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A ring processing package for use with FORTRAN

or a similar high-level language

Linden F. Blake, Rosemarie E. Lawson and I. M. Yuille*
* Admiralty Research Laboratory, Teddington, Middlesex

Many applications of a computer, particularly in engineering design, utilise relationships between
blocks of data and require a facility for building and manipulating data structures which permit
the expression of these associative relationships. This paper describes a software package that
enables associative data structures to be represented in a computer store by means of rings of
address pointers connecting blocks of data in an orderly manner. The package has been imple-
mented on a KDF9 computer with a disc store operated by the Egdon 3 system. The software is
written in machine code but by means of a set of small auxiliary routines operations may be carried

out by calling FORTRAN subroutines. By this means manipulations of associative data occupying
up to two million words may be included in FORTRAN programs. By writing different auxiliary
routines the package could be used in ALGOL or another high level language. Implementation

on another computer would not be difficult.
(Received April 1969)

Many modern applications of a computer, particularly
in the fields of computer aided engineering design and
computer controlled drawing or display, are concerned
with collections of objects, each of which has properties
represented by some data, arranged in such a way that
the association of one object with another is explicit.
For example, certain objects may possess some common
property or they may possess some hierarchical structure
such as a family tree. Data representing such a col-
lection of objects is known as an associative data
structure. It is required to represent an associative data
structure in a computer store in such a way that it may
undergo rearrangement and modification when required
and so that the associative relationships may be deter-
mined easily when the data structure is entered at any
point.

An association between two blocks of data in a
computer store may be represented by adding to one
block of data a word which contains a pointer to the
address of a similar word added to the other block of
data. By building on this concept multiple associations
may be achieved by adding several words to each data
block and by using many address pointers to link the
blocks together in some orderly fashion. The simplest
arrangement that will satisfy the requirements of the
previous paragraph is one in which the pointers form
rings that may be traversed from one block of data to
another, eventually returning to the first, and to designate
one position in each ring to be its starting-point. It is
convenient, however, to have pointers that enable a ring
to be traversed in either direction and also to make it
possible to go directly to the start of a ring.

The various published implementations of this con-
cept differ in their arrangement and handling of the
pointers, in their methods of execution, and in the
command languages by which the systems are used. A
review of several schemes was published by Gray (1967).

All required compiler type programs to translate com-
mands, written in the chosen terminology, into machine
code or, in the case of APL (Dodd, 1966) for example,
into PL/1 statements and subroutine calls. There is as
yet no standard terminology for describing associative
data structures, or operations on them, and some of the
published command languages are far from easy to use.

The object of the present work was to provide a ring
processing software package that permitted the repre-
sentation of large complex associative data structures
which could be operated upon in a manner which was
easy to program. There is a tendency, at present, for
engineering applications programs to be written in
FORTRAN (in the hope that they will run on different
computers without having to be re-written) and it seemed
to be desirable to provide a set of operations within the
framework of a proven high-level language rather than
a separate facility. For these reasons our ring processing
routines, written in a low-level language, are accessible
to a programmer by calls to FORTRAN subroutines.
(The package uses small auxiliary routines to connect it
to the FORTRAN and it would be easy to enable it to
be used with another high-level language, for example,
as a set of ALGOL procedures.) This obviates the need
for a special compiler to include ring processing opera-
tions and permits the programmer to use the jump
facilities of FORTRAN to embed the basic ring pro-
cessing operations in sophisticated program loops if he
so desires. The subroutines permit all required opera-
tions on the structured data but the detailed organisation
of the rings is carried out automatically. The names
given to the subroutines are concerned with ring pro-
cessing operations and the interpretation in terms of the
data structure represented depends entirely on the
application.

The ring processor has been implemented on a KDF9
computer and is designed to fit into the Egdon 3 operating
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Ring processing in FORTRAN 41

system (Poole, 1968). The system makes use of a four
million word disc store and it was desired to use this to
store large data structures which could be operated upon
by running various programs in the computer. It was
decided to hold each element of a ring in one 48-bit word.
Although the use of forward, backward and ring start
pointers in each element would have been desirable this
would have restricted each address pointer to 14 bits and
confined the total size of the structured data to less than
16,384 words. It was therefore decided to use 21-bit
pointers which allow the data to occupy up to two
million words if required. (Each element of a ring con-
tains a forward pointer and either a backward or a ring
start pointer as will be described in more detail later.)
The data is held on pages in files on the disc store and
pages are brought into the core store when required.
By this means the ring processing package effectively
permits the extension of the addressable memory within
a FORTRAN program to about two million words.

Representation of data structure in computer store

The basic item of the representation of an associative
data structure comprises a number of contiguous com-
puter words and will be called an entity. Many different
types of entity may exist in the same ring structure. A
typical entity is shown in Fig. 1. The first word is the
entity header and into this is packed information con-
cerning its type, region, number and size. The next few
words are elements of rings formed by address pointers
as described in the next paragraph. (There is a maxi-
mum of seven of these, only six of which are available for
general use.) The remaining words of the entity contain
data specific to the object represented by that entity;
these data may be alpha-numerical, e.g. the name of the
object, and/or purely numerical data concerning one or
more properties of the object, depending upon the
application.

The arrangement of a ring is based on that of the
CORAL language which was developed at the M.L.T.
Lincoln Laboratory (Sutherland, 1966). This allows

Entity header

Associative element in
type ring

Associative element 1

Associative element 2

Ring start element 1

Ring start element 2

Data word 1
Data word 2
Data word 3

Fig. 1. Typical entity

rapid tracing through the ring in a forward direction and
permits tracing backwards or to the start of a ring with
little extra effort. In our implementation each element
of a ring is formed in one 48-bit word of KDF9 store
and consists of four parts. Three bits identify the type
of element, three bits form a number specifying its
position in the entity and the remainder of the word
contains two parts of 21 bits each. One of these parts
holds the page and relative address of the next element
in the ring. One element is the start of the ring and is
called a ring start element; all other elements are sub-
ordinate to it and are called associative elements. In
the ring start element the second 21 bits records the
number of elements in the ring. In the associative
elements the second 21 bits hold a page and relative
address which points either to the ring start element or
is used as a backward pointer. A backward pointer
always points to an element with a back pointer and
rings are formed with start pointers and back pointers
alternating as shown in Fig. 2. The less useful pointers
are thus stored in half the space but this involves only a
small sacrifice of operation time.

Ring start
element Start pointers

. .ﬂf < ‘
T

—>

SNE = NENE N

4 Associative

1
1

4 elements ‘ 4
\
I

|
Back pointers

Fig. 2. Arrangement of ring

The association between two entities is achieved by
choosing the associative element, at a given position in
one of the entities, and putting it into the ring starting
at a given position in the other entity. A third entity
may be associated with these two by putting one of its
associative elements into the same ring and further
entities may be added in the same way.

When it is desired to put one associative element of
an entity into the rings starting in two or more other
entities a problem arises because an associative element
has only sufficient room for the pointers of one ring.
This problem is handled automatically by the program
by letting it join rings together by means of a device
called a knot. (These were called nubs in CORAL.) A
knot is a two-word block of store each word of which
is an element of a ring. When an associative element of
an entity is to be put into two rings it becomes the start
element of an auxiliary ring of two associative elements,
one in each of two knots. The other two elements of
the two knots become associative elements in the two
rings of which the entity is to become a member. If it
is desired to place the entity in a further ring the number
of knots is increased by one, and so on. Thus the effect
of the auxiliary ring is to provide an extension of one
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associative element of an entity when (and only when)
required. It is best thought of in this way so that the
original associative element in the entity may be regarded
as one associative element tied to more than one ring.
A ring without knots will be referred to as a simple ring
and one with knots will be called a complex ring. The
creation, organisation and deletion of knots is handled
entirely by the processing package and need not concern
the applications programmer.

A small associative data structure is shown in Fig. 3
and illustrates the use of knots to join rings. Entities A4,
B, C and D, are in a simple ring having its starting
element in entity . Entity 1 is in one ring starting in
entity 4. Entity 2 is in two rings starting in entities A
and B. Entity 3 is in three rings starting in entities B,
C and D. The associations represented in Fig. 3 are
completely general and depend upon the meaning given
to the data structure in a particular application. For
example, in part of an information system entity / might
represent a particular subject, entities 4, B, C and D
papers on that subject (with titles and sources held as
data) and entities 1, 2 and 3 the authors of the papers
(with their names held as data).

The limitation on the number of ring elements in an
entity may appear to imply a limitation on the number
of rings that can have their ring starts in a given entity,
but this is not so in practice. For most applications this
limitation will not be a restriction. If it is, however, the
difficulty may be overcome by defining an entity with
up to five ring start elements and by putting one or more
of these entities into a ring starting in the original entity
thus effectively extending indefinitely the number of ring
starts there. If the latter is to have a large number of

associations (as is implied) it may be convenient to
include in the extra entities some words of data for
identification or they may be identified solely by their
positions round the ring starting in the original entity.

Organisation of storage

The system is primarily intended to run on a computer
with disc as well as core store. (There is, however, a
version of the software that uses only the core store.)
For the KDF9 computer a software paging supervisor
enables the whole of the available store to be addressed
in one way. A suitable amount of core store is set aside
for manipulations of the data structure and into this
pages may be read from the disc. The core store set
aside must be able to accommodate at least six pages
but the system will run more efficiently if more pages
can be accommodated. Each 21-bit address pointer, to
a ring element or an entity, specifies a page number and
the address relative to the beginning of the page. When
a peinter is encountered the paging supervisor examines
its list of pages in core. If the required page is present
the page and relative address are converted into the
appropriate core address. If the page is not present it
is read into a free part of the array allocated to pages
in core store. Then the page in core which has remained
unused for the longest time is read back to the disc
(except in certain circumstances to be mentioned later)
leaving a free space in the array for the next page re-
quired from the disc. While the unwanted page is being
written onto the disc the pages in core may be used with
little interruption to the program.

After many manipulations of a data structure it may

I
A B C D -
“NOT |— | KNOT|——[xNor1| [x~oT] [ kNOT
1 L_i 2 3

Fig. 3. Typical ring structure
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be anticipated that linked entities may be scattered over
many pages. To increase efficiency, entities may be
made in any of 63 regions and the pages for one region
only hold entities in that region. Calls for entities in
one region will bring into core pages holding other
entities in that region. Thus, by setting up the repre-
sentation of a data structure so that the most frequently
used associations occur within particular regions the
programmer can decrease the probability that further
pages will have to be read from the disc before operations
on the ring structure may continue. Also, in some
manipulations of a data structure it is convenient to set
up an auxiliary structure which is later discarded. If
this is set up in a separate file of pages its deletion, when
no longer required, does not involve the creation of gaps
in the main ring structure which have to be removed by
the data compacting routine.

On the KDF9 disc store the pages of each region are
held in a separate file in the Egdon 3 system. In addition
to the obvious advantage, that the user has all the
facilities of the Egdon archiving system, this helps the
operation of the Egdon system during which, as a safe-
guard against disc failure, a periodic dumping to magnetic
tape is carried out of all files that have been altered since
the last dumping. With a ring structure held in several
files only those regions that have been changed need to
be dumped.

Facilities available

The software comprises a User Code package plus
some small auxiliary routines that enable operations on
the ring structure to be carried out by calling FORTRAN
subroutines in the normal way. Thus programmers are
able to include operations on associative data in pro-
grams written in a high-level language. There are
facilities for:

(@) Creating and deleting entities.

(b) Establishing and altering the associative links
between entities.

(¢) Tracing round rings of entities.

(d) Interrogating entities.

(e) Obtaining access to data held in the data parts of
entities.

(f) Compacting the data structure so that it occupies
the smallest possible space.

The subroutines that provide these facilities are sum-
marised in the following sections. The subroutines
require the programmer to specify a number of integer
variables, or their values, in the usual way. The de-
finitions of these are given below together with the names
allocated to them in this description.

JA = Position of associative element in entity.
JD = Position of data word in entity.
JS = Position of ring start element in entity.
KEA = Entity page and relative address. There must
be at least three variables KEAl, KEAZ2,
KEA3, . . . which the system can use to store
address pointers to entities. These are the
normal means of referring to an entity between
subroutine calls.
LEN = Entity number.
LT = Type of entity.
LR = Region number.

MD = Position of a word in the array holding the
associative data in core store relative to begin-
ning of array.

NA = Number of associative elements defined to be in
entity of given type.

ND = Number of data words defined to be in entity
of given type.

NS = Number of ring start elements defined to be in
entity of given type.
N = Number of steps to be taken.
NOT = Number of steps not taken.
NEN = Number of entities.
NRG = Number of rings.

Creation and deletion of entities

DEFINE (LT, NA, NS, ND)
Define the number and type of elements in entities
of type LT.

CHAD (LT, ND)
Redefine the number of data words in entities of
type LT.

MAKE (LT, LR, LEN, KEA)
Create an entity of type LT in region LR. The
number of the entity will be stored in LEN and its
page/relative address will be stored in KEA.

FREE (KEA)
Return to the system the space which was occupied
by the entity stored at the address in KEA.

Associative links

PUT (KEAI, JS1, KEA2, JA2)

The element JA2 of the entity at KEA2 is inserted
at the beginning of the ring starting at element JS1
of the entity at KEAI.

PUTEND (KEAI, JS1, KEA2, JA2)

As PUT but element JA2 of the entity at KEA2 is
inserted at the end of the ring starting at element
JS1 of the entity at KEAL.

SWOP (KEAI, JS1, KEA2, JA2, KEA3, JA3)
Interchange the element JA2 of the entity at KEA2
with the element JA3 of the entity at KEA3 in the
ring starting at element JSI of the entity at KEAIL.

TAKE (KEAI, JS1, KEA2, JA2)

The element JA2 of the entity at KEA2 is removed
from the ring starting at element JS1 of the entity
at KEAL.

Movement in rings

TYPSTP (LT, LR, KEA, N, NOT)
Take N steps round the entities of type LT in region
LR from the entity at KEA and store in KEA the
address of the entity so reached. If KEA = 0 when
the CALL is executed stepping will be from the ring
start. (If the ring start is reached before the stepping
is completed NOT is set to the number of steps not
taken and KEA set to zero.)

ENTSTP (KEAI, JS1, KEA2, JA2, N, NOT)
Take N steps from the entity at KEA2 element JA2
round the ring starting in element JS1 of the entity
at KEA1. KEA2 becomes the address of the entity
so reached and JA2 the number of the required
associative element in that entity. If KEA2 = 0 at
the CALL stepping is from the ringstart KEA1, JS1.
(NOT and KEA2 as for TYPSTP.)
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RNGSTP (KEAI, JA1l, KEA2, JS2, N, NOT)
Take N steps round the entities which start rings
containing the associative element JA1 of the entity
at KEAI1 beginning from the element JS2 of the
entity at KEA2. The address of the entity reached
will be stored in KEA2 and JS2 will become the
number of the required ring start element within
that entity. If KEA2 is set to zero before the CALL
stepping will be from the associative element itself.
(NOT is set to the number of steps not taken if all
the rings are found before stepping is completed
and KEA2 is set to zero.)

GET (LT, LR, LEN, KEA)
In KEA record the address of entity number LEN
of type LT in region LR. (If there is no entity of
this number and type in the region KEA will be
set to —1.)

Interrogation of entities

INFO (KEA, LT, LR, LEN, ND)
Record the type, region, number and number of
data words of the entity stored at the address in
KEA in LT, LR, LEN and ND respectively.
RINGS (KEA, NA, NS)
Record the number of associative and ring start
elements in the entity stored at KEA in NA and
NS respectively.
ENDATA (KEA, JD, MD)
Record in MD the position in the page array of the
JDth word of data of the entity stored at KEA.
ENTT (LT, LR, NEN)
Record in NEN the number of entities of type LT
in region LR.
ENTR (KEA, JS, NEN)
Record in NEN the number of entities in the ring
starting at element JS of the entity at KEA.
ENTA (KEA, JA, NRG)
Record in NRG the number of rings to which the
element JA of the entity at KEA belongs.

Discussion of subroutines

Each of the subroutines is used by treating it as a
FORTRAN subroutine and calling it in the usual way.
Up to 127 different configurations of entity may be
defined for a particular application and any number of
any type may be made as required in any of the 63
regions. For over a year the ring processing package
has teen in use in connection with a project for com-
puter aided design of ships and it has been found that
the use of fixed size entities has helped rather than
hindered this work. Occasionally, however, it is neces-
sary to vary the number of words of data held in entities
of a given type and this is done by calling CHAD before
MAKE each time an entity of that type is made.

The address pointers KEA are used in nearly all the
routires. These consist of a page and relative address
which permit the recording of the address of any entity
on the disc. These pointers are held as FORTRAN
variables so there is no restriction on their numbers and
they may be recorded or deleted according to the needs
of the program.

The routine GET does not alter the pages through
which it searches for the required entity and special

provision has been made to speed up its operation.
Successive pages read from the disc overwrite each other
in core until the appropriate page is found and no pages
are written back to the disc. The possibility of finding
an entity even though it is not in any ring is not usually
provided in ring processors but has been found to be
quite useful in the computer aided ship design project
mentioned earlier.

Two routines enable entities to be placed at the
beginning or end of a ring. The use of SWOP with
appropriate FORTRAN programming permits an entity
to be placed at any specified position in a ring without
upsetting the alternation of the backward and ring start
pointers. For example, the following puts the entity
whose address is held in KEA?2 into the ring starting at
the entity whose address is held in KEA1 at a position
in the ring after the entity whose address is held in
KEAB (known to be in the ring).

CALL PUT (KEALI, JSI, KEA2, JA2)

1 KEA3 = KEA2
JA3  =JA2
CALL ENTSTP (KEAI, JS1, KEA3, JA3, 1, NOT)
CALL SWOP (KEAL, JS1, KEA3, JA3, KEA2, JA2)
IF (KEA3. NE. KEAB)I

There is a notable absence of what are usually called
‘GO ROUND’ facilities. In fact these are unnecessary
because any such facility may be built up by writing
appropriate FORTRAN programs around the facilities
available in the package. (Provision of some simple
‘GO ROUND’ facilities was contemplated but examina-
tion of those provided in other work of this nature
showed them to be of restricted application and it was
preferred to keep the package as small as possible so
that transfer to another computer would be simplified.)
To illustrate the ease with which FORTRAN programs
may be written to carry out complex operations on data
structures the subroutine given in Table 1 carries out
one of two different operations upon each entity of any
ring structure starting at element JS in the entity whose
address is held in KEA; which operation is executed
depends upon whether or not the entity under con-
sideration is in a ring starting elsewhere. The two
different operations are named FUNCA and FUNCB
respectively.

With the array dimension 20 as shown this routine
operates on ring structures to a depth equal to 20, but
of course this figure could easily be changed. The sub-
routine could have been written to operate recursively,
but this was not done because FORTRAN IV does not
include recursion. No other published ring structure
package known to the authors permits the writing of
such complex ring structure operations with such ease.

If the two functions are as follows:

SUBROUTINE FUNCA (KEA, JS, KE, JA)
CALL TAKE (KEA, JS, KE, JA)

CALL FREE (KE)

RETURN

END

SUBROUTINE FUNCB (KEA, IS, KE, JA)
CALL TAKE (KEA, JS, KE, JA)
RETURN

END
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each entity of the ring structure starting in the element
JS of the entity whose address is KEA will be deleted
unless it is also a member of another ring structure. For
example if, in Fig. 4, KEA was the address of entity A
and JS =1 all the entities marked X would be deleted.

The subroutine ENDATA (KEA, JD, MD) gives the
user access to the data part of the entity whose address
is held in KEA by assigning to MD the position, in the
array holding the associative data in the core store, of
the JDth word of data in the entity. Data may be taken
from the array by any legitimate FORTRAN statement
and similarly may be put into the array (i.e. into the data
part of the entity). It is the programmer’s responsibility
to ensure that such operations are carried out only
within the data area of the entity, when it is in core at a
known address, (using INFO if necessary).

The software also contains facilities for initiating the
system, for error tracing, and for deleting or archiving
complete data files. It is possible for one program to set
up a data structure and for other programs to be run
subsequently to alter the data in various ways. These
facilities are not described here.

Table 1
The subroutine PEDOR

SUBROUTINE PEDOR (KEA,JS,FUNCA,FUNCB)
EXTERNAL FUNCA,FUNCB
DIMENSION KE(20),KRSE(z0),KAE(z0),NE(20),NRSE(20),NAE(20)

M=1

KE(1)=KEA

KHSE§13=JS

NRSE(‘ =1

KAE :}=o
[ FIND NUMBER OF ENTITIES IN RING

1 CALL ENTR (KE(M),KRSE(M),NE(M))

[ TEST IF RING EMPTY

IF (NE(M).EQ.0) 2

M=M+1

KE (M)=0
c FIND NEXT ENTITY IN LOWER LE

VEL
A BT R el e

a

N=NAE (M)
c TEST IF ENTITY IS A MEMBER OF OTHER RINGS
DO 5 I=1,N
CALL ENTA (KE(M),I,MSR)
IF sMSR.EQ.o)
IF ((I.EQ.KAE(M)).AND. (MSR.EQ.1)) s
c ENTITY IS MEMBER OF ANOTHER RING
ASSIGN 11 TO L
GOTO 8
5 CONTINUE
[o} TEST IF ALL RING STARTS HAVE BEEN CONSIDERED
IF (NRSE(M).EQ.0) 3
KRSE (M)=1
[o} WORK ROUND NEXT RING
GOTO 1
2 NRSE(M)=NRSE(M)-1
c JUMP IF ALL RING STARTS CONSIDERED

IF (NRSE(M).EQ.0)4
KRSE (M)=KRSE (M) +1
GOTO 1

c TEST IF ORIGINAL ENTITY REACHED
IF (KE(M).NE.KEA) 3
RETURN
c ENTITY ONLY ATTACHED TO RING STARTING IN GIVEN ENTITY
ASSIGN 10 TO L
KTS=KE (M)
KTA=KAE (M)
c FIND NEXT ENTITY AT SAME LEVEL IF ANY
NE (M=~1 )=NE (M=1)=-1
IF (NE(M-1).EQ.0)
gALB EN?STP(KE(M—;;,KRSE(M-:),KE(M),KAE(M),1,NR)
s(10,11
CALL FUNCA(KE(M=-1),KRSE(M-1),KTS,KTA)
GOTO 12
11 CALL FUNCB(KE(M-1),KRSE(M-1),KTS,KTA)
c TEST IF OTHER ENTITIES AT SAME LEVEL
12 IF (NE(M=1).NE.o) 7
M=M-1
GOTO 2
END

-

@l

- 0o

L)

= 1
R b
n=p

e O

Fig. 4. To illustrate operation on a complex ring structure

Organisation of free space and compacting of data

After operations on a ring structure involving the use
of subroutine FREE there will, in general, be unoccupied
spaces between entities on the pages. Although these
spaces are used first, when entities are made, after a time
the free spaces will gradually accumulate and the data
will occupy more space than it needs. It is therefore
necessary to have a routine for compacting the data into
a smaller space. This is a time-consuming operation
because the entities must be moved and each time this
happens all the pointers to the entity must be found and
changed. It is therefore desirable to run the compacting
routine only when it appears to be necessary rather than,
say, at the end of each run of a program which changes
the data. In order to discuss the operation of the
compacting routine it is first necessary to describe in
more detail the organisation of free space within the
pages.

The first word on each page is an associative element
in a ring of pages in a given region. The second word on
each page holds the region (6 bits) and the number (11
bits) of words in the largest block of free spaces on that
page and starts two rings through the first words of all
the blocks of free space on the page. These rings consist
of pointers comprising 11-bit addresses relative to the
beginning of the page. One of the rings connects the
blocks in order of increasing size and has only forward
pointers. The other ring connects the blocks in the order
in which they are found on the page and has forward
and backward pointers. A further 11 bits in the first
word of each free space block are used to indicate the
number of words in the block.

When subroutine MAKE is called a search is made
through active pages in the specified region for a page
having a block of free words large enough to hold the
new entity. The headers of pages of the required region
that happen to be in the core store are examined first
and only then is the search continued, if necessary, by
reading pages from the disc. No alteration is made to
a page if it has not enough free space so, to save time,
successive pages read from the disc overwrite each other
in the core store and none is written back to the disc.
(The number of pages searched before claiming a new
page may be specified by any particular applications
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program.) If none of these pages has enough free space
for the new entity a new page is taken from the ring of
free pages in the region and put into the ring of active
pages. When a suitable page is found the ring of free
space in it is searched in order of increasing size. The
smallest suitable block of free words is made into an
entity and the rings of free space on the page are amended
accordingly. When subroutine PUT or PUTEND is
called and it is necessary to create a knot there is a similar
procedure, in the region of which the entity being put is
a member, starting with the page holding that entity.
Subroutine FREE simply replaces the entity header by
the first word of a block of free space, sets the size of
the block in this word, and inserts it into appropriate
places in the rings of free space on the page.

The compacting routine is activated by calling sub-
routine COMPAC. It operates in two stages. In the
first stage a number NC of pages to be used is specified.
In general, considering each entity on the current page
in turn, the compacting routine steps back NC pages
through the ring of active pages in the region ignoring
pages that are full. The entity or knot being considered
is moved to this page if there is room for it and all the
pointers in other entities or knots in rings of which it is
a member are changed accordingly. If there is no room
on a page the compacting routine steps forward to the
next page (ignoring full pages) and continues to do so
until the current page is reached. It then deals with the
next entity or knot on the current page and so on until
it has attempted to move all the entities from the current
page to a vacant space on one of the NC pages before it.
If the current page is completely free as a result of these
operations it is thereafter excluded from the compacting
operation by taking it from the ring of active pages in
the region and putting it into the ring of free pages in
the region. If not, the entities left on the page are
moved to the top of the page and the remaining free
space combined into one large block. The next page
then becomes the current page for the compacting
routine. If NC is set to zero the routine only compacts
the entities within the current page itself and combines
any separate free spaces in the page.

Each file on the disc contains blocks of pages. During
the second stage of the compacting procedure a test is
made to determine if it is possible to accommodate all
the active pages in the region in less blocks than are
currently allocatzd to it. If it is possible the active pages
in the last n blocks, where » is the number of blocks no
longer required, are moved onto the free pages in the
earlier blocks. The file is then made smallzr by n blocks.
If the size of the file cannot be decreased the second stage
of the compacting process is not carried out.

Comparison with other similar work

Ours is a ring processing package in which the con-
struction of rings is automatically carried out and it
cannot therefore be compared with low-level packages
such as L¢ (Gray, 1967) with which the user creates his
own rings from primitive building blocks, nor can it be
compared with packages such as AED or those which
use hash coding techniques. Our debt to the CORAL
ring structure has already been mentioned. The only
systems similar to ours and known to be in general use
are APL (Dodd, 1966) and ASP (Lang and Gray, 1968)
so attention will be confined to these two.

Both ASP and APL use only one type of entity to
store data and the number of words of data in each
entity (element in ASP) must be declared each time one is
created. In most applications, however, many identical
entities exist in a data structure and there are usually
only a few distinct types each type having a different
data length. This led us to arrange for the definition of
up to 127 distinct entity types each having a fixed number
of data words but to allow the number of words of data
to be changed (by calling the CHAD subroutine) before
an entity is made if this is required. This has been found
to be a convenient arrangement.

If we represented an ASP structure by means of our
package each entity (ASP element) would have only one
associative element and only one ring start element and
an arbitrary amount of data. We would also need to
define one other type of entity, with one data word for
name and type, to represent the ‘ring starts’ of ASP (let
us call this a ring start entity). Our knots would cor-
respond to the ASP associators except that in ASP there
would be a knot even if the entity was only in one ring.
Each time an ASP element (or entity in our terminology)
was put in a ring to associate it with another element, a
ring start and an associator (in our terminology a ring
start entity and a knot) would have to be created and the
address pointers between all four items would have to
be set up. Fig. S shows the ASP structure corresponding
to the one shown in Fig. 3. In Fig. 5 a triangle represents
an ASP ring start and a circle represents an ASP
associator. It is clear that ASP requires many more
address pointers than our package, particularly for simple
data structures, and the ASP ring starts and associators
might be set up on different pages from those on which
the elements they connect are placed. In practice, we
have found that most data structures set up for computer
aided design require only three or four rings (often only
one) to start in each entity. This led us to restrict the
total number of ring start and associative elements in a
given entity to six so that, in the absence of ring start
entities and with the provision of knots only when
necessary, the data structures set up would occupy less
space, and be processed more quickly, than with a
package corresponding to ASP. (Should one require
more ring starts than an entity can hold it is possible to
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Fig. 5. ASP ring structure corresponding to that in Fig. 3
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use the equivalent of ring start entities to extend the
number, as described above under the heading Repre-
sentation of data structure in computer store.) In this
respect, therefore, our package resembles more closely
the arrangement used by APL.

With our package an entity can be found (by GET or
TYPSTP) even though it is not in any ring. This facility
is not available in APL and in ASP an entity is auto-
matically deleted if all its associations are removed.

APL statements are written into PL/l programs and
the programs must then be run as data for a preprocessor
which outputs PL/1 statements and subroutine calls.
This output can then be processed by a PL[1 compiler.
With our package the FORTRAN (or other high-level
language) statements and subroutine calls are written
directly, thus removing the need for a preprocessor (but
certain other facilities provided by the APL preprocessor
—not concerned with ring processing—are not present).
This arrangement has been found to suit programmers
already experienced with FORTRAN and some quite
complex ring processing operations have been written.
ASP runs with a compiler and has been implemented on
Atlas II using the Mixed Language System available on
that computer so that programs written in different
languages may be compiled into a common format.
Thus on that computer ASP commands could be
embedded in programs written in a high-level language,
as in our system, but transfer to another computer would
be more difficult. It appears that ASP has not been
implemented with any backing store facilities.

Concluding remarks

The package includes all the necessary basic sub-
routines to enable FORTRAN programs to include
complex ring processing operations by use of the
ordinary FORTRAN facilities. The paging software
allows up to two million words on the KDF9 disc store
to be directly addressed by FORTRAN programs. The
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package includes comprehensive facilities for compacting
a data structure from which data has been deleted. It
has been thoroughly tested and, as the routines became
available in 1968, they have been used in a number of
programs being developed for on-line computer aided
design of ships and the package is regarded as fully
proved.

In different applications pages may differ in size from
40 words to 2,048 words (but must, of course, be of
constant size for a given date structure). A large page
will be read from the disc in only slightly longer time
than a small page but may bring with it more redundant
information. The proper use of the regions to hold
different parts of a data structure should, however, make
the use of large pages comparatively efficient. It is
intended to carry out studies of the effect of page size
and the use of regions on the performance of the package
in various circumstances. These studies will take some
time and the results will be reported later.

The connection of the package to FORTRAN is via
a number of short subroutines. These could very easily
be rewritten to connect the package to another high-level
language such as ALGOL. The package, which took
less than 2 man years to develop, has been kept as small
as possible. (It occupies about 2,000 words of KDF9
User Code and is not a compiler type program.) It
would not be difficult to have it rewritten to run on
another computer and this is all that would be necessary
to permit FORTRAN programs which include ring
processing operation, to be run on a computer other
than the KDF9.

Acknowledgement

The authors are grateful to the staff of the Computer
Technology Department of the General Motors Cor-
poration, Warren, near Detroit, for valuable discussions
during a visit by one of the authors (I. M. Y.) to their
Research Laboratories on 13 April 1967.

Dopp, J. C. (1966). APL—A Language for Associative Data Handling in PL/1. Proceedings Fall A.C.M. Joint Computer

Conference, Nov. 1966.

GrAY, J. C. (1967). Compound Data Structure for Computer Aided Design; A Survey. Proceedings A.C.M., National

Meeting, 1967.

LANG, C. A., and GrAy, J. C. (1968). ASP—A Ring Implemented Associative Structure Package, CACM, Vol. 11, No. 8, p. 550.
PooLE, P. C. (1968). Some aspects of the Egdon 3 Operating System for the KDF9. IFIP Congress, Software 2, p. C43.
SUTHERLAND, W. R. (1966). The CORAL Language and Data Structure. M.L.T. Lincoln Laboratory, Technical Report 405.

202 Iudy 61 uo 1senb Aq 22688€/0%/1/€ L/2101e/|ulwoo/wod dnoolwspede//:sdiy wolj papeojumo(d



