tions of the ACM, Vol. 12, pp. 185-187.

R. S. Scowen

National Physical Laboratory
Teddington

Note on Algorithm 40
SPLINE INTERPOLATION OF DEGREE THREE

This algorithm includes a jump to formal label EXIT if
n<3. But if n <<3 many Algol compilers will report a
failure and terminate the program before the test is reached,
since the array bounds of e are [1:n — 2] and the upper
bound will be less than the lower bound.

The difficulty can be avoided by rewriting the first three
lines after the comment as:

if n << 3 then goto EXIT else
begin integer i, j, nl, n2, k; real z, h1, h2, h3, h4;
array h, dy[l:nl, s[1:n — 1], e[l : n — 2];

1. D. Hill

MRC Computer Unit (London)
242 Pentonville Road

London N.1

Contributions for the Algorithms Supplement should be sent to

Mrs. M. O. Mutch
University Mathematical Laboratory
Corn Exchange Street
Cambridge

¥202 IMdy 61 U0 1senb Aq | L ¥8GE/S0Y/P/Z L/eIoie/|uliod/woo dno-olwepeoe//:sdiy wolj papeojumoq

