28

Building a mobile programming system

W. M. Waite*

* Department of Electrical Engineering, University of Colorado, Boulder, Colorado, U.S.A.

The techniques of abstract machine modelling and macro processing can be used to develop programs
of great mobility. This paper describes the concepts and construction of a system which has been
implemented on nine different computers. In no case was more than one man-week required, and most

implementations went more rapidly than that.
(Received June 1969)

1. Introduction

The mobility of a program is a measure of the ease with
which it can be implemented on a new machine. A user
of a highly mobile program suffers minimum disruption
of his work when his computer is upgraded or he moves
to a new installation. Because his program is mobile,
only a small amount of effort is required to get it running
on the new machine before he can continue using it.
Applications programs written in high level languages
such as FORTRAN, ALGOL or COBOL have reason-
able mobility, provided that the author has taken some
pains to avoid local idiosyncrasies. For systems soft-
ware, however, the picture is much grimmer. There
have been many attempts to devise high level languages
for compiler writing (Feldman and Gries, 1968) and a
few to use such languages for the production of operating
systems (Glaser, Couleur and Oliver, 1965). Unfortu-
nately, none of these attempts has yet met with widespread
success.

A FORTRAN user requires a large programming
system, consisting of the compiler and associated run-
time routines. The mobility of his programs is deter-
mined by the number of installations which support this
system. One can therefore argue that the mobility of a
program is completely dependent upon the mobility of
the programming system on which it rests. In this paper,
I shall discuss a technique which I believe is fundamental
to the improvement of programming system mobility.
The background and general concepts from which the
technique was derived are presented in Section 2, while
the remainder of the paper is concerned with a specific
system which has been designed and built using this
technique. Section 3 describes the basic bootstrap on
which the system rests, and Section 4 discusses the im-
plementation of the common macro processor. The
advantages and disadvantages of the approach are pre-
sented in the Section 5.

2. General approach

The technique rests on the fact that it is possible to
identify two components of any program: the basic
operations and the algorithm which coordinates these

operations. Given a particular task, it is possible to
define a set of basic operations and data types needed to
perform the task. These operations and data types
define an abstract machine—a hypothetical computer
which is ideally suited to this particular task. The pro-
gram to perform the task is then written for this abstract
machine. To run the program on a real machine, it is
necessary to realise the abstract machine in some way.

The abstract machine is an embodiment of the basic
operations required to perform a particular task. Theor-
etically, it has no connection with any real machine, but
practically we must always keep a wary eye on reality
when designing an abstract machine. Many abstract
machines can be formulated for a given task. The trick
is to choose one of the right ones. Three considerations
must be kept in mind—

1. The ease and efficiency with which the algorithm
for accomplishing the task can be programmed in
the language of the abstract machine.

2. The ease and efficiency with which the simulation of
the abstract machine can be carried out on machines
available currently and in the forseeable future.

3. The tools at hand for the realisation of the abstract
machine.

Balancing these three considerations is very much an
engineering task. If one is stressed at the expense of
the others, there will be trouble.

An early attempt to use the abstract machine concept
was the UNCOL proposal (SHARE, 1958). UNCOL
was to be a UNiversal Computer Oriented Language
which would reduce the number of translators for »
languages and m machines from n X m to n+ m.
Effectively, the UNCOL proposal created a single ab-
stract machine. In view of the three considerations
mentioned above, it is easy to see why this attempt was
unsuccessful—try to design an abstract machine which
comes close to satisfying condition 1 above for
FORTRAN, LISP (McCarthy, 1960) and SNOBOL
(Griswold, Poage and Polonsky, 1969) simultaneously!
The mobile programming system circumvents this diffi-
culty by allowing a multiplicity of abstract machines.

The Computer Journal Volume 13 Number 1 February 1970

20z 1Mdy 61 uo }sanb Aq 06688€/82/L/€ |L/o101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

A mobile programming system 29

It does not attempt to solve the n X m translator prob-
lem. The advantage of the mobile programming system
lies in the fact that it reduces the specification of an
algorithm to the specification of its basic operations,
thus drastically reducing the amount of effort needed
to implement it.

One way to carry out the realisation of an abstract
machine is to devise for it an assembly language whose
statements can be expressed as macros acceptable to the
real machine’s assembler. This approach was suggested
by Mcllroy (1960) and used in the implementation of L6
(Knowlton, 1966) and SNOBOL (Griswold, et al., 1969).
Unfortunately, the assemblers for different machines may
require quite different input formats, and their macro
processors often vary widely in power. The ease of
transferring a program written in this way thus depends
critically on the existence of a suitable assembly language
for the target machine.

Recent developments in language-independent macro
processing (Strachey, 1965, Waite, 1967, Brown, 1967)
suggest that it is possible to make available a common
macro processor. If the assembly language statements
for the abstract machine are acceptable to this macro
processor, then the realisation does not depend upon the
macro capabilities of the target machine, but rather on
the availability of the common macro processor. An
example of this approach is the implementation of WISP
(Wilkes, 1964). There the WISP compiler is the common
macro processor, and is itself built up by bootstrapping
from simpler macro processors.

3. The bootstrap

One of the design goals of the mobile programming
system was that implementation on a new machine should
not require a running version on another machine. The
base of the system was to be easily implemented by hand
if necessary. Once this base was available, it could be
used to implement a common macro processor which
would handle the realisation of the various abstract
machines in the system. The common macro processor
itself was written in the assembly language of an abstract
machine, and hence the base of the system must include
a simple macro processor.

An adequate macro processor can be expressed as a
91 statement program written in a restricted form as
ASA FORTRAN. This program, known as SIMCMP,
is described in detail by Orgass and Waite (1967).
SIMCMP is written in FORTRAN for two reasons:

1. Since FORTRAN is a widely-used language, it may
be available on the target machine. This means
that SIMCMP can be implemented trivially.

2. FORTRAN was originally designed to be quite
close to machine code, and hence an algorithm
expressed in FORTRAN is easy to translate to
machine code by hand. (Translation of SIMCMP
to machine code for two different machines required
about 4 man-hours in each case.)

The primary criterion used in the design of SIMCMP
was simplicity. Only those features considered to be
absolutely necessary were incorporated. SIMCMP has
only one purpose: to realise the abstract machine used
for the common macro processor. This approach is not
the one which has been taken by most designers of

B

mobile systems, who prefer to assume that a working
version of the common processor is already available on
some machine. They argue that if a working version is
available on machine M, then a new version can be
created on machine N by the following procedure:

1. Code macros which translate the source code of the
processor to the assembly language of M.

2. Expand the common processor, using the macros
developed in (1) and the processor existing on M.
The result is an assembly language program for N.

3. Run the program resulting from (2) on N.

I must reject this procedure on the basis of my own
experience. More often than not, the machines M and
N are remote from one another. Since it is virtually
impossible to write the macros correctly the first time,
steps (2) and (3) must be iterated and the distance between
the machines makes this a slow and costly business.
Also the machines often have incompatible peripherals
and/or different character sets; at each iteration of)
and (3) a tedious translation must take place.

By eliminating the need for a working version, SIM-
CMP avoids these problems. All work is done on one
machine. The abstract languages being translated are
defined using a restricted character set available on most
machines (43 characters of the FORTRAN set on the
IBM 026 card punch). The character set used for the
real machine’s assembly language is completely arbitrary.
It is determined by the macro definitions, which are
written specifically for that machine and translated on
it. This is not true for the procedure outlined above.
There, machine M must be capable of writing assembly
code for machine N. If machine M cannot output all
of the characters needed by the assembly language of N,
a translation must take place at each iteration of steps
(2) and (3) above. On the other hand, suppose that all
of the work is being done on N using SIMCMP. If N
cannot recognise all of the 43 characters used in the
abstract language, a translation need only be done once
to put the source code into an acceptable form.

4. The common macro processor

As pointed out in the previous section, SIMCMP was
designed primarily for simplicity and is certainly not
adequate to serve as a common processor for realising
abstract machines. It is impossible to produce good
code using SIMCMP because decisions cannot be made
and alternate expansions provided. Because there is
no iteration facility, macros with argument lists of in-
definite length cannot be handled. A second processor,
known as STAGE?2, was therefore designed as the common
processor for the system. It provides all of the features
normally associated with a general purpose macro pro-
cessor (Mcllroy, 1960). In many respects, it is quite
similar to LIMP (Waite, 1967). Its input recognition
procedure is language-independent, employing the LIMP
type of scanning mechanism to recognise macro calls
and isolate parameters. The code body, however, differs
from that of LIMP. It does not include the ‘grouping’
concepts nor the SNOBOL interpreter. Conditional
expansion, iteration and the like are provided by pro-
cessor functions rather than by an explicit program struc-
ture. The ability to perform different parameter con-
versions has been retained and extended. A complete

20z 1Mdy 61 uo }sanb Aq 06688€/82/L/€ |L/o101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

30 W. M. Waite

manual describing the use of STAGE2 is available
(Waite, 1968).

The design of STAGE2 required a balancing of two
conflicting objectives:

1. It must be translated by SIMCMP.
2. It should be as flexible and as general as possible.

My overall philosophy dictated that (1) should be given
most weight, and any clear choice had to be resolved in
favour of it. Thus, STAGE2 does not provide all
features which one would like to see in a macro pro-
cessor, it is relatively slow, and it requires a fair amount
of data space. Its purpose is to provide a common
macro processor for realising a variety of abstract
machines, and not to act as a processor for day-to-day
use by applications programmers. For this latter use, we
are preparing versions of ML/1 (Brown, 1967) and LIMP.

STAGE?2 is written in a language called FLUB (First
Language Under Bootstrap). FLUB has 28 machine
operations and 2 pseudo-operations, each of which can
be expressed as a macro acceptable to SIMCMP. A
complete description of the characteristics and design
of the FLUB language has been given by Waite (1969).
The procedure for implementing STAGE2 on a new
machine, N, is thus:

1. Implement SIMCMP on N.

2. Write 28 macro definitions which translate FLUB
into the assembly language of N.

3. Translate STAGE2, using SIMCMP and the defin-
itions of (2), and assemble the resulting program.

Once STAGE?2? is running, it is possible to rewrite the
28 macros, taking advantage of the added flexibility of
STAGE?2. Using the version of STAGE2 already avail-
able, an optimised version of STAGE2 can thus be
produced:

4. Write 28 macro definitions which translate FLUB
into the assembly language of N. These macros
use the features made available by STAGE2.

S. Translate STAGE?2, using the version of STAGE2
implemented in (1)-(3) and the definitions of (4),
and assemble the resulting program.

The operations of the FLUB machine are rather
simple to describe and can be coded in a straightforward
manner. Unfortunately, a well-known axiom in com-
puter programming states that it is impossible to write
even the simplest code correctly the first time. The
macro definitions are the ‘hardware’ of an abstract
machine, and an incorrect macro definition is analogous
to a writing error in a real computer. No manufacturer
tests a computer just off the production line by running
a batchof FORTRAN jobs through it, and the implemen-
tor of an abstract machine should not be forced to
attempt a similar feat. Two test programs have been
developed by Mr. E. H. Henninger and Mr. R. C. Dunn
to facilitate checkout of the macros. These test pro-
grams were quite tedious to construct, and are subject
to most of the problems of normal hardware test pro-
grams (Bashkow, Friets and Karson, 1962).

Using the test programs, steps (2) and (4) above have
two sub-steps:

2,4a Write 28 macro definitions which translate
FLUB into the assembly language of N.

2,4b Translate, assemble and run the test programs.
Correct any errors in the macros which were
detected, and repeat step (b) until no errors
remain.

Testing the macros in this manner simplifies and speeds
the implementation considerably, because it means that
the implementor need not be familiar with the inner
workings of STAGE2 to be able to debug his macros.
Since the test programs were made available, STAGE2
has been implemented on six different machines. Four
of those implementations were done by people who
were not familiar with STAGE2, but in no case was
such familiarity needed. The test programs detected all
of the macro coding errors, and STAGE2 ran perfectly
when compiled.

I cannot overstress the importance of a comprehensive
macro test program in the successful implementation of
a machine independent system. Macro coding errors
can be very subtle, requiring hours of debugging to
trace them down if the machine independent program is
the only test case. A conservative estimate based on
our experience is that lack of a good test program will
increase the time required to complete an implementation
by a factor of five when the author of the system is
available to debug the macros. When he is not avail-
able, the task is almost hopeless.

5. Advantages and disadvantages

Use of the abstract machine concept allows an im-
pressive reduction in the amount of coding necessary to
establish a processor on a new machine. In the case of
SNOBOL4 (Griswold, et al., 1969), for example, the
compiler/interpreter contains roughly 4500 lines of code,
but only approximately 100 primitives must be recoded
for a new machine. The FLUB machine has 28 prim-
itives, and STAGE?2 is over 850 FLUB statements. A
LISP (McCarthy, 1960) system without numeric capa-
bilities requires just 8 primitives operating on 6 data types.
Although the reduction in sheer bulk of coding is a
factor in the success of this approach, the decrease in
code complexity is more significant. Each primitive
can be specified thoroughly, and is generally quite easy
to implement.

Whenever the term ‘machine independence’ is men-
tioned, questions of efficiency are bound to arise. Of
course, a program implemented as described in this
paper will not be as fast and tight as a hand-coded
version. Two arguments can be brought to bear, how-
ever. First, extreme efficiency of the generated code
may not be an issue, as long as extreme inefficiency is
avoided. An interactive BASIC (Dartmouth, 1966)
system which can be up and running with less than one
man-week of effort may be preferable to one which runs
twice as fast but requires 10 man-months to complete.
Second, it is possible to optimise the program on several
levels. The source language is designed to match the
problem well, and a great deal of time can be put into
producing an efficient program for the abstract machine.
Careful construction of the macros can result in sur-
prisingly good code for the target machine. Once the
assembly language version is available, critical parts can

20z 1Mdy 61 uo }sanb Aq 06688€/82/L/€ |L/o101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

A mobile programming system 31

be rewritten at leisure to further improve the program’s
performance.

In addition to SIMCMP and STAGE?2, a comprehen-
sive text manipulation program and two small editors
have been produced using the system described in this
paper. We are currently working on interactive BASIC
(Dartmouth, 1966) and SNOBOL4 (Griswold, et al.,
1969). A ‘logic analyser’ (which includes automatic
flowcharting) and a paginator for producing reports are
in the planning stage. The list processors WISP (Wilkes,
1964), LISP (McCarthy, 1960) and L6 (Knowlton, 1966)
are being considered.

The system has proved extremely mobile in practice,
having been implemented on nine different machines. In
each case the total effort was less than one man-week,
and most went more rapidly than that. A team of two
people, one thoroughly familiar with the system and the
other with the target machine, have had it running in
one day.

References

Acknowledgements

The basic ideas for the system came from some unpub-
lished comments by T. R. Bashkow on the duality of
hardware and software. Techniques were developed
through the implementation of LIMP and a number of
WISP compilers, in collaboration with M. V. Wilkes
(Cambridge University), H. Schorr (IBM) and R. J. Or-
gass (IBM). Thanks are due to R. E. Griswold, J. F.
Poage and I. P. Polonsky of Bell Laboratories for their
willingness to discuss the inner workings of the SNOBOL
4 compiler/interpreter. Dr. P. C. Poole of the U.K.
Atomic Energy Authority and Prof. Wilkes were of
material assistance in criticising several drafts of this
paper. Computing time was kindly made available at
different times by the following institutions: Computer
Center, Columbia University; University Mathematical
Laboratory, Cambridge; Graduate School Computer
Center, University of Colorado; Culham Laboratory,
U. K. Atomic Energy Authority.

Basakow, T. R., FrIets, J., and KARSON, A. (1963). A Programming System for Detection and Diagnosis of Machine Malfunc-
tions, IEEE Trans. on Electronic Computers, Vol. EC-12, p. 10.

Brown, P. J., (1967). The ML/1 Macro Processor, CACM, Vol. 10, p. 618.

Dart™MOUTH COLLEGE COMPUTER CENTER (1966). BASIC, 3rd ed. Hanover, N.H.: Dartmouth College.

FELDMAN, J., and GRigs, D. (1968). Translator Writing Systems, CACM, Vol. 11, p. 77.

GLASER, E. L., COULEUR, J. F., and OLIVER, G. A. (1965). System Design of a Computer for Time Sharing Applications, AFIPS

Conf. Proc. Vol. 25, p. 197
GRriswoLD, R. E., PoaGk, J. F., and PoLonsKY, 1. P. (1969).
Prentice-Hall, Inc.

The SNOBOILA Programming Language, Englewood Cliffs, N. J.:

KnowLTON, K. C. (1966). A Programmer’s Description of L6, CACM, Vol. 9, p. 616.
McCaARrTHY, J. (1960). Recursive Functions of Symbolic Expressions and their Computation by Machine, Part 1, CACM,

Vol. 3, p. 184.

MclILroy, M. D. (1960). Macro Extensions of Compiler Languages, CACM, Vol. 3, p. 214.
ORraass, R. J., and WAITg, W. M. (1967). A Base for a Mobile Programming System, Yorktown Heights, N.Y.: IBM Corp. (to

appzar in CACM)

SHARE Ap-Hoc CoMMITTEE ON UNIVERSAL LANGUAGES. (1968).

Machines: A Proposed Solution, CACM, Vol. 1, p. 12.

The Problem of Programming Communication with Changing

STRACHEY, C. (1965). A General Purpose Macrogenerator, Comp. J, Vol. 8, p. 225.
Warte, W. M. (1967). A Language Indepzndent Macro Processor, CACM, Vol. 10, p. 433.
WAITE, W. M. (1968). The STAGE2 Macro Processor, Boulder, Colorado: Department of Electrical Engineering and Graduate

School Computing Center, University of Colorado.

WAITE, W. M. (1969). Building a Mobile Programming System, Boulder, Colorado: Graduate School Computer Center, Univer-

sity of Colorado.

WILKES, M. V. (1964). An Experiment with a Self-Compiling Compiler for a Simple List Processing Language, Ann. Rev. in

Automatic Programming. Vol. 4, p. 1.

20z 1Mdy 61 uo }sanb Aq 06688€/82/L/€ |L/o101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

