25

The use of ALGOL 68 for trees

H. D. Baecker*

* Department of Mathematics, Statistics, and Computing Science, The University of Calgary,

Calgary 44, Alberta, Canada

These notes discuss the use of a binary tree programmed in ALGOL 68 and of a tree-structured
reference system to the local definitions of ALGOL 68 syntactic elements. Sample procedures

for tree manipulation in ALGOL 68 are appended.

(Received January 1969)

Introduction

A variety of techniques have been developed for the
construction of symbol tables in the early passes of
compilers. Representative discussions of the merits and
demerits of the techniques will be found in Wegner
(1968) and Mailloux (1968).

The following notes illustrate the possibility of using
tree structures to hold symbol tables, sample procedures
in ALGOL 68 being appended to illustrate the techniques.
In the absence of a working ALGOL 68 compiler at this
date (January 1969) the procedures must be regarded as
completely unproven.

It is assumed that the purpose of the initial pass or
passes of a compiler is twofold; to abstract and codify
the declarations appearing in the text, for later applica-
tion; and to reduce the source text to a stream of codified
units of uniform size, each representing an identifier,
denotation, operator, etc.

ALGOL 68 declarations

In ALGOL 68 any identifier or indicant, even those
belonging to the standard or library preludes, may be
redefined anew once in each range. Thus a symbol table
must cater for unpredictable multiple occurrences and
must provide means for discovering the relevant definition
at any applied occurrence of an object. As a single-pass
translator for ALGOL 68 is unlikely to be achieved we
must hold nested definitions throughout.

Unfortunately the structure of ALGOL 68 makes it
impossible to attribute a meaning to a mode identifier
declaration before the defining occurrences of mode-
indications have been found, so we need two or three
passes to accomplish the objectives for the initial passes
stated in the Introduction. We shall therefore reduce
the source text to a codified string on the first pass. Then
the symbol table built up during the first pass will be
inspected for identifiers, indicants, etc., defined in the
standard and library preludes, which are deemed to exist
inrange 0. Any such object found during this inspection
will have its definition pulled out from a library and made
available prior to the second pass, which will detect the
defining occurrences of mode, priority, and operator
indications, whilst a third pass finds the defining occur-
rences of identifiers.

Program example

Appendix 1 lists a set of ALGOL 68 procedures, and
nonlocal defining occurrences, for manipulating a binary
tree that will serve as a symbol table during the first pass.
of an ALGOL 68 compiler. The structure definition,
undefined itself herein, holds the information garnered
from defining occurrences in the standard prelude and
source text, to be made available to later passes of the
compiler. Access to these definitions is via the reference
array ITEMS. For purposes of exposition assume that
the block labelled PASSONE is overlaid for subsequent
passes of the compiler.

Range determination is according to the scheme out-
lined by Mailloux (1968) for ALGOL 68. At first
occurrence in the source text each object is allocated a
sequential accession number which subsequently serves as
a subscript when the definition of an occurrence is sought
via the vector ITEMS. The latest accession number to
be allocated is held in item. The appropriate definition
for an object is thus found by using the accession number
and the range of the occurrence.

The string word holds the most recent object to have
been assembled by the input routine from the source
text. This may serve as a search key at an occurrence
or as both search key (for positioning in the tree) and
an initialisation value for a new instance of the structure
object which forms a new tree element. The other fields
of object are two reference pointers to possible further
instances of object and two integers, the accession
number and kind of the object. Upon a use of that
object its accession number is substituted in the output
stream.

The kernel procedure is find. Using the value of word
it searches through the tree by comparison with the
name of object encountered. On a low comparison it
branches left, on high to right. If the selected branch is
nil a terminal node of the tree has been reached and the
sought object is not in the tree. When insertion of a
new object is to be performed then next refers to the
instance of object from which it is to be appended. If
an object has been matched in the tree then next refers
to the instance of object bearing that name. The tree is
rooted at root.

The integer what holds the kind of word, e.g. identifier,
indicant, denotation, separator.

The Computer Journal Volume 13 Number 1 February 1970

20z 1Mdy 61 uo }sanb Aq 0£688€/52/L/€ L/o1o1e/|ulWod/Ww oo dno-ojwapede//:sdiy wolj papeojumo(

26 H. D. Baecker

Posting definitions

When the source text has been scanned and trans-
formed the procedure cu/l is invoked to post denotations
to ITEMS and to find identifiers, indicants, operators;
etc., that are defined in range 0, that is, in the standard
and library preludes. These are posted to ITEMS, the
size of which is determined by the highest accession
number allocated this time.

It is clear that definition is a wunion, to cater for the
variety of definitions applicable to various types of
objects. As an example we give the posting of a denota-
tion to ITEMS using the procedure denotes (called from
cull).

Source definitions and applications

Subsequent passes will detect, form, and post defini-
tions occurring in the source text. Once a definition
structure for an item has been formed it is posted to
ITEMS by a call to post. This procedure is complicated
by the desire to establish the lists dependent from
ITEMS in ascending order of range number, whilst
catering for the possibility that definitions may occur
anywhere within a range.

The recursive procedure seek will return a reference to
the definition applicable within the current range, if none
exists it returns the value nil.

Conclusion

The main object of these notes has been to explore
the facilitiess of ALGOL 68 as a tree manipulation
language, a purpose which it would seem to satisfy well.
As a method of handling the syntax of ALGOL 68 the
scheme presented here is crude and has already been
refined in many respects.

Perhaps the most important conclusion, not demon-
strated herein, is that the facilities of ALGOL 68 appear
to lend themselves to writing an ALGOL 68 compiler
in itself, which will greatly facilitate the propagation of
the language.

Acknowledgement

I wish to thank my colleague J. E. L. Peck for his
great help in the preparation of these notes.

Appendix 1

int range number, max range, range depth;
[1: flex] int current ranges;
struct link = (ref link next, ref definition definition, int
range);
struct item = (int kind, ref link first);
[1: flex] item ITEMS;,
proc uprange =
(: range number := current ranges [range depthplus 1)
:= max range plus 1);
proc downrange =
(: range number .= current ranges [range depth
minus 1]);

PASSONE: begin pragma overlay pragma

int item := 0, what;

string word,;

struct object = (string name, ref object left, right,
int accession number, kind);

ref object root := nil;
proc find = int:
begin ref ref object next := root;
while (ref object : next :54: nil | word % name of
next | false) do
next := (word < name of next | left of next| right
of next);
if (ref object : next) :=: nil then
(ref ref object : next) := object :=
(word, nil, nil, item plus 1, what) fi;
accession number of next
end co find co;
proc cull = (ref object next) :
begin
if (ref object : /eft of next) :~: nil then
cull (left of next) fi;
comment here insert the case clause (depending on kind
of next) to insert denotations in ITEMS and to
search the preludes for definitions for ITEMS

comment
if (ref object : right of next) :+: nil then
cull (right of next) fi
end;

proc denotes = (ref object next) :
begin string heap hold := name of next ;
ITEMS [accession number of next] :=
(kind of next, link := (nil, hold, 0))
end;
comment here comes the body of PASSONE where calls
to find are made after each word has been assembled
Jfrom the source text comment
ITEMS :=[1 : item] item; comment assign actual value
to flexible upper bound comment
for i to item do first of ITEMS [i] := nil;
cull (root);
end;

PASSTWO : begin pragma overlay pragma
proc post = (int accession number, ref definition
definition) :
begin ref item the item = ITEM S[accession number];
ref int the type = type of the item,
ref ref link next := first of the item,
link heap hold := (nil, definition, range number),
bool more ;
CHECK TYPE :
if (ref link : next) :=:nil
then the type := input type
elsf the type # input type
then go to INCOMPATIBLE TYPE
fi;
NOW INSERT LINK :
while (more := (ref link : next) :5: nil |
range of next < range number | false) do
next := next of next ;
if more then next of hold := next fi ;
(ref ref link : next) := hold
end co post co ;
comment /ere follows the meaty body of PASSTWO which
will call post upon the successful elucidation of mode
and operator definitions comment
end ;

PASSTHREE : begin pragma overlay pragma
proc post = comment as in PASSTWO comment
proc seek = (ref link where) ref definition :

20z 1Mdy 61 uo }sanb Aq 0£688€/52/L/€ L/o1o1e/|ulWod/Ww oo dno-ojwapede//:sdiy wolj papeojumo(

Use of ALGOL 68 for trees 27

begin ref definition j := nil;
if (vef link : where) :5£: nil A range of where <
range number
then j := seek (next of where) fi ;
if (ref definition :j) :=: nil then for i to range depth
do
if current ranges [i] = range of where then
J := definition of where ; go to out fi fi ;
out :jend ;

References

comment an initial call to seek is always of the form :

- seek (first of ITEM S[accession number]) comment
comment here comes the mighty meaty body of PASS-
THREE, including calls to seek to determine modes
upon the elucidation of identifier definitions and a call
to post to hang each elucidated definition from
ITEMS comment
end ;
comment here follow subsequent passes comment

MAILLOUX, B. J. (1968). On the Implementation of ALGOL 68, Amsterdam: Mathematisch Centrum.
WEGNER, P. (1968). Programming Languages, Information Structures, and Machine Organisation, New York: McGraw-Hill

Book Co.

VAN WIINGAARDEN, A., MAILLOUX, B. J., PECK, J. E. L., and KostER, C. H. A. (1969). Draft Report on the Algorithmic Language

ALGOL 68, MR 100, Amsterdam: Mathematisch Centrum.

Book review

Machine Intelligence 4, by Ed. B. Meltzer and D. Michie,
1969; 508 pages. (Edinburgh University Press, 100s.)

The Annual Machine Intelligence Workshops held at Edin-
burgh University show how dedicated organisers can keep up
high standards year after year. This record of the 1968
Workshop has 26 contributions, a similar number to that of
the 1967 meeting; yet, the majority of authors are newcomers
to the Workshops, and the standard, if at all changed,
seems to be rising. This year there is one dominant impres-
sion, and that is the marked swing towards the use of more
precise technical methods. The hopeful optimism that once
felt that a few simple heuristics backed up by machine power
could solve significant problems has given way to a realisation
that Machine Intelligence might have to rely on difficult
techniques. This can be seen most clearly in the applications
papers. Here there are two trends, one going towards the use
of very special features of the problem, and another attempt-
ing to use formal theorem proving techniques. The first
trend is seen in the latest of the series of papers by Miss
C. J. Hilditch on pattern recognition, and also in the paper by
Buchanan, Sutherland and Feigenbaum, which is entitled
‘Heuristic Dendral’. This latter paper describes a program
for generating hypotheses for the structure of organic chemi-
cals using experimental data, whilst the program is called
heuristic, it actually uses quite complex special knowledge.
Amongst the papers proposing the application of theorem
proving are those of Darlington on the possible use of theorem
proving in information retrieval, and Green on its use in a

question answering system. The whole relationship between
logic and problem solving by machine is considered at length
in a profound, and stimulating, paper by McCarthy and
Hayes, this points out that the program which carries out the
problem solution is itself open to logical analysis. This
paper is likely to become required reading in the field.

The solid central core of the 1968 Workshop is in the half-
dozen papers on theorem proving. Almost all techniques in
use today rely on Herbrand’s theorem with steps decided by
methods related to J. A. Robinson’s Resolution Principle.
Perhaps it is worth noting that the accumulated papers on
mechanical theorem proving in the Machine Intelligence
series of volumes are a unique reference source, since they
give a comprehensive coverage of existing methods.

Programming techniques have often benefitted as a side-
effect of work in Artificial Intelligence. Today this connec-
tion is being exploited in a much more systematic way. For
example, Foster and Elcock are implementing a high level
language based on logical assertions, rather than instruction
steps.

There is the usual sprinkling of new ideas which might
blossom in the future. Two examples of this are the proposal
of J. A. Robinson on the mechanisation of higher order logic,
and the algebraic analysis of program structure put forward
by Burstall and Landin. Altogether, this book is not one to
be left on the library shelf, rather it is one to be kept in con-
stant use by an individual, a very rare thing for the proceed-
ings of a conference.

J. J. FLORENTIN (London)

20z 1Mdy 61 uo }sanb Aq 0£688€/52/L/€ L/o1o1e/|ulWod/Ww oo dno-ojwapede//:sdiy wolj papeojumo(

