14

The cumulative recurrence library

M. G. Notley*

* Research and Advanced Development Organisation, International Computers Limited,

Minerva Road, Park Royal, London NW10

The Cumulative Recurrence Library (CRL) is an heuristic procedure for finding recurring strings
of adjacent symbols within a text. The mechanism of the CRL is described in some detail. Some
preliminary experimental results are quoted. Possible variations of the CRL procedure are
discussed, and some applications of the CRL are considered.

(Received January 1969)

1. Introduction

The Cumulative Recurrence Library (CRL) is an
heuristic procedure for finding recurring patterns of
adjacent symbols within a text.

The symbols may be drawn from any finite alphabet
such as, for example, digital control signals in a process
controller (in which case the text consists of a sequence
of control actions), or operation codes in a computer
program.

The CRL was designed during a feasibility project
when working on the application of heuristic techniques
to the symbolic solution of equations. One approach
considered involves a graph traverser (Michie, 1967) in
which the nodes consist of partially solved sets of
equations, and in which the development of a node
consists of the application of one or more standard
transformations to the equations to generate a new set
of equations. It was decided that such a system could
usefully be made adaptive by designing a procedure that
allows the set of possible transformations that can be
applied to be increased by the introduction of ‘macro-
transformations’ which consist of commonly occurring
sequences of standard transformations. In this manner
it would be possible for the system to apply one macro-
transformation instead of having to select each standard
transformation in turn.

The procedure designed to achieve the generation of
these macro-transformations is the CRL. The CRL is
designed to be as general as possible, rote learning
commonly recurring sequences of any symbols in any
text under the most general parsing rules in the most
efficient manner. For this reason it was felt that the
CRL would be of wide general application.

Using the English language as an example, consider
the problem of finding the most common words and
phrases (sequences of symbols) using no a priori knowl-
edge of the language. The most obvious approach
would be to note each symbol as it occurred and set up
frequency counts for all possible sequences of known
symbols, 4, B, C, . .. and A4,AB,AC, ... AAA, AAB,
AAC, . . . etc., up to some arbitrarily chosen maximum
length sequence. It is evident that this system would be

prohibitively costly in terms of time and computer
storage space. Also (considering for example the fre-
quency of such sequences as QZX), it would evidently
be very wasteful. This is the problem that the CRL is
designed to tackle.

2. The mechanism of the CRL

The CRL contains a set of strings of symbols, and with
each string is associated a ‘count’. A very simple
example of the contents of a CRL is shown in Fig. 1.
In this example the strings are shown numbered and
arranged in order of decreasing count, also, for sim-
plicity, only a very small number of strings have been
shown and the library would normally contain many
other strings such as B, C, D, BA, AB, CB, etc.

The strings contained in the CRL at any instant serve
to parse an input text by selecting the longest completed
string contained in the library that may be found at the
front of the input text. Fig. 2 illustrates an input text
‘ABCAADCABCBA’ as it is parsed by the CRL shown
in Fig. 1, where the strings are shown separated from
the rest of the input text by brackets.

The object of the string counts is to control changes
in the set of strings held in the library. Each time any
string is parsed, all of the string counts are reduced by
one and then the count of the string which actually
occurred is increased by an amount m. It has been
found by experiment that a suitable value for this
increment m is the number of strings currently held in
the library. (Thus in the example shown in Fig. 1 there
are five strings, m = 5.)

NUMBER STRING COUNT
1 AD 9
2 ABCB 4
3 BAC 2
4 ABC —6
5 A —23

Fig. 1. Simple example of a CRL

The Computer Journal Volume 13 Number 1 February 1970

¥20Z Iudy 61 uo 1senb Aq 28888¢/¥L/L/€ L/81o1e/|ulwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

The cumulative recurrence library 15

The changes that occur in the string counts with this
example, (as the first string, ABC, from the input is
parsed), are shown in Fig. 3.

Alterations to the strings contained in the library may
occur in two ways, by the formation of compound strings
and by the formation of new single symbol strings.

ABCAADCABCB
(ABC)AADCABCBA
(ABCYA)ADCABCBA
(ABC)(A)(AD)CABCBA

Fig. 2. Text parsed by CRL shown in Fig. 1

START
———
Read Input End of Text
Text 1
STOP
Subtract One
from all counts
Find longest None
Completed String
<
Form New
¥ Single Symbol
Form Output String
Text
Set this
Update this count to zero
Count

NUMBER STRING OLD COUNT | NEW COUNT
1 AD 9 8
2 ABCB 4 3
3 BAC 2 1
4 ABC —6 -2
5 A —-23 —24

¥
NO Is the Count
greater than 2m?

<«

Fig. 3. Changes in count due to parsing the string ABC

Whenever the count for a particular string becomes
greater than a threshold value then a new, compound,
string is formed that consists of this string preceded by
the string which, in the input text, was found to precede
it. It will be noted that, since no string count will
increase unless that string has been found in the text,
any new string formed in this way must have occurred
in the input text. A suitable value for the threshold has
been found to be 2m, where m is the number of strings
currently held in the library. The counts for the new
string just formed and the string whose count has
exceeded the threshold are then set to the new value of
m (the old m plus one).

The introduction of new single symbol strings into the
library occur whenever the parsing system is unable to
find any complete string that matches the first part of
the input text. In this case the first symbol of the input
text is introduced into the library as a single symbol
string and given a count of zero. The CRL procedure
then acts as if this new string had just been parsed, by
subtracting one and adding the new m to the new string
count.

In Fig. 4 is illustrated a flowchart of the CRL pro-
cedure which may serve to summarise the mechanism of
the CRL described so far.

Consider an initially empty library acting on a very
simple language in which there are only two words ‘CA’
and ‘BA’ which occur equiprobably but randomly.

Fig. § illustrates the development of the counts of the
contents of the CRL.

It will be seen that the contents of the CRL very
quickly come to represent the features of the language.
Over a longer period of time the counts of the strings
‘4’ and ‘B’ and ‘C” will get more and more negative and
may, if required, be removed from the library, since none
of these strings ever occur except as parts of ‘CA’ or

ves

Form New
Compound String

{
Set these
counts to half
previous value

Fig. 4. Flowchart of the CRL procedure

‘BA’. Also compound strings ‘CABA’, ‘BABA’ etc.,
may be formed but, since these will occur less frequently
than the ‘CA’ and ‘BA’ strings, will tend to have lower
counts. Thus it may be seen that the CRL will tend to
generate, as strings with high counts, strings of symbols
whose internal correlation is high. This would be
reflected, for example, in the English language by
common words and phrases.

3. Experimental results

A program has been written in FORTRAN for the
KDF9 computer to test the CRL procedure. Two main
experiments have been carried out using this program.
In these experiments the English language was used since
it is, perhaps, easier to appreciate the results obtained in
such a familiar field. It must be noted that not just the
alphabetic letters, but also the punctuation marks and
also, which is more important, the wordspace or blank,
were all treated as identically significant symbols so that
no a priori knowledge of the language was assumed.
(The interested reader should be able to hand simulate
the program from the description of the CRL procedure
given above in order to verify the results of the experi-
ments.) The results quoted are copied directly from the
computer output, the only changes being to rearrange
the layout for ease of reading. The results consists of
the way in which the CRL parsed the text that was

¥20Z Iudy 61 uo 1senb Aq 28888¢/¥L/L/€ L/81o1e/|ulwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

16 M. G. Notley

presented to it as the library developed, with the later
parsing shown in any case in which compound strings
were formed on two successive parsings. In each
experiment the CRL started with an entirely empty
library as in the example quoted in Fig. 5.

In the first experiment a short text for four simple and
repetitive sentences was presented to the CRL five times
in succession. The CRL started with an empty library
on the first pass and then, on each successive pass,
started with the library formed by the end of the previous
pass. The results of this experiment are shown in Fig. 6.
The speed with which the long compound strings are
formed is high, as might be expected with repetitions of
the same text, and the procedure is evidently efficient.

The second experiment involved a single pass of a long
piece of text, rather than a series of passes of a short
piece of text. The text used was a children’s story
(Eastman, 1962) which was chosen because it consisted
of a text in Basic English with a maximum vocabulary of
100 words, (and also, perhaps, because it is a delightful
story). The text was presented to the CRL broken up
into a series of short sections which coincide with the
printing on each separate page of the original book
(accompanied in the book by a picture). The results of
this experiment are shown in Fig. 7. (For those who are
interested in the story, the SNORT is an enormous

steam excavator.) It will be noted that the strings of
symbols do not get as long as in the previous experiment
but that they coincide much more closely with actual
words and phrases (for example ‘AND’, ‘YOU ARE’,
and ‘MY MOTHER’ right at the end).

4. Comments on the CRL mechanism

The CRL is an heuristic procedure and it is evident
that there are several possible ways of altering the
parameters or detailed mechanism of the procedure to
produce slightly different results. It is not possible
completely to justify the exact procedure described above,
but some discussion of the details chosen and of possible
variations is required.

The method of parsing the input text used in the CRL
procedure described above was chosen because it was
believed to be the most generally applicable. It must
be admitted that this belief is intuitive, but the method
used has two great advantages; it is simple to implement,
and it always results in an unambiguous parsed structure.

In the CRL procedure the counts associated with each
string are obviously related to the frequency with which
that string occurs. This relationship, however, is not
simple. The actual count at any instant depends not
only on the frequency but also on how recently that

Input text: CACABACABACACABABACACABA
1. C:0 -1 o -1 -2 -3 -1 -2 -3 —4 -2 -3 —-1 -2 -3 —4 -5 -2 -3 0 —1 -2
2, A: 1 0 1 0 2 1 3 2 4 3 5 4 6 5 4 3 2 5 4 3 2
3. B: 2 1 0 -1 1 o -1 -2 -3 -4 -2 -3 -4 -5 —6 —7 —8 -9
4. BA: 3 6 5 4 3 2 6
5. CA: 4 3

Fig. 5. Development of empty library

Text: ‘THE CAT SAT ON THE MAT. THE BLACK CAT SAT ON THE MAT. THE
CAT SAT ON THE BLACK MAT. THE BLACK CAT SAT ON THE BLACK MAT’

Parsing:

First Pass

(TYH)E) NCHANTI NSHANTI(YOYNY NT)HNE HYM)AXT).)

(YDYH)E YBYLYACYKI NCHATN WSAT YOYNX NT)H)E)
(MYATY)(YWTYHNE NCHAT)(WSAT YOYN T)H)E YBYL)ANC)
(K)(C YMYAT))(NTYHE)B)LYANCHK) NCAT YSAT YOXN T)
(HE)YBYLYAC)K) YMYATX.)

Second Pass

(T)YHE)YCAT)SAT YO)N THE)YM)AT)() NTYHE)B)L)AC)K)()
(CAT YSAT)YO)N THE)MAT)() THE CAT)SAT)OO)N THE)B)(L)
%;/ICA)(TI)(()S YMAT)(.)(THE)B)LACYK)CAT SAT)(ON THE B)YLAC)K)

Third Pass

(T)(HE)Y(CAT SAT)(ON THE MAT.)(THE)BLACK CAT SAT)(ON THE MAT.)
(THE CAT)SAT)(ON THE B)YLACXK)YMAT). THE)BLACK CAT SAT
ON THE BLACK MAT)

Fourth Pass

(T)Y(HE))Y(CAT SAT ON THE MAT.)(THE BLACK CAT SAT)(ON THE MAT.)
(THE CAT)(SAT)(ON THE B)(LAC)YK)MAT). THE)BLACK CAT SAT
ON THE BLACK MAT.)

Fifth Pass

(TYHE)Y(CAT SAT ON THE MAT)(THE BLACK CAT SAT ON THE MAT.)
('THE CAT SAT ON THE BLACK MAT. THE BLACK CAT SAT ON THE BLACK MAT)

Fig. 6

¥20Z Iudy 61 uo 1senb Aq 28888¢/¥L/L/€ L/81o1e/|ulwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

The cumulative recurrence library 17

Parsing of text from a children’s story ‘Are you my mother?” by P. D. Eastman.
(100 Word vocabulary in Basic English.)
(DPREX XXNOXUY XM)Y) YMO)T)H)E)R)(.)

(A YMYONTHHNE)R) YBYINRNDY(NSYANT YOYNX YHNE)
(R ENGGX)

(DYH)EX EGYG YJI)UXM)PXEXDX.)

YOYH)(NOH)C NSHAINDN NT)HXE YWM)ONTHE)R NB)I)
(RYDYIC YOUMIY)(WBNAB)Y YWIILAL)(NB)UE IH)E)
(RE)(. YHXE)YW)YILXL) WYAWNNT XT)OX EXAXT))C)

O HMYOYSAT NGUEXT YSHOYMNEXTHINNNG NFO)R) (M)
(Y YBXAB)Y YBYDRYDY XTHON EXATI)C I NSHHNE)
(SADD)(. YOWL YW)ILYLX BY)E YBYA(CHK)(.')

SHO DAWYAY SYHE YWYEXN)T.)

(THE)(EG)(G)YJYU)M)PE)YD). YINT YINUMYPEXD)Y)X AXND)
(UMPEYD)(,)(AYND)YINUMPED)()

(OXUXT Y CYAMNE XTHE) BXAB)Y)B)YI)(R)(D)

OWHYE)RE)X INS MXY YMOXTHE)R)YHE)SAID)(.)

(HE YL)OO)K)EXD)()FOXR)HE)R)

(HE)L)OOXK)ED)YU)P). HE YD)IDYN)OXT)SE)E)HE)R.)
(HE)YLOO)K)ED)DO)YW)IN). HE D)YID)YN)OXT) SEXE HER.)
OU WHULL)()G)NO AXND YLOOK)YFO)R YHE)R)(HE)SAID).)
(DOYWYIN)G(O)UXT)OXNF)THE) XTXREXE HE) WXENXT)
(DOWN)(, YDOWN)(, YIT YW)ANS A NLOYNXNG W)AN(Y DOWN))
(THE)(B)(ABY)B)D)(R)(D YCYOXUXLYD NOXT)FLXY.)

(HE YCYO)UXLYD NOT YFLXY), YBUXT HE YCO)ULD)YWA)L)K)
C)OUNYOW) D(WHULL)()GXO AYND YFIND YM)Y)MO)
(THE)(R))C HE)SAID)(.)

(HE YD)UID NOT)K)YN)YOW) WYH)AT YH)I)S MYO)THE)R)
(LOOK)(ED LIK)E). HE YW)EN)T RI)NGHT)B)Y)HE)R.)

(HE)D)ID NOT)SE) (E HER)

(HE YCYAM)E)T)O A NKIT)TEN).)CA)RE)YO)UX)

(MY) MOTHE)R) HE)SAID T)YOXTHE)()KI)XT)TEN)(.)

(THE KITTEN)()YJUYS)XT)YLOOK)ED).)YIT DID NOT)SA(Y XA)
(THD(N)(G.)

(THE KITTEN)(WA)S N)OT)YH)I)S MOTHER),)S)O)HE W)(EN)
(T YO)N)()

(THEN)(HE)YC)AM)E XT)O A YHE)N.)CANRE)YO)U) YMY)
%EOZ{EE)M;(HE)(SAID T)(O)THE)HE)N.)‘NO),)C SAID T)

(THE KITTEN)(WA)S N)YOT)YH)UI)S MOTHERY. THE)YHEN WAS NOT
HIS MOTHER.)S)O)THE)B)ABY BYIRYD)W)ENT)O)N.)

O YHAVNE)TO)FIND YMY YMOTHE)R)(HE)SAID). -
{g)t(ll):g){)())(WHE)(RE XWHE)RE I)(S SYHE), WHERE)CO)YULD)SHE)

(THEN)(HE YCYXAME)TO YA)YDO)G.)(AYRE)YOXU MY MOTHER HE)
(SAID T)(O THE)DO)G.)

)I AM)()NXOT YOU)R YMOTHE)R)()YI AM)(A DO)G)(,)(SAID
TYHE)DOG.)

(THE KITTEN) WA)S NOT H)(I)S MOTHER). THE)HEN WAS NOT HIS
MOTHER. YTHE DO)G W)A)S NOT HIS MOTHER.)

(SXO THE B)Y(ABY B)IRYD WYENT YO)N. N)YOW) HE CYAME TO)
(4 YCcow)()

(ARE)(YO)XU MY MOTHER HE)SAID TO THE)(COW.)

()(H)(O W) COYULD)I)B)E YO)U)R MOTHE)R) SAID THE)(COW.)
(‘1TAMY(A YCOW)())

(THE KITTEN) AXND THE B)IR(D W)EXRE)N)OT H)I)S MOTHER)
(. THE)DO)G)AXND THE COW)(W)ERE N)OT HIS MOTHER.)

(D)ID YHE)YHA)XVE A)(MOTHE)R.)

(I)XD)YID)YHAYVE A MOTHER)" SAID THE)B)ABY BIRD).)
I YK)YNYOW) I)D)ID). I HAXVE XTO)FI)ND)YHE)R.)
() WYUILLY. 1 YW)ULL).)

(NOW)(YTHE B)XABY BIRD D)ID NOT YWAXL)K). HE)RA)N.)
(THEN)(HE)SAW)(A YC)AR) YCO)YULD)THYAT YOXLYD)
(THIN)(G)YB)E)H)I)S MOTHER.)(NO),)YIT COXULD)NOXT.)

(THE B)(ABY BIRD D)(ID NOT SYT)O)PX. HE)RAN) O)N) AND OXN.)
(NOW HE YLOOK)ED YWAXY, YWA)XY, YDOWN). HE)SAW A B)O)
(ATX. NTHE)YRE)SHE I)S’ SAID THE)BABY BIRD)(.)

Fig. 7

¥20Z Iudy 61 uo 1senb Aq 28888¢/¥L/L/€ L/81o1e/|ulwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

18 M. G. Notley

particular string was last parsed. The probable mean
rate of change of the count associated with a particular
string over a long period during which no new strings
are added to the library, however, is p;m — 1 where p;
is the probability that this particular string #, rather than
any other string in the library, will be parsed, and m is
the number of strings in the library. Herein lies the
justification for making the amount by which the string
counts are updated and the threshold above which com-
pound sequences are formed vary with m, the number of
strings in the library. By using the updating method
chosen the CRL will only stagnate if for all the strings
p; is equal to, or less than, 1/m, but since there are m
strings in all:

Zpi=1
1
and P < m
theref _ 1
erefore pi=

—thus stagnation can only occur if all the strings are
equiprobable. Having chosen to update the string
counts by m when they occur, the threshold above which
compound sequences are formed must be greater than
m since otherwise every string parsed would immediately
be formed into a compound string. The value of 2m
was chosen as a threshold intuitively, and found to be
very effective.

When compound strings are formed they could be
formed in one of four ways (assuming that it is also
required to ensure that any string formed has actually
occurred at least once, at the moment of its formation);
by adding the preceding symbol, by adding the following
symbol, by adding the preceding string, or by adding the
following string. It was decided that it was always more
efficient to add a string rather than a symbol because the
compound strings would then get longer more quickly.
It was also decided that, in the absence of any a priori
knowledge of the language structure, it was equally
efficient to use either the preceding or the following
string and that it was easier to use the preceding string
since the information was already available.

No mention has yet been made of what happens to the
strings in the library whose counts become very low (very
highly negative). Consider a situation on which a string
ABCD gets joined onto a string EFG when the CRL is
acting on a language in which the only occurrence of
the string ABCD is in a string ABCDEFG. In this case
the count for the string A BCD, after the string ABCDEFG
has been formed, will always thereafter get more and
more negative. It is evident that there is no longer any
point in retaining the string ABCD in the library. How-
ever, there is no way of telling, in the absence of external
information about the language, that this really is the
case. The problem is, therefore, how negative should
the string count be allowed to become before the string
is rejected from the library? The procedure currently
used is that when the counts become less than —2m the
strings are rejected. The only justification for this pro-

(HE)(CA)XLLYED)TO THE BO)AT), BUXT XTHE B)OXAT)D)(ID NOT S)

(TO)Y(P)(. THE B)(OXAT YW)ENT O)N.)

(HE)LOOK)ED WAY, YWAXY YU)YP. HE)SAW A B)I)G)(P)(L)(AN)
(E. YHE)RE IX A)(M YMOTHER)(,)C HE XYCAXLLED)OUXT.)

(BUXT YTHE)YPLYAN)XE DID NOT SXTOP. THE)PLANE W)ENT ON.)
(JUST YTHEN)(, THE BYABY BIRD SAW A BIYG YTHIN)G.))THI)S M)

(UXSXT YBXE YH)I)(S MOTHER.

THE)RE)SHE IS)C HE)SAI
(. “THEXRE I(S"M)Y)MOTHER))()() NRE X)) SAID)

(HE)(RAN)(_) (RI)GHT U)YP TO)YIXT.)X

‘MOTHER,)(MOTHER). HERE I)

(A)M, MOTHER HE)(SAID TO THE BI)XG THIN)G.)
(BUT)THE B)I)G THING)JUST)(SAID), WSYNORT)(.)NOH,

(YO)U ARE NOXT)YMY)MOTHER),)(

SAID THE)(BABY BIRD)())

(YOXU ARE YA S)YNORT)(. I HAXVE)TO)G)ET YOUXT OXF)HE)RE’)
(BUT THE BYABY BIRD)(CO)YULD)NOT)G)ET YAWA)Y. THE)SNORT)
(WY)ENT)UP). YIT YWENT YWAXY, WAXY YUP. YANXD UP)

(, XUP, UP)(W)YENT)THE B)YABY BIRD)()

(BUT)NOW)(, WHERE YWA)S)THE)SNORT)(XG)YOI)N)G)()

(OH, OH. YOH). W)HA)T YD(S NTHI(S S)NORTXG)OINYG TO)

(DO)(XTO)YME. YGET)ME) OUXT O)YF HE)RE’)

(JUST YTHEN THE SNORT)() CAME TO YA S)(TOP)

CNWHE)RE)YAM)(D(C SAID THE)BABY BIRD. ‘I WANT)TO G)(©O)

(HOYME. YI WANT)YMY MOTHER)(’)

(THEN S)O)YME)XTHING)(HA)YP)PEXN)ED). THE)(SNORT)(P)UXT)
(TH)(AT BABY BIRD) RINGHT)BAXC)K) IN)YTHE)T)REXE)

(. THE BABY BIRD WA)S)(HOME)(.)

(JUST)YTHEN THE)(MOTHER)(B)(IR)(D YCAME)BAC)K TO THE T)(RE)

(E. X DO)(WYOXU K)YNOW) WHOX

(R BAB)(Y.

I YAM)C)SHE)SAID T)O)HE)

()(YE)(S)()(I YKNOW)Y(WHO YO)U AXRE), SAID THE)BABY BIRD. °)

(YO)U ARE NOT YA)KIXT)XTENX.

YO)XU ARE NOT YA)HEN). YOU

ARE NOT A)DOG)(XYOXU ARE NOT YA)YCOW. YOU ARE NOT A)(BO)
(AT.)O)R XA)YPLAN)E), O)R A SNORT. YOXU ARE A B)IR)D,)

(AND)(YOU ARE)YMY MOTHER)(.)

Fig. 7 continued

¥20Z Iudy 61 uo 1senb Aq 28888¢/¥L/L/€ L/81o1e/|ulwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

The cumulative recurrence library 19

cedure is expediency, but it should be noted that any
string so rejected must have a low frequency, and also
that it can always be built up again if necessary.

Two major ways of increasing the power of the CRL
procedure in particular applications have also been
considered, these involve the association of further prop-
erties with the strings, and the extension of the CRL
to deal with more complex language structures.

In particular applications it might be desirable to
associate further properties with strings of symbols apart
from the actual symbols themselves. For example,
suppose that the symbols consist of operation codes and
the text consists of a computer program. It is, for
example, a property of the strings, rather than of the
symbols, that the first two operation codes in the string
share the same first operand. It might be desirable that
the library contains two strings with identical sequences
of symbols but for one of which this property holds and
for the other of which it does not. Thus by using the
same basic CRL procedure further particular information
about the text under study may be extracted.

The CRL procedure may also be extended to deal with
more complex language structures. It is evident that the
basic CRL procedure described above would be unable
to detect certain more complex language structures. For
example, in the English language, it would never be able
to detect that an ‘open inverted commas’ is always paired
with a ‘close inverted commas’. Suppose however that
an extended CRL procedure was designed that consisted
not only of a set of strings but also of a set of sets, and
that set numbers may appear in the strings, and that the
sets consist of sets of string numbers. An example is
illustrated in Fig. 8.

SETS STRINGS
1: 1,4 1: AB
2: 24 2: 1C
3: 3,1 3: D3E

4: A

Fig. 8. Extended CRL

A

AB

AC

ABC

DABE

DDABEE

DDDABEEE
... €tc.

Fig. 9. Expansion of Fig. 8

References

This library would be translated as a set of strings
whose elements are either symbols as stated, or else any
of the strings whose numbers appear in the set whose
number is stated. In the example shown the set of
possible sequences that may be generated from the
library is shown in Fig. 9.

It may be shown that such a system would be able to
parse any syntax that it is possible to state in Backus
Naur form (Backus, 1959). An extended version of the
CRL may be designed, by suitable alteration of the
parsing, updating, and new string formation procedures,
which is able to build up such a library in the same
manner as the simple CRL library, though at a pro-
portionately slower rate.

5. Applications of the CRL

The CRL procedure has two main areas of applica-
tion: its use to discover recurrent patterns in linear
strings of symbols and its use, given such a library, to
parse such strings of symbols. Much time has been
spent, for example, trying to ‘fingerprint’ the writings of
Shakespeare in an attempt to prove that they were
written by Bacon. This has been done, basically, by the
use of word frequency counts. The CRL would probably
provide a better procedure for doing this, in that it
involves no a priori assumptions, and the resulting
library contents would provide a much more natural
‘fingerprint’ of the writing.

As a less academic example, consider newspaper offices
transmitting their stories across transatlantic cables
(assuming that the possible errors due to noise have been
dealt with by suitable coding). Since such newspaper
stories are in a highly redundant code (the English
language) it would be advantageous to be able to code
the data more efficiently so as to reduce the transmission
time. Suppose, then, that the stories are first fed into a
CRL and transformed, by the parsing system, into a
code in which each symbol string s; is replaced by its
number i. If the CRL is kept constantly ordered so
that, for any i:

Ci > City

—where ¢; is the count for string s;, and if the numbers
i are coded so that it takes less time, in general, to
transmit the number i than number i 4 1, then the CRL
coding will automatically tend to an optimal informa-
tion/unit time coding. Thus by coding with a CRL,
transmitting the string numbers, and de-coding with an
identical CRL, the transmission time would be minimised
automatically.

6. Acknowledgements

The author’s thanks are due to W. Collins and Sons
Ltd. and to Mr. P. D. Eastman for permission to quote
from the text of their delightful children’s story, ‘Are
You My Mother ?°.

Backus, J. (1959). The Syntax and Semantics of the Proposed International Algebraic Language of the Zurich ACM-GAMM
Conf. Inf. Processing. Proc. ICIP, UNESCO, Paris, pp. 125-132.

EAsT™AN, P. D. (1962). Are You My Mother? London: W. Collins and Sons Ltd.
MicHe, D. (1967). Strategy Building with the Graph Traverser, Machine Intelligence 1, pp. 135-152. Collins, N. L., and

Michie, D. (Eds.). Edinburgh: Oliver and Boyd.

¥20Z Iudy 61 uo 1senb Aq 28888¢/¥L/L/€ L/81o1e/|ulwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

