10

Developments in SPECOL—a retrieval language for

the non-programmer

B. Smith*

* 28 Queens Court, Queens Road, Cheltenham, Gloucestershire. [Mr. Smith is a Civil Servant
employed in a Government Research Establishment. The SPECOL project has the support
of the Treasury and several other Government Departments]

© Crown Copyright 1969

SPECOL is a Special Customer Oriented Language for use in querying files by computer. It is
a very simple and practical language that anyone can use after very little study. It requires no
knowledge of computers or of computer techniques, nor any knowledge of the medium (disk/tape,
etc.) on which data may be stored. The language was first described in The Computer Journal,
Vol. 11, No. 2, August 1968. Since then there have been a number of significant developments
in the language and there have been many requests for further information. The present paper
sets out, therefore, a little more formally the basic philosephy of the language, and describes some
of its new features. In addition a few hints are given on writing certain types of question. The
paper conclude: with a statement on the current implementation of SPECOL and some comments

on its use in a remote access environment.
(Received July 1969)

Basic philosophy BOOK FILE
.) . . BOOK TITLE FILE NAME
The basic philosophy of SPECOL is that it should be CHAPTER RECORD

seen as a bridge between natural language and the

CHAPTER HEADING RECORD HEADER

language of logic and sets. Natural language, although PARAGRAPH TRAILER SET

adequate for normal discourse, is too ambiguous for SENTENCE TRAILER/LINE

putting questions to a computer; the language of logic WORD FIELD/DATA ELEMENT
and sets, on the other hand, although ideal for the CHARACTER CHARACTER/DATA
computer and the specialist, is not so acceptable to the POSITION

ordinary person. In order to bridge the gap between the
two languages, SPECOL exploits two features that are
common to both languages, firstly the almost identical
use of the words, AND, OR, and NOT; and secondly
the way in which data is often classified or addressed in
groups. The first feature is important, since it can be
shown that by using AND, OR and NOT, it is possible
to specify literally any conceivable combination of data.
The second feature, the grouping of data into classes, is
also important, since it can be shown that by attaching
names or descriptors to the classes, it is possible to
address vast amounts of data that otherwise might not
be accessible at all. Putting information into classes is
also an excellent way of organising one’s thoughts. Take,
for example, the game of Twenty Questions, in which,
by asking a few well-chosen questions on classes, it is
possible to range over the entire universe, and yet, still
light on one required fact thought up by one of the
players.

In logic, classes are referred to as sets and sub-sets of
data; in SPECOL we think of them in terms of a book,
that is consisting of paragraphs and sentences and so on.
The following is a full list of the terms and their data
processing equivalents.

Fig. 1 shows the record part of the concept in diagram
form. The format is extremely flexible. There may, for

Record Header

/Word/Word/

Paragraph

Sentence /Word/Word/

Paragraph

Sentence

Paragraph

Sentence

Fig. 1. Typical record format visualised as part of a book

The Computer Journal Volume 13 Number 1 February 1970

20z 1Mdy 61 uo }sanb Aq £9888€/01/1/€ |/o101He/|ulWod/W oo dno-ojwapede//:sdiy wolj papeojumo(

Developments in SPECOL 11

example, be any number of sentences in a paragraph and
any number of paragraphs in a record. Headers and
sentences, too, may be of varying lengths, although as
shown in the diagram these are usually mentally padded
up to some maximum length. As another instance of
flexibility, not all classes have necessarily to appear in
all files: some files, for example, consist entirely of
headers and here the paragraph concept would not apply.
Likewise, the boundaries of the classes may be thought
of as quite flexible and may be changed mentally so to
speak without physically altering a file. Certainly, one
of the delights of set theory is that if we do not like the
universe we are in we can change it; what we think of
today as chapters and paragraphs in a file, we may think
of tomorrow as paragraphs and sentences. It is this
concept of movable boundaries, and of looking at data
as if it were part of a book, i.e. in terms of paragraphs
and sentences that is so important to SPECOL and allows
it to be used on almost any file.

New features

The following are some of the more important features
that have been incorporated in the language since the
publication of the original paper.

Multiple Questions

The first SPECOL compiler allowed only one question
to be asked for each pass of the data. The latest compiler
allows several questions to be asked at a time, the
precise number depending on the amount of core space
available. Fach question requires about 6K positions
of core. Allowing therefore for a 20K compiler plus a
maximum record size of, say, 20K, it should be possible
in a core partition of 100K to ask up to 10 questions per
run. With a partition of 200K, it would be possible to
ask 26 questions. The restriction that multi-SPECOL
places on record size is because, unlike single SPECOL
which deals completely with one line of data at a time,
multi-SPECOL requires the lines again for each sub-
sequent question. Maximum record size can be
increased by making more core space available or by
using drum or disk back-up. There is of course no
limitation on file size. There are good reasons for using
both single—and multi-SPECOL and it is envisaged
that both versions of the program will be maintained.

Variable length field names

Field names may now be any combination of one to
eight characters. They must still, however, begin with
a letter.

New mode number

Mode 4 has been added to the list of Mode numbers
indicating what part of a record is to be selected for
output. Mode 4 indicates that only sentences that
contain matched data are to be saved. Mode 1 has a
similar meaning for headers, and Mode 2 for paragraphs.
Mode 3 indicates that a whole record is to be saved.

The connective ANDX

The connective ANDX has been introduced to allow
searches to be made across sentences. The rule states

that if data is required to occur in the same sentence,
use AND; if it may appear in different sentences, use
ANDX, eg.

GIST (NUCLEAR) ANDX GIST (REACTOR)
FNME (JOHN) AND SNME (SMITH)
SNME (SM.) AND SNME (@ SON)

In the first example, NUCLEAR may appear in one
sentence and REACTOR may appear in another. In the
second example JOHN and SMITH must appear in one
sentence, and in the third example, the data must appear
not only in the same sentence but also in the same field,
i.e. a name is required that begins with SM and ends in
SON. The ANDX feature is similar to the TYPBX
feature used for searching across paragraphs.

Counting

There are now three count commands: OVCNT
calling for overall counts on selected records; INCNT
calling for counts within records and overall; and
INCNTP for counts within paragraphs, within records,
and overall. Given that a file contains census data in
Town and Postal district order, the following three short
statements would call for records of male workers in
Devon and Somerset, aged 30 to 35; and within this
class, counts, by district, by town, and overall, of
engineers, builders, salaries over £2,000, and the number
of people who are single.

TYPA CNTY (DEV. OR SOM.)
TYPB SEX(M) AND YOBTH(1935 TO 1940)
INCNTP JOBD(ENGR.) (BUILD.) ¢

SLRY(> 2000) STAT(S)

In the output, the required counts for districts and town
would be set out at the side and slightly to the right of,
each record. The overall totals would be shown at the
end of the run.

In a similar way the contents of fields may be added
using the terms OVSUM, INSUM and INSUMP. The
following statements would call for a list of salaries and
pensions payable to single women typists, together with
department and overall totals. Department totals would
appear at the end of each record; overall totals plus
average costs per department and per person would
appear at the end of the run.

TYPB STAT(S) AND SEX(F)
AND JOBD (TYPIST)

INSUM SALARY PENSION

PNTA DEPT

PNTB NAME/SALARY/PENSION
END

Quantity searching

The number of times that a set of conditions is
required to occur in a paragraph or a record may be
stipulated by the conventional terms n, <{n,> n, NOT n,
NOT <n and NOT)n written before relevant field expres-
sions, with » being equal to any 1-, 2-, or 3-digit number.
The operation is called Quantity searching. The follow-
ing statements call for more than three doctors and not
less than six women nurses,

20z 1Mdy 61 uo }sanb Aq £9888€/01/1/€ |/o101He/|ulWod/W oo dno-ojwapede//:sdiy wolj papeojumo(

12 B. Smith

%3 JOBD (DOCTOR)
NOT <6 SEX(F) AND JOBD(NURSE)

Since the field name SEX is followed by an AND
connective, the effect of the NOT(6 term extends over
the whole statement.

Repeat-field searching

Many files have the same type of field, say personal
qualifications, repeated adjacently a number of times in
the same sentence. It is now possible to ask for a search
of each sub-field in this area, using only one field name.
SPECOL recognises the repeat-field name and compiles
appropriate instructions for searching at the specified
intervals. For instance, if a person’s language qualifica-
tions are represented in a 12 X 4 area by a string of
4-letter mnemonics, e.g.

SPANITALFRENGERMRUSS

the following single expression would call for a quali-
fication in Spanish or German:

QUAL (SPAN OR GERM)
On output the same field name causes the subfields to be
automatically spaced:

SPAN ITAL FREN GERM RUSS

Interrogation of packed fields and bits

Routines have been written which permit interrogation
of packed fields and bits using normal character digits
as input in the question. On output the data may be
produced either in its original packed form or in read-
able digits. Similar routines may be written for other
forms of packing, e.g. octal, hexadecimal. These
facilities however are appropriate only to data that has
been packed according to System 360 conventions. To
deal with data packed by other machines, it would be
necessary to have different routines. This dependency
on type of machine emphasises the need to represent
data in a file, whenever possible, in the form in which a
user envisages it, i.e. in character form. Only in this
way may data be easily exchanged between different
computers and easily printed on printers of different
manufacture.

Hints on writing SPECOL

Specifying an exclusive OR

The OR connective in SPECOL is inclusive, i.e.
indicates ‘either or’, or ‘both’. To obtain the exclusive
OR, an expression must be followed by the appropriate
negative. For example, if we require cases of malforma-
tions in children of cleft-palate or hare-lip but not both,
we could write:

MALF (CP OR HL)
NOT MALF (CP) AND MALF (HL)

The MALF field in this instance would be defined as a
repeat field as described in the preceding section.

Factorising common data

When a request contains alternatives, it is usually
good practice to factor out common data and to specify

this first. For example, to specify single women or

married men at BRISTOL who are under 23 we might

write:

TYPA UNIV (BRISTOL) AND YOBTH (> 1946)

AND STAT(S) AND SEX(F) OR ¢
STAT(M) AND SEX(M)

This device avoids having to write out BRISTOL and
1946 more than once.

Specifying figures or letters

Since the character collating sequence of system 360
is letters followed by figures, it is possible to specify ‘any
figure’ by the term, >Z and ‘any letter’ by the term, <O.
For example, to retrieve, say, shoe codes that begin with
any figure followed by any letter (suchas 1A ..., 3B.. .,
or 4X ..., etc.), we could write:

SHOES (> Z.) AND SHOES (<.0.)

The dot before the 0 in the second expression indicates
that at this point we have already dealt with the first
character.

Conditional output

Sometimes even when a search is successful, it may
still be required to output certain lines only when they
contain specified data. Often, this can be done using a
combination of Mode No. (2 or 4) and an OR search.
If, for example, we require a list of scientific articles but
only want to output a gist line if it contains the word,
atomic, we may write:

MODE 4
TYPB SUBJ (SCIENCE)

AND STAG OR GIST (?ATOMIC)
PNTA JOURN/DATE

PNTB SUBJ/STITLE

AND GIST

In Mode 4, sentences containing matched data only will
be saved. In order to obtain sentences containing the
word ATOMIC it is necessary to specify this in the
request. The second TYPB statement (AND STAG,
etc.) shows how this can be done without affecting the
main search. In other words, if the subject SCIENCE
is present, the field STAG, which is the S line identifica-
tion field, must also be present. The statement will
therefore be satisfied whether the word ATOMIC
appears or not.

Current implementation and remote access

SPECOL is now available through IBM for most
System 360 (OS and DOS) computers and through ICL
for most System 4 computers. It is being written for
ICL 1900 series computers and negotiations are also
taking place with manufacturers about implementing it
on other computers.

To date most SPECOL questions have been put to the
computer in punched card form, but the language has
also been successfully demonstrated in a time-sharing
mode with questions being entered from remote type-
writers and graphic display units. In remote access
working, the procedure adopted depends in the main on
the size of the file being interrogated. On small files

20z 1Mdy 61 uo }sanb Aq £9888€/01/1/€ |/o101He/|ulWod/W oo dno-ojwapede//:sdiy wolj papeojumo(

Developments in SPECOL 13

(say up to 200,000 lines of data) it is possible to receive
fairly rapid replies to a SPECOL question and to display
the results at a terminal; for larger files it would seem
that the most likely future for remote access SPECOL
is in the area known as remote job entry, where questions
are entered remotely from a terminal and questions are
immediately checked and compiled. If the question
contains an error, a message to this effect, plus the
offending statement, is sent back to the user and he can
correct it there and then and re-submit it. He can also
save his question in the computer for re-use or modi-
fication later on.

When the jobs have been run the user may display
some or all of his results at his terminal or re-direct them
to the printer or to some other device or user. This

method is seen as a big advance over conventional batch
processing, there being considerable time saving all
round, perhaps the most noteworthy being the immediate
correction of errors, the ability to share files, and the
ability to re-direct results.

The early hopes of SPECOL have now been realised
and there is little doubt that fairly large scale interroga-
tion of data is now possible by this means. SPECOL
itself has been considerably enhanced by the facility of
being able to ask several questions with one pass of the
file, and by its use in remote access. It is in these two
areas, coupled with the ever present requirement for
faster turn-round of jobs, in which greatest interest is
now expected to be shown, and where probably the most
significant developments are likely to take place.

Book review

Methods for Unconstrained Optimization Problems, by
J. Kowalik and M. R. Osborne, 1968; 148 pages. (4meri-
can Elsevier Publishing Co. Inc., 100s.)

The optimisation problem is very simply stated: given a
function f(x), find x* such that f(x*) < f(x). This is the
unconstrained problem. If there are relations to be satisfied of
the form g(x) < 0, or g(x) = 0, the problem is constrained.

An important field in which such problems arise naturally
is in the statistical estimation of parameters by the method
of least squares. The statistical literature is surprisingly
sparse except where the normal equations are linear in the
parameters. In certain particular problems, English, Scot-
tish and Scandinavian actuaries made quite considerable,
though mainly ad hoc, progress but by and large the difficul-
ties encountered caused the actuarial profession to abandon
optimisation as a step in curve fitting in favour of the smooth-
ing and graduation of data, with sophisticated methods of
interpolation which in many ways anticipated much of today’s
approximation theory. The link between optimisation and
best approximation is intimate. Best L, approximation
leads of course directly to least squares optimisation while
best L; and L, approximation problems can be reformulated
as constrained optimisation problems. Whereas practical
methods of obtaining best approximations make great use
of techniques of mathematical programming (linear, quad-
ratic, separable and dynamic programming), methods at
present in vogue for optimisation surprisingly do not.

This book concentrates on two main lines of attack on the
unconstrained problem—direct search and descent methods.
In the former, the tactics are to evaluate the function at a
suitable set of points and by a set of rules extend the search
to further points so that the sequence leads to the optimum
point. Methods described include those of Hooke and
Jeeves, Rosenbrock and the simplex method of Nelder and
Mead. Descent methods depend upon exploiting the geo-
metry of the surface defined by the function in order to obtain
directions which descend towards the optimum point. The

methods of Davidon, Fletcher and Powell for the case when
derivatives can be calculated explicitly are described in detail
as is Powell’s method which avoids the calculation of deriva-
tives. Several variations are described. It is pleasing to
see a unified treatment based on the analysis of the properties
of quadratic forms to which functions will approximate near
the optimum.

A chapter is devoted to least squares problems. In the
discussion of an algorithm for regression analysis there
occurs a specific use of an exchange algorithm (commonplace
in approximation theory!) to replace variables in the regres-
sion at each stage. Golub’s method of solving the linear
least squares problem using a factorisation by elementary
orthogonal matrices is analysed. Newton’s method and the
secant method of solving non-linear normal equations are
given with the more recent methods of Levenberg, Marquardt
and Morrison.

Despite the title of the book, about one sixth of the text is
devoted to a chapter on constrained optimisation. The
main emphasis is placed on converting the problem to one of
unconstrained optimisation by including the constraints in
the function to be optimised in ways which exact a savage
penalty if the constraints are violated while yielding the true
value of the original function at the optimum. Here simi-
larities to the techniques of mathematical programming are
discernible.

A final, valuable, chapter is devoted to the comparative
numerical results of using a variety of methods on eight test
problems. The authors express some surprise at the relative
success of the simplex method in these comparisons. 1
wonder why ?

I can recommend the book as a useful text on the mathema-
tics of optimisation methods. The book however is over-
priced (it is four times more costly per page than some books
recently published by reputable British publishers). It is
not entirely free of minor misprints.

ANDREW YOUNG (Coleraine, Ulster)

20z 1Mdy 61 uo }sanb Aq £9888€/01/1/€ |/o101He/|ulWod/W oo dno-ojwapede//:sdiy wolj papeojumo(

