48

An analysis of paging and program behaviour

M. Joseph*

* Computer Group, Tata Institute of Fundamental Research, Colaba, Bombay 5

The paper describes some analyses and simulations of the operation of programs in a paged memory.
Patterns of page usage that are observed indicate that smaller page sizes may lead to a more econom-
ical implementation. Some predictive algorithms for paging-in are evaluated for their ability to

reduce page faults.
(Received January 1969)

1. Introduction

Paging has become one established method of adminis-
tering the store in either a multiprogramming environ-
ment or where the address space available to a program
is greater than that present in the main memory (this was
the case on ATLAS 1 and the term ‘virtual memory’ has
been used by Belady (1966) to emphasise that the total
address space need never all be present in the main
memory). Such a scheme makes the assumption that
few programs require access to their entire address space
within small intervals of time so that it is possible to keep
only the relevant portions, or pages, in the main memory;
in fact, where it was felt that this criterion did not hold
(Fine, Mclsaac and Jackson (1966)) the usefulness of
paging has been questioned strongly.

At the same time, the effect of paging the storage
address space has been, to quote Varian and Coffman
(1967), to change ‘the logical units of information trans-
fer’ from ‘the variable length program and data structures
to the fixed length pages into which programs and data
are fitted’. This is a slightly different position to that
adopted in the original ATLAS 1 paging scheme (see
Kilburn, Edwards, Lanigan and Sumner (1962)) as it has
recognised that the effect of paging (in terms of the speed
of execution of a program) is discernible to the program-
mer and that efforts have to be made to organise prog-
rams into forms which fit into fixed length pages. In this
connection it is interesting to note that in MULTICS
the concept of segmentation has been used to force the
programmer to be aware of page boundaries by making
the segment the normal unit of data storage: as segments
contain only whole pages, this prevents the starting of a
storage block at points within the page boundaries.

Another change since the ATLAS 1 implementation
has been that, in general, paging is used to create virtual
memory environments in multiprogrammed machines
where the dynamics of store allocation are produced by
a variety of independent processes (including the system
supervisor). The original approach of letting the prog-
ram grow to use up to a fixed amount of storage and then
overlaying is altered and there are a variety of possibil-
ities regarding replacement of pages which depend partly
on the storage allocation procedure adopted: if each
program in the main store is restricted to using a fixed
amount of store, the process of replacement is normally
activated by new page demands by that particular prog-

ram; if the store restrictions are not as rigid, replacement
of a page belonging to one program may be forced by any
program making a new page demand. Without further
refinement, both methods have disadvantages: in the
first case, a program which tended to use, at a time, one
or more pages above its fixed allocation would run
inefficiently under most replacement algorithms and, in
the second case, one could visualise a situation where,
say, two programs in the main store alternately replaced
pages belonging to each other, and which were required,
and so almost indefinitely held up the machine. There
have been suggestions, therefore, that programs be allow-
ed to specify which pages they have dispensed with (or,
alternatively, which pages they will need).

2. Areas of activity

Consider the total address space availableto a program:
the requests for access to this space come for instructions
and operands, and without prior knowledge (and ex-
cluding those cases where by convention the first instruc-
tion to be executed is in the first location) the choice of
the first instruction address is completely unpredictable
and possibly even pseudo-random. Following this
choice, however, the chances are considerably higher
that the next instruction address will bear a simple
relation to the first and, very often, that it will be adjacent
to the first. In very simple cases the sequence of instruc-
tion addresses will be random-sequential, i.e. that the
choice of the first address will be random and that a few
subsequent addresses will then follow sequentially; but
in practice, the sequence of instruction addresses is
usually the ensemble of some repeated strings of sequen-
tial or near-sequential orders held together by small non-
iterative connecting paths and, as far as the memory
system is concerned, these addresses are interspersed
with operand addresses. The relative predictability of
operand addresses is often dependent on the complexity
of the address arithmetic that a program performs in
selecting its operands, but these too may be sequential to
some degree (an obvious exception would be operand
addresses chosen by a hash-coding procedure). Further,
operand calls, or the processes of data analysis which
make these calls, often consist of comparisons and/or
arithmetic operations by one operand on another so that
there are two or more strings of independently (semi)
coherent addresses which combine to form the sequence

The Computer Journal Volume 13 Number 1 February 1970

20z 1Mdy 61 uo }sanb Aq 26688¢/8%/L/€ L/o101Ke/|UlWod/Wwod dno-ojwapede//:sdiy wolj papeojumo(

Paging and program behaviour 49

of operand addresses (an example of this would be a matrix
multiplication routine which generated calls alternately
to elements of the different matrices so that while calls
to the storage area of any one matrix would appear
coherent, the interspersed addresses in the order in which
they appeared would not). Finally, there is the output
catchment area where results are held prior to their being
output. 'We have thus about four areas of activity within
the address space: this corresponds to a suggestion by
Gibson (1966).

In order to test the validity of this empirical argument
and to provide quantitative estimates of the sizes of these
areas of activity a series of simulations was made on
address sequences collected from a number of programs
performing various operations (see Appendix).

The simulation program read the address at the top
of the sequence (the ‘current’ address), masked it down
by the size of the page and then searched through a stack
of the last used pages to find when the page was previous-
lyinuse. Ifamatch was found, a counter corresponding
to that particular position in the stack was incremented,
the current page (i.e. the page containing the current
address) was put on the top of the stack and the other
pages were pushed down one position. In the searching,
it was also tested if the required page was adjacent to any
others in the stack: if the condition was fulfilled, a coun-
ter for that position in the adjacency stack was incremen-
ted.

Fig. 1 shows the variation in the percentage of accesses
to the nth last used page as n goes from 1 (i.e. the current
page) to 7 (i.e. that page following the last use of which
6 other pages have been used). For two different sizes
of page (32w and 1024w) the two curves appear remark-
ably close and it is seen that they both come down fairly
sharply between n = 1 and n = 4. At n = 4 they level
off, indicating that the earlier suggestion that there are

707 1024 W pages

601 32 W pages

n_-l = pages in use
since last use
of this page

o
b

Percentage accesses
N
Q

Current page n

Fig. 1. Variation in percentage of accesses to the nth last
used page

four localities of activity within a program’s address
space was roughly correct, with the additional comment
that these areas are fairly small.

In Fig. 2 we see the percentage of failed store accesses
with different numbers of pages in store and for three
different page sizes (32w, 128w and 1024w): in this figure
the failure rate is plotted on a logarithmic scale. The
separate lines, dotted and solid, in each case are for short
runs (18 programs) and for long runs (2 programs) and
it is seen that there is not a substantial difference. What
is notable is that, for example, 5 pages of 32w bring the
failure rate to a lower level than 2 pages of 1024w and
that it is really only after the number of 1024w pages
exceeds 5 (i.e. 5k of an average program size of 8k) that
they show a marked improvement over the smaller pages.

_eo—=long runs
--x--=short runs

page size

10 e, 32 W
» N
g 5 N
N
o N s . T
o 1]
© 05
=
<€ o1

T T T T T 1

—
10 15
no. of pages in main store

Fig. 2. Percentage of failed store accesses

If we plot the variation in failure rate with page size
for a fixed number of words in store (see Fig. 3) it shows
clearly that while for small allocations of store it is
probably more efficient to use 32w pages, above 4k the
larger pages tend to become more efficient.

Belady (1966), Varian and Coffman (1967), Scherr
(1966) and others have pointed out some of the advan-
tages of using small pages and these results would cor-
roborate their evidence as it is seen that unless a sub-
stantial portion (i.e. half or more) of the program’s
address space is loaded, the same failure rate as for 1k
pages can be obtained with the use of considerably
less store by smaller pages. In the worst case, 16 times
as many transfers would be required to load the same
amount of information with 64w pages as with 1024w
pages (i.., there would be 16 times as many page faults
just for loading): if, in spite of this, the failure rate is
equal for 64w and 1024w pages it would indicate the
subsequent number of page faults is correspondingly
higher for 1024w pages.

3. Backing store delays

It has recently become clear (Nielsen (1967), Lauer
(1967)) that the primary limiting factor in a multiprog-

20z 1Mdy 61 uo }sanb Aq 26688¢/8%/L/€ L/o101Ke/|UlWod/Wwod dno-ojwapede//:sdiy wolj papeojumo(

50 M. Joseph

rammed paging scheme is the possible rate of transfer of
information from the backing store and the large access
time (where discs or drums are used). Itis often possible,
in these cases, to partly overlap the access time for one
transfer by other transfers, though this will mean extra
computation time for the supervisor and may also mean
inefficient use of the backing store, since efforts will have
to be taken to ensure the relative dispersal of information
on the backing store. If 4 is the access time of the
backing store, P is the page size and N the number of
words that can be transferred per unit time from the
backing store, then the average delay for a new page
demand will be 2(4 + P/N), since for every page brought
into the main store it is likely that a page will have to be
sent to the backing store. If A is small (i.e. for a mass
core store), the main delay is for the transfer time,
2P/N, which is smaller for small pages. Another effect
of backing store delay is that the area of core of a prog-
ram waiting for a transfer is effectively lost to the
system until the transfer is complete so that, with several
programs held up, it is possible that the system will have
to attempt to work without a large proportion of its
main store. Hence, for this reason also, it is desirable
that as few programs are held up as possible: if the access
time to the backing store is large, there is little doubt
that large pages will be necessary but, in other cases, it
could be argued that the store saved by using small pages
would be sufficient to allow the number of programs
which are held up to increase without ill effect.

store allocation
50} (in words)

////7

»; |O< /
& 2048
)
v |
Q
E " 8192
.6 \l
-

o'l

T

32 64 128 256 512 1024

page size (insize)

Fig. 3. Percentage of failed store accesses with different store
allocations

4. Use of address space: two phase operation

Fine et al. (1966) have drawn up a graph of the increase
in the use of store with time by a program and this,
together with some results given below, would tend to
indicate that most programs operate in two distinct

phases: the first, in which they have a very large rate of
increase in the use of store and, the second, where they
make relatively few demands for new pages. If sucha dis-
tinction can be made generally it would be undesirable
for a system to have several programs starting within a
small interval of time as a high increase in address space
use (with the corresponding delays at every page fault
and the increasing length of the backing store request
queue) can only be tolerated when superimposed on a
background of jobs which are in their second phase.
And several studies of the use of replacement algorithms
(e.g. Varian and Coffman (1967)) have shown that in the
first phase the program requires a large number of new
pages with this requirement being generally insensitive
to the page size.

1024W pages
0
.: 64W pages j
U
8K+,
° 1
@ 3
w g
3 {
U
2 d
s 6K i
w ! b
5 | 1.
- i]
c 4Ky :
3
o i
E !
© i
'.
2K 4)
;
|| end of
i program
"6 ! I NG
Ix10 2x10 3x10

no of store accesses made

Fig. 4. Variation of store in use with time for a particular
program

A second series of simulations was made to relate the
way a program accesses its virtual address space with
how, in the translation from virtual to main memory
space, the total amount of store that it used increased
with time. The address sequences were the same as
used for the previous set of simulations. Each page in
virtual memory was assigned a pageword which held such
information as the location of the page, its lockout status,
the number of accesses made when the page was last in
use, etc. It was assumed that the program was stored
entirely on the backing store and the appropriate page-
words were updated as pages were brought into use. In
order to determine the last use of a page (i.e. when the
page could definitely be removed from the main store
without needing to be brought back) a separate run of
simulations was made in which the address sequences
were read backwards so that the first appearance of a
reference to a page would be the program’s last reference
to it under normal running.

Fig. 4 shows the performance of a FORTRAN Com-
piler (of 8k, and using 2k of working space) under two
different page sizes. The upper line, in each case

20z 1Mdy 61 uo }sanb Aq 26688¢/8%/L/€ L/o101Ke/|UlWod/Wwod dno-ojwapede//:sdiy wolj papeojumo(

Paging and program behaviour 51

shows the relation between the total amount of store
used with time while the lower line shows the way the
program relinquishes store. The area between a set
of lines, termed the ST factor, represents the product of
the store in use by the program and the time for which
it is in use; the ST factor can therefore be used to com-
pare the usefulness of different page sizes. It is notable
that the slope of the initial steep gradient, in the first
phase, is less with small pages, indicating that the rate
of information transfer is also smaller in the first phase
but this is, of course, obtained by more transfers (the
smoothed out lines do not show individual page trans-
fers because of the scale of the graph). The two phases
are seen here quite clearly and were found to be present
with roughly the same characteristics in other programs
analysed; the graph is in many respects similar to one
published by Fine et al. (1966) for different types of
program. They report a large increase of store use
between about 2mS and 100mS on the AN/FSQ-32
using 1024w pages and the results obtained here would
also indicate that the large growth occurs in the first
100mS (about 40,000 store accesses) for 1024w pages
and about 800mS for 64w pages; i.e., that the rate of
information transfer required would be, in terms of the
actual computation time of the program, 102 -4 words/mS
of computation time for 1024w pages and 10 words/mS
with 64w pages. This information would be demanded
by page faults at the rate of about 0-1 faults/mS with
1024w pages and 6-1 faults/mS with 64w pages. [The
use of time units in mS has been made here purely for
convenience of comparison with the mentioned results:
subsequent references to ‘time’ will be in terms of the

5001

—
PR
_
I "Y

long runs

o

/
/
1——“”"‘/’

|

average for
initial phase

X

ST factor (x 108)

32 64 128 256 512 1024

page size (in words)

Fig. 5. Increase in ST Factor with page size

number of store accesses made as it is felt that this would
make the results more machine-speed independent.] If
the ST factor of store in use (i.e. the area between the
curves in Fig. 4) is plotted against page size, it is seen
(Fig. 5) that the initial large saving with small pages is
reduced when considering long runs.

These results would suggest that with a large page size
of the order of 1024w, the program demands access to a
large proportion of its working space in a short interval
of time, and the large ST factor of the store in current
use would indicate that it does not finally dispense with
the use of pages until near the end of its run. This is
supported by the published data on the heavy page traffic
caused by attempting to restrict the active size of the
program to anything less than about two-thirds of its
address space when 1024w pages are used. In fact, in
order to cause a program to average out its demands for
new pages over a longer length of time, it is necessary to
use smaller pages and this involves the expense of repeat-
ed attention by the supervisor in providing more pages,
more often, but with a saving in the amount of store used.
As it was seen that the demands of a program are for
several small and separate areas in its address space,
the greater resolution with small pages would go towards
providing this without an excessive use of store space.

The short runs that were analysed here used an
average of 8k of store: the longer runs used 10k and,
14k respectively (all these figures are for 1024w pages).
It is possible that paging characteristics would be slightly
different for very large programs (i.e. larger than 20k)
though some published results (Fine et al. (1966), Varian
and Coffman (1967)) would tend to indicate that this is
not so and that most programs, whatever their size,
would require over two-thirds of the total number of
1024w pages that they could use. Hence increasing
the page size would only tend to increase the amount of
store needed though it would reduce the number of new
page demands if, at the same time, the program was
allowed to load and keep most of its pages in the main
store.

5. Prediction of page requests

The expense of having small pages using the demand
algorithm is the repeated attention required by the
Supervisor and it is clear that efforts will need to be
taken to reduce this before a small page size becomes a
practical possibility. A study was therefore made of
alternative algorithms using a measure of prediction.
On first inspection, a form of predicticn in which a block
adjacent to the currently addressed blo:k is brought into
the foreground store may appear to be little different
from doubling the page size. However, it was mentioned
in the section on the areas of activity that the simulation
program gathered data about the number of times a new
page was adjacent to one present in the store and this
evidence tended to indicate that, even with a small
amount of incorrect prediction, the total store used (i.e.
the sum of the store actually accessed and that brought
in predictively) may be less than that used by the same
program in a system where the page was of double the
size and where pages were loaded on demand.

Let W be the total amount of store accessed by a
program at a particular instant without any predictive
loading. If we assume that the available address space
is infinite and that the areas within this in use are always

20z 1Mdy 61 uo }sanb Aq 26688¢/8%/L/€ L/o101Ke/|UlWod/Wwod dno-ojwapede//:sdiy wolj papeojumo(

52 M. Joseph

separate, then the effect of predictive loading with the
program’s next new page demand will be to increase
the store used to (W + P) 4+ P, where P is the page size.
If the prediction is successful X times repeatedly, the
store used will be (W + P) 4+ XP since there will always
be one extra predicted block not accessed by the program.
If the prediction fails Y times repeatedly, the store used
will be (W + YP) + YP since for every new page demand
there will be one unsuccessful prediction.

If the probability of successful prediction is b, then after
L new page demands by the program we have

Storeused = W+ LP+L(1 —b)P+ P
or Storeused = W + (2L + 1)P — LbP.

In the ideal case where b =1 it is seen that with
prediction there is always a slight increase in store used;
if b =1 and if the same program would use L/2 pages
with the demand algorithm and twice the page size, the
extra store above this used by prediction with the smaller
block size would still only be P. The number of program
halts without prediction would be L; with prediction
this is reduced to (1 — b) L at an expense, in extra store
used, of LP(1 — b) + P and if b = 1, we find we have
reduced program halts to zero. In practice, this expres-
sion would be modified by the fact that programs do not
tend to use entirely separate areas in their address space
so that, after a stage, some areas would tend to run into
each other: if, at the same time, replacement routines
were paging out parts of the address space, the expression
would be further altered.

One method of reducing the increase in store used by

I20'|

" Algorithm used
1004 \ J
\
'\ demand
\\
80+ \
\
w \\
S RNOBL 1\
£ \ -
E 607 '\ \
2 N, N\
o \ AN
2 N\ \
a N .
« 404 AN N
o sp AN
s \,
2 p N N
204
32 64 128 256 512 1024

Page size (inwords)

Fig. 6. Number of program halts with three paging-in
algorithms

faulty predictions, LP(1 — b) + P, would be to keep a
one block buffer to hold the predicted page. Accor-
dingly, the first algorithm, called One Block Lookahead
(OBL), used this principle: whenever the program de-
manded a new page, R, the page following this, (R + 1),
was loaded into a buffer (provided the page was not
already in the main store). This was kept locked out
and if the program next demanded page (R + 1), the
lockout was removed to give immediate access; further,
a new prediction was made and page (R + 2) was loaded
into a buffer. If the prediction had failed and page T
was demanded, then page (T + 1) would be loaded into
the buffer as a prediction. In this way a program would
never use more than one page above its demanded
space (i.e. LP(1 — b) = 0) and its total store usage with
prediction would be well below that used with the
demand algorithm and a page twice as large. The
reason for locking out the predicted page is that by
this it is possible to have the program drive the prediction
algorithm by informing the supervisor exactly when
prediction had succeeded.

The second algorithm, called Simple Prediction (SP),
was more extravagant in its use of store: whenever the
program demanded a new page R, the next page, (R + 1),
was also loaded and locked out (as for OBL), and this
page was not overwritten even if the next demand was
for a new page, T. In this case, page (7 + 1) would be
loaded with page 7 so that there would be two predicted
pages, (R + 1) and (T + 1), in store. That is, the failed
predictions were not overwritten and the program had
the opportunity to access predicted pages in any order.
This has the advantage of permitting successful predic-
tion even when the program’s address space is ‘growing’
in more than one direction. In a matrix multiplication
program, for example, calls may be made alternately to
elements of each matrix and while in OBL this could
result in the buffer being repeatedly overwritten and
prediction failing, in SP both predicted blocks would be
available for use at the cost of the increased ST Factor
caused by predicting each block too early.

Fig. 6 shows the number of program halts with the
demand, OBL and SP algorithms for different sizes of
page. Itis seen that even with the small increase in store
used that is the feature of OBL, there is a significant
reduction of between 259% and 359, in program halts
while with the SP algorithm the reduction is between
509 and 709 (in this case it may be noticed that there
are fewer halts with 32w pages than with 128w pages
under the demand algorithm). This reduction is at the
expense of the store used and Fig. 7 shows the ST Factors
for programs running under the different algorithms.
The increase in ST Factor over that used under the
demand algorithm is between 19 and 159 in the case of
OBL, and 20% and 309, in the case of SP. In the
latter case the increase brings the ST Factor to almost
the same value as for a page twice the size under the
demand algorithm.

To measure the effects of using an algorithm some-
where between OBL and SP, a restricted version of SP
was used in a more detailed simulation in which only
four predicted pages were held in store (see Joseph (1968),
p- 81). Here realistic computation and transfer times
were simulated and even with the restriction on predic-
tion, backing store delays were reduced by about 2%~

12%.

20z 1Mdy 61 uo }sanb Aq 26688¢/8%/L/€ L/o101Ke/|UlWod/Wwod dno-ojwapede//:sdiy wolj papeojumo(

Paging and program behaviour 53

+

Algorithm
used

ST factor(x10%)

l # T T T T
32 64 128 256 52 1024
page size (in words)

Fig. 7. ST Factor with three paging-in algorithms

One side effect of using predictive algorithms is that
the number of backing store transfers necessary to run
a program increases with the number of failed predic-
tions. In the case of OBL, the percentage increase was
found to vary around 50 % and in the case of SP it was
about 20%;.

6. Conclusions

It is slightly confusing to talk of blocks of stores as
‘pages’ if their sizes are down to 32w as an implemen-
tation with the degree of indirection and relocatability
normally associated with that term may prove extremely
difficult. A possible method of implementation may be
to use a larger size nominally, but to subdivide this into

smaller blocks and to use 3 or 4 bits in the page register
(or page table entry) to specify the number of these blocks
that have been loaded into the main store (this is similar
to a proposal by D. J. Wheeler in another connection for
a modification to ATLAS 2: see Wheeler (1965)).
There will be the possibility of a slight inefficiency as the
extra bits can only specify the size of the loaded page,
and the effect of loading the first and last blocks in a
page will be to consider the whole page in use. But
since prediction, in the algorithms tested above, uses the
adjacency in virtual address space of the predicted block
to the demanded block, this situation may not arise often.

However, even with this measure of success, it is clear
that prediction is useful only when the rate of increase of
store by a program is large (i.e. in the initial phase, or on
the initiation of a new process) and when there is spare
backing store channel time. It might then be possible,
and indeed desirable, to use prediction in the initial phase
to reduce program halts and a suitable replacement
algorithm in the second phase to reduce the amount of
store used as the advantages in using a small page size
(or small blocks within a page) seem to be sufficient to
warrant a slight increase in supervisor computation time
to serve the need for efficiency.

7. Acknowledgments

This paper is taken from a Ph.D. Thesis submitted
while the author was at the University Mathematical
Laboratory, Cambridge: the author therefore gratefully
acknowledges the advice and encouragement of his
Supervisor, Dr. D. J. Wheeler. The author would also
like to thank Mr. N. E. Wiseman for his interest and
Dr. J. H. Tucker for providing the address sequences
used in the simulations. The author was supported for
part of the period of this research by an IBM research
grant.

Appendix

The address sequences used in the simulations were
produced by running programs under an interpretive
trace program written by J. H. Tucker. Programs were
selected by sampling the multiprogramming workload
during the computing service sessions on the University
Mathematical Laboratory’s Titan computer: these prog-
rams were then run under the interpreter and the sequen-
ces of addresses collected on magnetic tapes. In all, 18
programs were traced up to either the point where they
stopped or where they generated 50,000 addresses, and
2 programs were traced up to about 3 -3 million addresses
and 820,000 addresses respectively. 6 of the programs
were in IIT (The Titan assembly language) and the re-
mainder in Titan Autocode, performing such operations
as Runge-Kutta Integration, Data Reduction, Linear
Programming etc.

The simulations performed with these address sequen-
ces would, to some extent, be affected by the order code

20z 1Mdy 61 uo }sanb Aq 26688¢/8%/L/€ L/o101Ke/|UlWod/Wwod dno-ojwapede//:sdiy wolj papeojumo(

54 M. Joseph

of Titan and by the large number of index registers
available (Titan was the prototype of ATLAS 2 and so
incorporates many of the characteristic ATLAS features).
In general, the order code is somewhat distended with
fixed length instructions of 48 bits: hence a larger number
of store fetches would be required than in machines with
a variable length and compact order code. Another
feature is the Extracode orders, which are system routines
performing ‘macro’ operations in a privileged mode, and
extensive use of Extracodes, whose execution cannot be
traced, would affect the generality of the address
sequences.

References

While it is not possible to state exactly how far the
results based on these address sequences are machine-
dependent, it is likely that the trends in paging exhibited
here would be applicable for most machines: this claim
would be supported by the agreement of some of the
results with others produced on greatly different machines
(e.g., the AN/FSQ-32 at SDC). They would be subject
to the general limitation that in all programs written for
non-paged environments no particular effort is made to
contain instruction or data areas in fixed length localities,
so that programs written consciously for paged machines
should show improved characteristics.

BELADY, L. A. (1966). A Study of Replacement Algorithms, IBM Systems Journal, Vol. 5, No. 2.
FINE, G. H., MclIsaac, P. V., and JACKSON, C. W. (1966). Dynamic Program Behaviour under Paging, Proceedings 21st National

Conference, Assoc. Comp. Mech.

GiBsoN, D. H. (1966). Considerations in the Block-Oriented Systems Design, IBM Systems Development Division, Document

TRO0-1510.

JosepH, M. (1968). An Analysis of Storage Hierarchies in Digital Computers, Ph.D. Thesis, University of Cambridge.
KiLBURN, T., EDWARDS, D., LANIGAN, M., and SUMNER, F. (1962). One level Storage System, IRE TRANS. Electronic Computers,

Vol. EC-11, No. 2.

LAuEr, H. C. (1967). Bulk Core in a 360/67 Time Sharing System, Proc. FJICC.
NieLseN, N. R. (1967). The Simulation of Time Sharing Systems, CACM, Vol. 10, No. 7.
SCHERR, A. L. (1966). An Analysis of Storage Performance and Dynamic Relocation Techniques, IBM Systems Development

Division, Document TR00-1494.

VARIAN, L. C., and CorrMaN, E. G. (1967). An Empirical Study of the Behaviour of Programs in a Paging Environment, Assoc.
Comp. Mach. Symposium on Operating System Principles, Gatlinburg, Tennessee.
WHEELER, D. J. (1965). Changes to ATLAS 2 needed for On-Line Working, University Mathematical Laboratory, Cambridge

Book Review

Matrix Analysis of Discontinuous Control Systems, by P. V.
Bromberg, 1969; 265 pages (Macdonald and Co. Ltd.
£5))

This book is concerned with the application of matrix
techniques to the solution of problems involving discontinuous
control systems. It is intended for graduate and research
students in control engineering and related disciplines. The
book consists of seven chapters, the first of which introduces
the concepts of control systems, illustrating the ideas by
examples from the field of aircraft engineering. In the
second chapter, the author gives a résumé of the matrix
analysis relevant to the analysis of control systems. The
succeeding chapter considers the stability of a motion which
is defined by difference, as opposed to differential, equations.
Several general theorems based on the method of Lyapunov
as applied to the discrete system are given and interpreted
in terms of the eigenvalues of certain matrices. In the fourth
chapter, it is shown how the results of the third chapter,

together with the techniques of chapter two, can be applied
to determining the behaviour of discontinuous control
systems. Again, several examples in the field of aircraft
engineering are included. Chapters five and six continue the
application of the earlier theory to relay-operated control
systems, and to relay systems subject to external disturbances.
The final chapter introduces an extension of the theory to a
more general class of problem. The mathematics in this
book is relatively easy to follow and the reader is left with
no doubt that the book is designed for engineering research
workers. The book, a translation from Russian, unfor-
tunately suffers from a great many errors which can only
lead to confusion. A common error is the omission of the
“dot” to denote differentiation. More seriously, the theorem
quoted on page 72 is certainly in error, the word ‘stable’
unfortunately having replaced the word unstable! FErrors of
these types make the book annoyingly difficult to follow.

A. R. GourLAY (Dundee)

20z 1Mdy 61 uo }sanb Aq 26688¢/8%/L/€ L/o101Ke/|UlWod/Wwod dno-ojwapede//:sdiy wolj papeojumo(

