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A bracketing technique for computing a zero of

a function

M. G. Cox*

* Division of Numerical and Applied Mathematics, National Physical Laboratory, Teddington, Middlesex

An iterative technique for determining a real zero of a differentiable function is presented. At every
stage the zero is bracketed, and as either bound approaches the zero, the method exhibits quadratic

convergence. Numerical examples are given.
(Received November 1968)

1. Introduction

Many methods for determining a real zero of a function
J(x) first isolate a zero between lower and upper bounds,
and then employ an iterative technique that brackets the
zero at each stage. Examples of such iterative methods
are the bisection method and the regula falsi. These
methods employ function values only. We consider
here the case where the derivative f’(x) can also be
employed in the determination of a zero of f(x), assuming
that the zero has first been isolated between bounds
a and b. An iterative method for treating this case is
presented. The method converges (as do those men-
tioned above) when there is an odd number of zeros
between a and b; moreover it resembles Newton’s rule
when either bound approaches a zero, while possessing
significant advantages in circumstances in which Newton’s
ruleis unsatisfactory. Newton’s rule, of course, demands
rather restrictive conditions (Henrici, 1964) to guarantee
convergence, although it is usually possible to in-
corporate safeguards to avoid possible divergence.

2. Choice of interpolating function

At the ith step of the iterative process, suppose we
have bounds p and ¢ on the required zero £, so that
p < ¢ < q and f(p), f(q) have opposite signs. Initially
p=aand g=0>.

We now consider the computation of an interpolating
function with four parameters; these will be determined
by equating y(x) and y’(x) with f(x) and f*(x), respectively,
at both x=p and x =¢q. We then solve y(x) = 0.
The root so obtained then replaces p or ¢ (depending on
the sign of the corresponding f(x)) in the next cycle.
Among the simplest forms for y(x) are (@) a cubic
polynomial in x, (b) a rational function with quadratic
numerator and linear denominator, and (c¢) a rational
function with linear numerator and quadratic denomina-
tor. We cannot expect any one of these to give a better
interpolating function than the others in general, so we
make our choice on the grounds of simplicity and
convenience. The form (¢) has the great virtue that
unlike (a) and (b) it gives the zero of y(x) directly,
without the solution of a polynomial equation and
selection of the appropriate root. This choice was also

considered by Jarratt and Nudds (1965) and Jarratt
(1966), but their techniques were not concerned with
bracketing the zero.

3. The iterative formula
We therefore fit the interpolating function of the form

¥(x) = (x — o)/(dy + dix + dyrx?) 1

to f(x) so that function and derivative agree at x = p
and x = g. Solving the resulting four linear simulta-
neous equations yields

o P+ DNf(e — 1) — @ — PPif; + a3/
2/l fa=1) —@—p([efr+[3fd

.2
where f, = f(x,), [, = f'(x,), etc.
This is the basic formula, which at each step gives the
zero of y(x), viz. x = ¢, as an estimate of £ We
preserve accuracy as p — ¢ by writing (2) in the form
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or in the similar form with p and ¢ interchanged as
g — &, If it transpires that c¢ falls outside (p, q) then
we discard this value and use instead the simple bisection

given by
c=13p+ 9. @

If f(c) now has the same sign as f(p), we proceed to the
next cycle with ¢ replacing the previous p; otherwise it
replaces the previous q.

It is of interest to consider the conditions under which
the value of ¢ given by (2) lies outside (p, g), so that we
turn to (4). Since y(p) and y(q) have opposite signs, this
can happen only if y(x) has exactly one pole in (p, g).
We can rule out the possibility of such a single pole if
dy + dix + d,x* has neither, or both, of its zeros in
(p, q); that is, if this quadratic has the same sign at p as
it has at ¢. This yields

(e = 1o) = Wof H(fy — 1) — Waf 5} <O, (9)

where h = q — p, as a necessary and sufficient condition
for c to lie in (p, q).
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4. Convergence
It is clear from (3) that

c—p—flfpasp—E&. 6)

A similar result holds, of course, if g replaces p every-
where in (6). Thus as either bound approaches the
required zero, the method essentially becomes Newton’s
rule, and therefore exhibits quadratic convergence. On
the other hand, when the bounds are far from the zero,
the methods have very different behaviour. In particu-
lar, Newton’s rule fails when f, = 0, whereas our method
is valid even when f, = f, = 0; in which case we find

c=13/p+ 9.

5. Practical tests

A class of test functions was devised for the method.
A polynomial p,(x) of degree n was defined by taking a
set of n+4 1 pseudorandom numbers, rectangularly
distributed in the range (—1, 1), as its coefficients. If
the values of the polynomial at x = a and x = b were
of opposite sign the polynomial was used to test the
method in finding a zero in (a, b); otherwise the polyno-
mial was rejected and a new set of coefficients generated.
The method was terminated when two successive esti-
mates of the zero differed by e or less, for a given value
of €, or when the function value became zero. This
test was carried out 100 times for both n = 10 and
n=30. In each case the values a=0, b=1 and
e =% x 10-% were used. The average number of
evaluations of both p,(x) and its derivative to determine
a zero of p,(x) was 6-81 for the case n = 10 and 7-16 for
n = 30. These figures include the evaluations of p,(x)
and p,(x) at x=a and x = b. If a search procedure
had previously been used to isolate the zeros, p,(a) and
p,(b) would already have been determined. All 100
10th degree polynomials and 96 of the 30th degree
polynomials were solved for a zero in 10 or less evalua-
tions. The most common number of evaluations was 7
(with 6 coming a close second) in both cases. The fre-
quency of usage of (2) relative to that of (4) was approxi-
mately 15:1 in both cases.

The method has also been tested on a number of
nonpolynomial functions, and results similar to these
detailed above obtained. An ALGOL procedure for
the method is given in the appendix.

6. Conclusions

An iterative method employing derivatives that
brackets the zero at each stage has been developed for
determining a real zero of a function. Its ultimate
convergence is quadratic, and judging by tests carried
out on the method, the initial progress is generally good
too. Only occasionally does the method predict a value
outside the range, and in this case a simple bisection of
the interval is made instead. The conditions for such
an occurrence have been analysed.

References

Acknowledgements

The work described here has been carried out as part
of the research programme of the National Physical
Laboratory. The author wishes to thank Mr. C. W.
Clenshaw and Mr. J. G. Hayes for reading the manu-
script and making a number of valuable suggestions.

Appendix
Algol procedure

procedure zero of function (a, b, eps, evaluate, x, imax,
Sail);
value a, b, eps, imax; label fail,
real a, b, eps, x; integer imax; procedure evaluate;
comment zero of function determines a zero of the differ-
entiable function f(x) lying in the range (a, b) by an
iterative method that brackets the zero at each stage.
The range (a, b) must be such that f(a) and f(b) are of
opposite sign. The process terminates when two suc-
cessive estimates of the zero differ by an amount less
than or equal to eps, or when the function value becomes
zero. If convergence is not achieved within imax
(function + derivative) evaluations, or if f(a) and f(b)
are of like sign, the procedure exits to label fail. f(x)
and its derivative must be specified by procedure
evaluate (fx, dfdx, x);
begin
real p, g, /p, /4, fx, dp, dq, dx, h, d, x old;
integer i, s;
xold:=p:=a;q:=0b;
evaluate (fp, dp, p); evaluate (fq, dq, q);
s := sign (fp); if sign (fq) = s then goto fail,
for i := 3 step 1 until imax do
begin
h:=q—p;
d = 2XfpXfgxX(fg — fp) —
hX(dp Xfqxfq + dqxfp Xfp);
x :=if d = 0 then (p+¢)/2-0 else

if xold=p

then p + A Xfp X (fg X (fq — fp) —
hXfpxdq)|d

else g — hxfgx(fp x(fq — fp) —
hXfqxdp)ld;

ifx<pV x>gqthen x :=(p+q)/2-0;
if abs (x — x old) < eps then goto out;
evaluate (fx, dx, x); if fx = O then goto out;
if sign (fx) = s then
begin x old :=p := x; fp := fx; dp := dx
end
else
begin x old := q := x; fq := fx; dq := dx
end
end i;
goto fail;
out:
end zero of function
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