32
An algebra system

D. Barton,* S. R. Bournet and J. P. Fitcht

* Institute of Theoretical Astronomy, Cambridge

1 Trinity College, Cambridge

¥ University Mathematical Laboratory, Cambridge

This paper describes a computing system that enables problems of manipulative algebra involving
a number of elementary functions to be simply and efficiently programmed. The system has been
designed with particular reference to the problems involved in the explicit calculation of the

Riemann tensor and associated quantities.
(Received March 1969)

In recent years considerable effort has been devoted to
the development of general purpose list processing
and symbol manipulation languages. Subsequently the
languages have been employed to produce packages of
programs to perform algebraic manipulation and it is
not surprising that many of these systems have been
designed with particular objectives in view. More
recently the availability of interactive console systems
has led to the development of formulae manipulation
packages that compute with expressions of sufficient
generality to be useful for the day-to-day calculations of
mathematics and theoretical physics (see Clapp et al.,
1966, Engleman, 1965, and the last reference). However,
it is doubtful if such systems could be successfully used
on calculations that involve really large quantities of
manipulative algebra. It is true that the field of prob-
lems giving rise to such calculations is at present small
but it is probable that it will expand when the tools of
the trade become more generally available.

Today the needs of people working on the above class
of problems are met, in part, by the FORMAC System
(Bond et al., 1964) and the REDUCE System (Hearn,
1968). More specialised needs are met by the ALBERT
program (Thorne et al., 1967), a complete FORMAC
program, and by the Clemens and Matzner System,
1967. The LISP list processing language has been
used for manipulative algebra and both the ALAM
System (d’Inverno, 1968) and GRAD-ASSISTANT
(Fletcher, 1965) are LISP based and have been success-
fully used for varied work including the calculations of
Riemann tensors. Very large problems in manipulative
algebra have been solved by the ALPAC System (Brown,
1963) and the system of Barton, Bourne and Burgess
(1968).

Work with the above systems has indicated that two
problems will have to be solved if further real progress
is to be possible. The first of these is to derive an
algorithm that will, in some sense, simplify an arbitrarily
complicated mathematical expression. This is a central
problem of some difficulty that has so far been treated
only by ad hoc techniques. A part of this problem,
namely factorisation of an expression, has received more

formal treatment in particular cases (see Brown et al.,
1963, Jordan et al., 1966, and Collins, 1964). The
simplified form of an expression is a subjective concept
(see Fenichel, 1966) and is to a large degree dependent
on the user and the nature of his problem. Of course
the system designer may insist on a canonical representa-
tion within the computer, but he should be prepared to
translate to some more convenient form for output
should this be desired. The second fundamental prob-
lem that arises is that of designing facilities that would
allow the user of a manipulative package the degree of
control over the several steps of his calculation within
the computer that he would have were he to compute by
hand. This problem appears to have been mentioned
only in Barton et al. (1968) but its importance is clear
since inelegant algebraic calculation will prove more
expensive by an order of magnitude in terms of machine
time and storage consumption than inelegant numerical
programming.

In this paper we describe a package of programs that
have been written to perform algebraic manipulation on
a fairly large class of elementary functions. The system
consists of a simple language in which manipulative
problems may be conveniently expressed, together with
a package of subroutines that are used to perform the
actual manipulation of expressions at run time. The
system was designed with two aims in view, (1) to provide
a useful system that would enable some of the calcula-
tions of General Relativity to be undertaken with greater
convenience and (2) to provide a system of sufficient
flexibility and power to enable further experimentation
upon the two problems discussed earlier. The system
is in use on the Titan computer (Prototype Atlas II) in
Cambridge.

The subroutine package used by the algebra system

This package consists of a set of closed subroutines
that perform elementary manipulative operations on a
certain class o of expressions. We define first the set S
of polynomials in a finite number of variables over a
given ground field. The set o is then defined to be the

The Computer Journal Volume 13 Number 1 February 1970

20z 1Mdy 61 uo }sanb Aq 9688€/2€/L/€ |L/o1o1e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

An algebra system 33

set of finite sums of products of functions f; whose
arguments are either themselves members of o or
alternatively members of S. The functions f; are
divided into two sets, the ‘built-in’ functions that are
known to the system and on which certain types of
simplification are carried out and the ‘user’ functions
that are treated purely formally and subjected to no
simplification beyond trivial cancellation. In order to
simplify the initial programming problem two arbitrary
restrictions have been imposed on the system. A function
may have at most four arguments and at present there
are only 16 ‘built-in’ functions. The system is capable
of extension should it be decided to relax either of these
restrictions. At present the following are included as
‘built-in’ functions:

1. The identity and reciprocal functions.

2. The circular functions and the corresponding
inverse functions.

3. The exponential, logarithmic and power functions.

4. Functions to denote formal differentiation and
integration.

5. The functions £ and II.

Exponentiation is represented either by the appropriate
combination of the functions exp and log or using the
power function. The hyperbolic functions have been
entirely omitted since their similarity to the circular
functions makes their inclusion an unrewarding task.

The following functions are examples of the members
of o:

1. x (represented by the identity function on the
polynomial x),

. log [x],

. sin [log[x]+yl,

cos [log[x+y]]+sin[x],

sigma [1/n.2, n] (meaning X 1/n?, other limits may
n=0

R

be used and sigma expressed as a function of four
arguments).

Start of expression
— Function number

Thus it will be seen that all elementary combinations
of functions are available within o.

The internal representation of expressions

An expression of ¢ is represented by the package as a
branched chain of blocks of space. The whole of the
available free space is initially chained together in units
of 4 words and forms a free list for which no garbage
collector is employed. In the representation of a
member of ¢ one free unit is allocated to each function
present. The first word of this unit contains a pointer
to the following function together with a marker to
indicate additive or multiplicative combination. The
second and third words contain, respectively, the function
name and the positive integral power to which it is
raised, while the fourth word points to a unit of space
that represents a vector of pointers to the arguments of
the function. The structure is presented in Fig. 1. The
vector of pointers to the arguments of a function also
contains markers to indicate whether the argument is
itself a member of o with a similar data structure or
whether it is a member of S. The members of S are
represented by a separate data structure presented in
Fig. 2. This structure takes the form of a branched list
together with a header. The second, third and fourth
words of the core unit reserved for the header contain
respectively a pointer to the remainder of the data
structure, a use count of outstanding references to the
polynomial and a code word. We shall refer to these
latter items later in this paper. The principle part of
the data structure for the polynomial is a list of the units
of four words containing, in the first two words, a
pointer to the next additive polynomial term and a
pointer to a unit of core containing the coefficient of the
term, and in the latter two words the exponents of the
several variables that compose the term. The data
structure for a polynomial is presented in Fig. 2. The
examples given in Fig. 3 and Fig. 4 should help to

Vector of pointers to arguments

of function with markers to
indicate whether in S or ¢

Pointer to second function of
expression with marker to ‘
indicate addition or multipli- \
cation. ‘

Second function of expression

Pointer to 3rd function of expression

Fig. 1. Basic data structure of a member of &

20z 1Mdy 61 uo }sanb Aq 9688€/2€/L/€ |L/o1o1e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

34 D. Barton, et al.

explain this complicated structure. It should be under-
stood that the data structures described above are
simplified versions of those that are used by the system
but that they are similar to them in all essential respects.

In order to try to make efficient use of the machine
store we have arranged to store algebraic expressions in
a canonical form within the computer and we have
associated a ‘use count’ with each stored expression,
Collins (1966); this number is a count of the number of
outstanding references to that expression. Associated
with each member of S stored in the computer is a
codeword obtained by combining the internal repre-
sentation of the several parts of the expression according
to some simple rule. While two identical expressions
will have the same codeword the converse is not true.
However, by suitable adjustment of the rule defining a
codeword the probability of two different expressions
having the same codeword can be made small and hence
the labour of discovering if a newly obtained expression
is already present in the machine may be substantially
reduced. It thus becomes possible to scan the set of all
stored expressions whenever a new expression is produced
in order to increment a use count if this should prove
possible.

An expression is in canonical form when the various
elements in the sums and products of the expression are
arranged in a well defined order. All routines compute
with arguments held in canonical form and arrange to
output their results in this form. No explicit program
is required for transformation to canonical form but a
program is included that will decide if two members of &
are ‘equal’ in the sense of representational equivalence
within the computer. In the canonical form the expres-
sions of o are reduced to the maximum extent by ele-
mentary algebraic cancellation. Expressions are further

Start of expression

R
L |

|

‘ Pointer to 1st polynomial term

! Usecount of polynomial

reduced by the application of various combinatorial
simplification rules upon the ‘built in’ functions. The
system does not pretend to provide an adequate simpli-
fication algorithm for the ‘built in’ functions included.
However, combinations of the functions are reduced in
the following ways automatically after any arithmetic
operation, before printing and otherwise at the con-
venience of the system.

(@) Under addition: identity, arcsin, arccos, log,
formal differentiation, formal integration, and X
have their arguments combined. e.g. log (x 4 »)
+ log (a + b) = log (ax + ay + bx + by).

() Under multiplication: identity, sine, cosine, expo-
nential and II have their arguments combined;
e.g. sin (x) cos (¥) = (sin (x + y) + sin (x — »))/2.

(¢) Wherever possible such reductions as

sin (arcsin (x)) = x
are performed.

(d) Wherever possible the reduction exp (n log x) = x”
is applied for integral n.

The algorithm performs all possible reductions of the
above types and, if the result is found to occupy less store,
it is regarded as a simpler form. Otherwise the original
form is retained. It is clear that thisalgorithmisinadequate
since the rules can only be applied in one direction and
all at once.

While the list of ‘built-in’ functions can, in principle,
be arbitrarily extended and new elementary simplification
rules included, the system has not been designed so that
the user can extend the simplification algorithm. It is
possible, however, for the user to extend the list of
functions with his own ‘user’ functions but the system
will perform only elementary cancellation on these. The
reason for this restriction is essentially one of economics

Codeword of polynomial

Space for the names and exponents

FAAW ——of the atomic variables that compose

the term W

l

-
[

|
|
b

1st polynomial

Pointer to coeff. of term s Term
(real, rational, complex)

—> | l <————Q——>

P

J

Pointer to 2nd Polynomial Term

Fig. 2. Basic data structure of a member of S

20z 1Mdy 61 uo }sanb Aq 9688€/2€/L/€ |L/o1o1e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

An algebra system 35

and it is our intention to discover the possible advantages
and disadvantages of the technique.

With the simplification rules described above it is only
possible to discover if two expressions are similarly
represented in the core and this is a much stronger
condition of equality than algebraic identity. This
implies that the system may well contain a complicated
and extensive representation of the zero expression
and calculations with this lead to the proliferation of
unnecessary list structures in the machine. While
the trivial occurrences of zeros are removed the system
will not recognise more complex cases, e.g.

log tan (; + Z) —sinh~!tan x = 0.

This problem will only be overcome by the provision of
an adequate simplification algorithm. The mechanism
of ‘use counts’ is intended to try to relieve the difficulty
but the problem remains and is, of course, the major
weakness of the system.

For the purpose of the trivial simplification that is all
we discuss here any definition of order between members

Start of expression

— ———EXxponent = 1

of o will be sufficient. However, it is probable that if
complex simplification procedures were to be used the
particular definition of order employed would have a
considerable effect upon the efficiency of the simplifica-
tion algorithm.

The manipulative subroutines provided in the package

The arithmetic operations between expressions that
have been programmed have been written so that they
may be entered recursively and hence it is only necessary
for each routine to deal with the present outer level of
sums and products of functions. Arithmetic with the
arguments of functions is only stimulated by the applica-
tion of simplification rules and the appropriate opera-
tions are performed by recursive entry to the arithmetic
routines. Hence the operations of addition and multi-
plication reduce to elementary merging of ordered lists
with cancellation and term by term multiplication
followed by the merging operation.

The various manipulative routines have been written
with a particular regard to the efficient use of core store.

—Pointer to argument and marker to say argument is in S

d R R
——/ 0 1 e — 1 7
e | LA

/

S S

/‘ /’
/

Representation of
identity function

A'rgument vector

code ’

|

u/c

l LHeader for member of S

———Rational coefficient = 1/1

Terminator ‘
—>
.
i
pointer to start of polynomial
| -
¥
|
\ l XTZ {———1st term of polynomial namely x2
L \
]
‘ | i 1
.‘ f— '——*m»l 1 ‘
‘ r 1
——— Pointer to 2nd term of polynomial
¥
N .
N ‘ x|y ———2nd term of polynomial namely xy
INE | |
1 i
Terminator
|
I

B T >

|

Rational coefficient = 2/1

Fig. 3. The representation of the expression x2 - 2xy

20z 1Mdy 61 uo }sanb Aq 9688€/2€/L/€ |L/o1o1e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

36 D. Barton, et al.

Consequently the routines arrange to produce their
results in the space occupied by their operands wherever
this is possible. The mechanism of ‘use counts’ prevents
this occurring in many cases and a program such as
addition must check the use counts of the outer level of
its operands and produce a copy of that level before
performing the merge if either count is greater than one.
The production of such a first level copy raises the use
counts of the various arguments of the functions occur-
ring at that level.

It will be clear then that even the elementary operation
of addition cannot guarantee to make no demands on
the available free space and selection facilities have,
therefore, been incorporated that operate at the time
expressions are generated by the arithmetic routines.
These facilities allow the user to call for that part of the
result of an arithmetic operation that satisfies certain
prescribed conditions and in this case no attempt is made
to store the complete result. Instead each part of the
result is inspected when it is produced and, if it is not
required, is discarded.

The manipulative routines that have so far been
programmed are as follows:

l. a=—«a (negate o).

2. o = do/dx; (differentiate o w.r.t. x,).
3. a= [adx; (integrate « w.r.t. x;).
4. a=a+ B (add « to B).

5. 0a=a—f (subtract B from o).

6. « = af (multiply « and B).

7. a=off (divide « by B).

8. a=oalxg,..., B ..., X%,) (this routine causes

expression 8 to be
substituted for a vari-
able x; into expres-
sion o).

where « and Beo and x; is an atomic variable of S. It
should be noted that the operations of differentiation
and integration listed above are explicitly carried out by
the system and are quite distinct from the functions for
formal differentiation and integration mentioned earlier
that are treated as built in functions with their own
simplification rules. The explicit integration program
is very elementary and proceeds by reference to a table
of standard forms and then by integration by parts
where this is possible. Whenever the user performs an
explicit differentiation the table of standard forms is
suitably updated. If the program is still unable to
integrate the expression and if the user program is
interactive, the system displays the quantity it cannot
integrate on the user’s console, or if possible on a display
screen, and asks the user for help. If the job is not
interactive the formal integration function is used.

The programming language for manipulative algebra

A primitive language based on Titan Autocode
(Barron et al., 1967) has been designed to enable the
manipulative subroutines to be conveniently used. The
language, known as B-Code for historic reasons, is
compiled into semi interpretative machine code by a load
and go single pass compiler. We shall not present here
a complete syntactic description of B-Code as the exact
structure of the language is not relevant to this discussion,
but rather we shall give a few brief details and then
demonstrate the system by example.

A B-Code program is composed of the upper and
lower case letters together with the digits and various
special symbols. The letters A-Z denote the names of
the two possible data types and these are:

1. Indices. Fixed point signed integers in the range
|n| << 106 called by the names, I, J, ..., T. Arrays
of these indices are also available and are referenced
byIm,n,...],...,Tlm,n,...].

2. Expressions. The members of o called by the names
A-H and U-Z. Arrays of these expressions are also
allowed, called by the names A[m, n, . . .], ...,
Him,n,..., Um,n,...],...,Zmn, ...

An expression of ¢ is made up from a combination of
lower case letters, e.g. alog[x] or =xsin[x] square
brackets being used to enclose the arguments of functions.
A number of special symbols have been used whose
meaning is not immediately obvious and these are:

1. | vertical bar is used to intro-
duce comment.

2. § (expression) dx indicates the explicit in-
tegral with respect to x.
(The integration is carried
out by the system.)

3. d (expression)/dx indicates the explicit deri-
vative with respect to x
(the differentiation is car-
ried out by the system).

4. D (expression)/Dx indicates the formal deriva-
tive with respect to x (the
built in function is em-
ployed).

5. § (expression) Dx indicates the formal integral
with respect to x (the
built in function is em-
ployed).

6. (expression) .N indicates the Nth power of
the expression.

7. pi represents the symbol .

8. i represents 1/ — 1.

The B-Code language is based upon Titan Autocode and
this language has no formal multiplication operator,
consequently the syntax for B-Code is ambiguous in
some respects. We have found it more convenient to
write our programs to avoid these difficulties rather than
include an explicit multiplication operator.

Program control is provided by means of ‘FOR
REPEAT’ loops, that are similar to the FORTRAN
‘DO’ loops, together with conditional and unconditional
jumps to explicit labels. Conditional jumps on the value
of an algebraic expression are, of course, only meaningful
if the condition is equality and in this case the system is
only able to detect representational equivalence. A closed
subroutine facility is provided. Input and output are
controlled by the INPUT and PRINT statements and
comprehensive error detection and control facilities are
provided.

We present now three simple examples in the form of
complete programs. The first to calculate

d
J‘b_x {x3 sin (x2 4 xy)} dy.

20z 1Mdy 61 uo }sanb Aq 9688€/2€/L/€ |L/o1o1e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

An algebra system 37

B-CODE PROGRAM

1: A=x.3sin[x.2 +xy] | read expression in-

to A
B = §(dA/dx)dy set B to required
result
PRINT (B) print the result
STOP stop execution
START 1 directive to start
program

We may also solve the above problem by the program

B-CODE PROGRAM

1 : PRINT (§(d(x.3sin [x.2 + xy])/dx)dy)
STOP; START 1

A less trivial example of the use of the system is to
calculate a Fourier series expansion of the function x.
We give below a program to perform this task.

B-CODE PROGRAM

1:A=x | set x into A
B = § (A sin [nx])dx | calculate an indefi-
| nite
| integral

B = Substitute (B, pi, x)—Substitute (B, —pi, x)
| put in the limits of integration + =
B = B/2pi | set B to nth coeff.
| in series
PRINT (sigma [B sin [nx], n]) | print result
STOP; START 1

The above program produces the result

sigma [2(—1).(n + 1) sin [nx]/n]

Start of expression

Exponent = 1

|
LI TT LI

|
Function number 1 l
namely sine |

Pointer to structure for ’
x2 + 2xy presented in

Exponent = 1

The principal purpose in the design of the B-code
system was to enable some of the calculations associated
with the General Theory of Relativity to be performed
with greater convenience. We shall therefore take a
final example of the use of our system from this subject.
We require to construct and print the Christoffel symbols
of the first kind given the components of the metric.
For simplicity of presentation we take the static spheri-
cally symmetric metric

ds? = g dxidx’ = — eP"ldr? — r2du?
— r2sin? udv? + eldr?
The Christoffel symbols are given by

.. 1 (0giy | 0gx g
(4, K1 = E{bxf - dxi dxk

The program of Fig. 6 calculates and prints the distinct
non zero Christoffel symbols in a self-evident manner.
The results are reproduced in Fig. 5.

[11,1] = — 1/2p’[a]explpla]]
[122] = —a

[13,3] = — a(sin[b]).2
[14,4] = 1/2q’[a]exp[q[a]]
[22,1] =a

[23,3] = — a.2sin[b]cos[b]
[33,1] = a(sin[b]).2

[33,2] = a.2sin[blcos[b]
[44,1]1 = — 1/2q’[a]explqla]]

Fig. 5. Results of the program to calculate Christoffel
symbols

Argument vector

pointer to argument of sine, namely cos (x2)

argument vector

Fig. 3. Marker indica-
ting addition.

d
/I

2 ’ l\ ‘ —Iv—J 1| e

)
|

Function number 2
namely cosine

Pointer to start of polynomial

L1

| .

Pointer to argument of cosine and
marker to indicate polynomial

Code I——-Header for

N u/c :
[‘ polynomial

|

——Rational coefficient = 1/1

Fig. 4. The representation of the expression sin (cos(x2)) + x2 + 2xy

20z 1Mdy 61 uo }sanb Aq 9688€/2€/L/€ |L/o1o1e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

38 D. Barton, et al.

Possible additional facilities

The algebra system contains two facilities that we feel
should be remarked upon. We have previously indica-
ted that the user may introduce new functions into the
system and that these are subsequently treated as ele-
mentary functions but no simplification is attempted.
To do this the user simply writes the new function into
his program and calls it by any lower case letter, e.g.
A = u[x] will set the variable A to the previously unde-
fined function u[x]. Subsequently the function will be
treated exactly as a ‘built-in’ function except that no
combinatorial simplification rules will be applied.

The second aspect of the system that requires comment
is concerned with the selection facilities available to the
user during a calculation. These facilities may be
conveniently divided into two groups; those concerned
with the size of an expression for various values of its
arguments and those concerned with the exact functional
structure of an expression. In the first of these classes
we assume that all the elementary variables a, . . . , z are
of the same order of smallness for approximation
purposes. However, their relative size may be redefined
at runtime by the statement a = 0 (expression) which
sets the size of a to be that of the largest term in the
expression. Thus a = 0 (x.2) sets a to be of order x2.
There is built into the system the knowledge of the
behaviour of the ‘built in’ functions for values of the
argument near the origin and infinity, and thus the
system is able to determine the relative size of the terms
of an expression. The behaviour of the users’ functions
may be defined by a statement of the form u[x] = 0 (x.2)
AS x —0. Facilities are then available for choosing
from a given expression, or dynamically from the result
of a calculation, the smallest or largest terms and also to
round an expression down to a given order in small
quantities.

In order to provide selection facilities dependent upon
the functional structure of an expression a special
variable named TERMS is provided. This variable
is an expression of o and is subject to computation
in a similar fashion to the variables A-H, U-Z. How-
ever, if we wish to select from the product AB those
terms that contain log [x] as a factor one would write
TERMS = log [x]; C = AB. A symbol is provided to
indicate independence of argument, and to select all
logarithm terms from the product AB one would write
TERMS = log [#]; C = AB. In the expression TERMS
addition is interpreted to mean logical or while multipli-
cation means logical and, hence to select the terms in
x log [x] or ylog [y] from the product AB one would
write TERMS = x log [x] + x log [y]; C = AB.

The part of the system that is concerned with selection
facilities is undergoing extensive development and we
make no claim to have treated this subject exhaustively.
Some of the problems that naturally arise are of extreme
difficulty, such as the existence of certain limits and the
convergence of series. Others are of less difficulty but
are still of considerable importance such as the linguistic
description of the user’s requirements. However, this is
a branch of automatic algebraic manipulation that has
been largely neglected although the techniques are fre-
quently employed by the mathematician with pencil and
paper.

Finally, it is instructive to see a comparison of the
runtime storage requirement and computation times of
our system with some others in the field. The test
calculation undertaken was that described in d’Inverno
(1968) of the construction of a number of quantities
necessary in the study of General Relativity. Using
the Bondi, Van der Burg, Metzner metric (Bondi et al.,
1962) the following were calculated: Christoffel symbols,
Curvative tensor, Ricci tensor, Ricci scalar and the
Einstein tensor. The comparison is given in Table 1.

B—CODE PROGRAM G[4,4] D[4,4,4] |CALCULATE THE CHRISTOFFEL SYMBOLS
|The above line includes a declaration of subscripted variables used to
|store the metric tensor and its various differential coefficients.

l: |The start of the program

|First a routine to set up our particular metric.

FORI=1:1:4;FORJ=1:1:4; G[,J]=0; REPEAT ; REPEAT

G[1,1] = — explp[a]] ; G[2,2] = — a.2

G[3,3] = — (asin[b]).2 ; G[4,4] = exp[q[a]]

|Next we calculate the derivatives of the elements of the metric.

FORI=1:1:4;FORJ=1:1:4

D[I,J,1] = dG[L,J]/da ; D[LJ,2] = dGJLJ]/db
D[LJ,3] = dG[IJ)/dc ; D[I1,J,4] = dG[LJ]/de

REPEAT ; REPEAT

|The following routine calculates the Christoffel symbols taking

|symmetry into account.

FORI=1:1:4
FORJ=1:1:4
Ilj,k] =0if i ##j # k
—+4IFI=J;K=1; =2

s

|[,k] = [jiK]

K=J;-32->;2->3

FOR K=1:1:4; -2— ; REPEAT
Fig. 6

20z 1Mdy 61 uo }sanb Aq 9688€/2€/L/€ |L/o1o1e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

An algebra system 39

3: REPEAT
REPEAT
STOP
2: |Subroutine to evaluate and print the symbol [1J,K]

[Set A = [IJ,K]

A = (D[LK,J] + D[J,K,I] — D[LJ,K])/2

—-5IFA=0 |Do not print a zero symbol.

|Put out text ‘[ij,k] = ’ followed by the value of the symbol.

TEXT:[: ; PRINT(I) ; PRINT(Q)) ; TEXT:,: ; PRINT(K) ; TEXT:] =:

PRINT(A)
5: RETURN |End of subroutine.

START 1

Fig. 6 continued
Table 1
SYSTEM MACHINE STORE REQUIRED TIME REQUIRED

Barton-Bourne-Fitch Titan* 18 K 4 mins.

ALAM (8) Atlas I S0 K 4 mins.

Clemens-Matzner (7) IBM 7094 Not available 30 mins.

GRAD.-ASSISTANT (9) IBM 7090 Not available 17 mins.

* Titan is a prototype Atlas II.
Acknowledgements
In conclusion we would like to thank Professor M. V. during the construction of the system. Further, we

Wilkes for his valuable comments on an earlier draft of should like to thank the Director and staff of the Uni-
this paper and Mr. J. R. Horton for his assistance with versity Mathematical Laboratory for their assistance and
the display facilities and for his programming effort encouragement throughout the project.

References

BARRON, D., BROowN, H., HARTLEY, D., and SWINNERTON-DYER, H. P. F. (1967). Titan Autocode Programming Manual, Uni-
versity Mathematical Laboratory, Cambridge.

BARTON, D., BOURNE, S. R., and BURGEsS, C. (1968). A simple algebra system, Comp. J., Vol. 11, No. 3.

BonD, E., AUSLANDER, M., GRISOFF, S., KENNEY, R., MYszEwsKI, M., SAMMET, J., TOBEY, R., and ZILLEs, S. (1964). Formac—
An Experimental Formula Manipulation Compiler, Proc. A.C.M., 19, Nat. Conf.

Bonbi, H., VAN DER BURG, M. G. J., and METzNER, A. W. K. Proc. Roy. Soc. A, Vol. 269, p. 21.

BrownN, W. S. (1953). The Alpac system for non-numerical algebra on a digital computer I, Bell Tech. 42, pp. 2081-2119.

BrowN, W. S., HyYDE, J. P., and TAGUE, B. A. (1933). Alpac Il, Bell Tech. 43, 785.

Crapp, L., JorDAN, D., WaXx, E., and WoLF, R. (1966). Magic Paper—An on line system for the manipulation of symbolic
mathematics, Computer Research Corp. DDC-A9-643313.

CLEMENS, R., and MATzNER, R. (1967). A system for symbolic computation of the Riemann Tensor, Tech. Report N.635,
Univ. of Ma-yland.

CoLLins, G. E. (1964). Polynomial remainder sequences and determinants, Notices of Am. Math. Soc., Vol. 13, No. 2.

CoLLins, G. E. (1966). PM—A system for polynomial manipulation, CACM, Vol. 9, No. 8.

D’INVERNO, R. A. (1968). Alam—Atlas Lisp Algebraic Manipulation, Comp. J., Vol. 12, No. 2, pp. 124-127.

ENGLEMAN, C. (1965). Mathlab—A program for on line machine assistance in symbolic computations, Proc. A.F.I.P.S. Fall
J.C.C.

FENICHEL, R. R. An essay on simplification, SICSAM Bulletin No. 6.

FLETCHER, J. G. (1965). GRAD-ASSISTANT—A program for symbolic algebraic manipulation and differentiation, U.C.R.L.
Report 14524-T.

HEARN, A. C. (1968). Reduce Users Manual, Stanford Artificial Intelligence Project—Memo. 50.

JorbAN, D. E., Kain, R., and Crapp, L. C. (1966). Symbolic factoring of polynomials in several variables, CACM, Vol. 9,
No. 8.

THORNE, K. S., and ZiMMERMANN, B. (1967). ALBERT—A package of four computer programs for calculating General
Relativistic Curvature Tensors and equations of motion, Joint Tech. Report, Cal. Inst. Tech.

A system for interactive Algebraic manipulation (1968). Applied Data Research Inc.

20z 1Mdy 61 uo }sanb Aq 9688€/2€/L/€ |L/o1o1e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

