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The theory of left factored languages: Part 2*

D. Woodt

T Courant Institute, 251 Mercer Street, New York, NY 10012, U.S.A.

In the first part of this paper} left-factored grammars and languages were introduced and their
relevance to syntax-directed top-down analysers discussed. A number of results concerning these
languages were proved and a number of problems were posed. In this second part further results
are proved, further problems are posed and conclusions are reached.
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5. E languages

As Knuth (1968) has pointed out, each left-factored
language is deterministic (Ginsburg and Greibach, 1966).
One question that arises is what relationship do LF
languages have with E languages (which we now define).

A language L, is an E language if L = T(M) for some
e-free deterministic pushdown acceptor M. A pushdown
acceptor (pda) is a 7-tuple

M=(0,T,1g,S, q0, F)
where

(i) Q is a non-empty finite set of states;
(ii) T is a non-empty finite set of input symbols;
(iii)  is a non-empty finite set of intermediate (or
auxiliary) symbols;
(iv) g is a mapping from Q x T’ X I to the finite
subsets of Q X I*(T' = T u {e} as before);
(v) Sy € 1, is the initial symbol,
(vi) qo € Q, the start state;
(vii) Fis a subset of Q, the set of final states.
Initially the pda has S, on its pushdown tape and is in
state go. A move of a pda is defined by:

(p, Aw, xX) — (g, w, xy)

if g(p, A, X) contains (g, y), where 4eT’, Xel,
x, yel* p, qeQ, weT* The equivalent of a
derivation in a grammar is an acceptance in a pda.
(g, w, y) is an acceptance of (p, A, . . . A,w, x) written
(P, A4, ... Aw, x) > (g, w, ), if there exists an accept-
ance sequence, wy, W, . . ., Wi, Where

wi=(Pi, A; o . . AW, X)), w; —> W,y

is a valid move, and p, =p, x;, = x, py.; =¢q and
Y = X;41. Write (p, u, x) 2 (g, w, y) if either (p, u, x)=
(g, w,y) or (p, u, x) = (¢, w,y). A word w, is accepted
by a pda M if

(90, w, Sp) = (g, €, x) for some g€ F, x € I'*.

The set of all words accepted by M is denoted by T(M).
An e-free deterministic pushdown acceptor (edpda) is a
pda with the following restrictions on the mapping g.

1. g(q, e, X) = ¢ forallge Q, Xe I

2. For each ge Q,Xel, g(q, A, X) contains one
element for each 4 € T.

3. g(q, 4, Sy) = {(p, Sy x)} for each p,qeQ and
x e rI*

Condition 1 says that at each move we must accept a
symbol from the input tape. Condition 2 says that given
a ge Q, X eI and the present symbol we have only one
move (i.e. deterministic). Condition 3 implies that there
is always a non-empty word on the pushdown tape, so
that the next move is always possible.

Lemma 5
Every S-language is an E language.

Proof:

Let G be an arbitrary S-grammar, then we can define
anedpda M = (Q, T, J, g, Sy, q, F) where

Q={¢d,F={d}),J=I1U{X":Xel}
and g is defined as:

() g(g, 4, Sy) = (g, SoX;, . . . X,) for all rules

S— AX, ... X,,
(@ii) g(g, 4, So) = (d, Sp) for all rules S — A4,
(iii) g(q, 4, X) = (¢, X,, . . . X;) where

X—AX,... X,
(iv) g(g, 4, X) = (g, €) where X — 4,
) g(q, 4, X") = (¢, X, X,,_ . . . X,) where

X AX, ... X,
(vi) g(q, A, X") = (d, €) where X — A.

We only move into a final state when the present
symbol A4, can terminate a word, we are in state ¢ and
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the top of the pushdown tape is either S, or XeJ — I
where S — 4 or X — A4 belongs to the grammar G, S is
assumed to be non-cyclic.

Let & be the set of S-languages, % the set of LF
languages and & the set of E languages. Then we have:

Lemma 6
()L < &) S, (i) & ¢ ZL,and (iv) £ < &.

Proof:

(i) By Lemma 5 we have shown every S-language is
an E language, we give an example of an E
language which is not an S-language (due to
Korenjak and Hopcroft (1966)).

L ={a'ba'b:i> 1} y {daicaic:i > 1}.

This language does not have the power property
(see Section 6) and therefore is not left factored
(and thus not an S-language). The following
edpda accepts it, however:

g(g,a,8) = (9, S4)

g(q’ a, A) = (q: AA)

g(q’ b, A) = (P, A)

g(q’ ¢, A) = (r’ A)

g(p’ a, A) = (p’ E)

g(p, b, S) = (s, )

g(ra a, A) = (r’ 6)

g(r,c,S)=1(s,S) where ¢qy=4q,S,=3S

and F = {s}.

(i) Let L = {a’:i > 0}, then ee L and L is not an
S-language but it is an LF language.

(iii) The language given in part (i) is an E language
which is not an LF language.
Rosenkrantz and Stearns (1969) give a construc-
tion for an edpda for general LL (k) languages
(LF = LL (1)) (see Knuth (1968)).

Thus we obtain:

OPEN PROBLEM 3:

For every LF (k) language L, (k > 1) (see Appendix 2)
is L # ¥ an E-language?

6. Miscellaneous results

An intermediate symbol X in a grammar G has the
prefix property if X = x = yz(z # €) implies that
X %y, x,y,z€ T*. A language has the prefix property
if its sentence symbol has the prefix property.

Lemma 7

Every intermediate symbol in an S-grammar has the
prefix property.

This has been proved in Korenjak and Hopcroft
(1966), that the lemma does not generalise to LF
grammars can be seen by the following example:

S — aS|e generates the language {a’: i > 0}. This is
obviously LF but for any string a”, n > 2 there exist
strings a*, 0 < k < nsuch that S =~ a¥ and S = a”. The
prefix property is used in the theory of S-languages to
show that particular languages are not S-languages. We
define a property for LF languages which is useful in the
same way.

A language L, has the power property, if it does not
contain any infinite subsets Q and R defined by:

(I) Q = {uviwlx{Zl =4q:49 EL3 U, Wy, zy € T*3
v, X, € T* — {6}, l,.] > 0}5

R = {uvkw,xbzy = r :re L, u, wy, Xx,, 2, € T*,
veT* —{e}, k,1 >0}, and

(i) Q N R = ¢ where the following condition holds:
for ge Q, j = M(i), where M is a single-valued
function, e.g. j = i, similarly for r € R, I = N(k),
where N is a single-valued function, and for any
string g € Q there exists one string r € R such that
k = i and conversely.

Examples of languages which do not have the power
property are:

(i) L = {a'ba’b, aicaic: i > 0};
(ii) L = {d'cd’, a%: i > 0};
(iii) L = {a'bc!, a': i > 0}. Note that each of these
languages is not LF. This leads to the following
lemma.

Lemma 8
Every LF language has the power property.

Proof:

Assume the contrary, then there would be subsets Q
and R satisfying conditions above. Since the language
is LF, the left derivations for ¢ € Q and the corresponding
re R must proceed in the same manner. Now
Q N R= ¢, therefore we need to construct an LF
grammar which generates only the strings v'w;xjz, and
viw,xbz,, i, 7, 1 > 0; this, however, is not possible with
an LF grammar. Therefore the lemma is true.

Example (i) above is not an S-language; it contains
both a%ca? and a%; or looking at it another way,
both dica’ and a'ea’ and is therefore not LF either.

The reverse of a word w, written wR is W, . . . Wy, where
w= W, ... W, Thereverseof aset of words W = {w},
WR is {wR}. Given two sets of words X, Y then the
product of X and Y, written XY, istheset{xy:xeX,yeY}.

Lemma 9

The set .# of LF languages is not closed under (1)
union, (ii) intersection, (iii) reversal, (iv) product, (V)
complement.

Proof:

(i) Let L, = {a'bicbia’: i,j > 1} and
L, = {d@biai:i,j > 1}. L, and L, are both left
factored.
L,v L, is, however, not left factored; it does
not have the power property.

(ii) Let Ly = {a'ba’:i,j > 1} and
L, = {abia’:i,j> 1}. Ly and L, are both
LF languages, but L; n L, = {a'b'a’} is not even
a context-free language.

(iii) Let Ls = {ca'blai:i,j> 1}, then L; U Ls is an
LF language, but (L; v Ls)R is not LF.
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(iv) Let Lg = {d'b’a':i,j > 0}, then L¢L, can be
written as

LivL,Liv{a®:i> 3JL,v{b:i> 1}L,.

This language does not have the power property
because by (i) above L; U L, does not have the
power property, therefore L¢L, is not LF.

(v) Let L = {a'b/: 1 < i < j}, then L can be generated
by the following LF grammar.

G = ({Q, R, S}, {a, b}, S,{S — aQbR,
Q — aQb|b, R — bR|e}).

(This is the counter example given in Rosenkrantz
and Stearns (1969), however our proof that T* — L
is not LF does not depend on automata theory.)
Consider L; = T* — L, then it can be considered to be
the union of the following languages

Ly ={v{bw: weT*}u {adbiaw:i,j> 1,we T*}
viabi:1<j<ijvia:i> 1}

Now L, — L,, where L, = {a'b/: 1 < j < i}, can easily
be given an LF grammar. Let us consider L, in more
detail. Its grammar must have a starting production
S — XaQ or S—aQ since the number of a’s in any
terminal string are not less than the number of b’s.
O must be recursive, in order that at least an equal
number of a and b’s are generated, therefore Q — aQb.
Also Q must stop (and be LF), therefore we obtain
S —aQ, Q — aQb|aR, R — aR|b. However Q is not
LF. With the original production

S — XaQ we obtain Q — aQb|b, X — aX|e

and in this case X is not LF.

Therefore L, is not an LF language.

Returning to L; we can see that the difficulty of
generating L, with an LF grammar is greater than that
of generating L, by an LF grammar, since we must also
generate {@': i > 1} and {@'b/aw:i,j > 1, we T*}, both
of which begin with the symbol a. Therefore L, is not
LF. Therefore 7% — L where L is LF is not necessarily
LF.

7. Discussion

We have presented a theory of left factored grammars
and indicated their inherent advantages when used as a
basis for top-down syntax analysers (Appendix 1). It
remains, however, to relate this paper with others that
have appeared recently. Korenjak and Hopcroft (1966)
have discussed S-languages in some detail, these form a
proper subset of the LF languages. Lewis II and
Stearns (1968) have introduced LL (k) languages which
are a generalisation of LL (1) languages. In Appendix 2
a generalisation of LF languages is given, these are
called LF (k) languages. With an LF grammar the
associated analyser needs at most one symbol to decide
which of several rule alternatives to choose. Similarly
with an LL (k) grammar the associated analyser needs
at most k symbols to decide which of several rule
alternatives to choose. Thus an LL (1) grammar is LF
and vice versa. It is shown in Wood (1969b) that LL (1)

grammars are the same as LF (I) grammars and that
LF (k) grammars (k > 1) are always LL (k) grammars
but not necessarily vice versa. Usually an analyser that
is based directly on a grammar is used in conjunction
with a compiler-compiler scheme (Brooker and Morris,
1962; Wood, 1968). This implies that semantic analysis
also takes place; in Lewis II and Stearns (1968) it can
be seen that semantic insertions into a recogniser are
more natural if that recogniser is top-down. This is
because, as Knuth (1968, p. 57) points out, we know
what production is being used before we process its
components.

Having defined LF languages we can similarly define
RF (right factored) languages, it follows that if £ = the
set of LF languages, # = the set of RF languages, that
L = AR Because of the left-to-right property of
deterministic languages, there exist RF languages which
are not deterministic. For example,

L={a’bidic?, a’baic: i,j > 1}

is RF but not deterministic (see Ginsburg and Greibach,
1966, p. 641).
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Appendix 1

A top-down analyser derived directly from a grammar

The method we describe is not claimed to be either
original (in many ways it resembles Knuth’s Parsing
Machine (Knuth, 1968)), or unique. We think that it is
simple both to construct an analyser from a given
grammar and to understand its operation.

The syntax analyser is made up of a series of pro-
cedure declarations which can possibly call each other
recursively; the program forming the analyser consists
of these declarations together with the call of one of
them. The called procedure will correspond to the
sentence symbol (for example, {program) in ALGOL
60). Each procedure attempts to match a particular
syntactic type in the input, and it returns with a value
of true or false depending on whether it was successful
or not. Let us take the partial syntax of an ALGOL 60
program given in Section 1 and transform it into a
partial top-down analyser. We will use pseudo-ALGOL
in writing down the analyser. There are a number of
conditions which a grammar must meet to be amenable
to the top-down analyser transformation.

1. The grammar should contain no left cycles. For
example: (blockhead) as defined in the ALGOL 60
report is left cyclic,

{blockhead) ::= begin {declaration)|{blockhead;
{declaration}.
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The corresponding procedure would be in a
position to go into an infinite recursive loop. Left
cycles can be removed (Wood, 1969a).
2. The order in which the alternatives are tried is
important. Consider the ALGOL 60 definition:
{unsigned number) ::= {(decimal number)|
{exponent part)|
{decimal number)
{exponent part)
If we did the transformation using this ordering of
alternatives, the analyser would never successfully
recognise a decimal number followed by an
exponent part. We have to reorder the alternatives
such that {(decimal number) is textually later than
{decimal number){exponent part); for example
{unsigned number) ::= {exponent part)|
{decimal number)
{exponent part)|
{decimal number)
A similar situation occurs with the use of the null
symbol ({empty) in the ALGOL 60 report).
Consider
{actual parameter part) ::= {empty)|
({actual parameter list)).
Now the analyser will always return the value true
with the <{empty) symbol, because it can always
find nothing. Therefore if there were an actual
parameter list it would never find it. We rewrite
the definition as:
actual parameter part) ::= ({actual parameter list))|
{empty>.
This generalises into the rule: always place {empty)
as the last of a number of alternatives.

begin comment the analyser,
boolean procedure program;
begin stack (source pointer);
program := if block then true else
if compound statement then true else goto
ERROR,;
erase;
end;
boolean procedure block;
begin stack (source pointer);
block := if unlabelled block then true else
if label then
if terminal (°?’) then
if block then true else goto ERROR
else goto ERROR
else false;
erase;
end;
comment
We have taken certain liberties with ALGOL 60, these
are:
1. an expression can contain a jump;
2. we allow nested conditional expressions between then
and else;
comment
There are four system procedures, stack, erase, false and
terminal.
stack: preserves its actual parameter on a pushdown list.
erase: deletes the top item in the same pushdown list.
false: is a boolean procedure whose value is always false,

which reinstates the value of the source pointer to be the
top value in the pushdown list.
terminal: is presumably a code-bodied boolean procedure
(or it makes use of one) which examines the present
source symbol (defined by source pointer) and com-
pares it with the symbol in the string parameter. If
they match then the value of terminal is true and the
source pointer is advanced to the next source symbol,
otherwise the value of terminal is false;
boolean procedure compound statement;
begin stack (source pointer);
compound statement = if unlabelled compound then
true
else if /abel then
if terminal(‘?’) then
if compound statement then true else goto

ERROR
else goto ERROR
else false;
erase;
end;
comment

We can continue with remainder of the ALGOL 60
syntax and produce a recogniser in this way (noting, how-
ever that some left recursion (or left cycles) would have to
be removed, ordering of alternatives changed and syntactic
ambiguities removed). Consider instead the consequence
of transforming the ALGOL 60 syntax into left factored
form: there would be no necessity to preserve the source
pointer, therefore the procedures stack, erase and false
would be redundant: For example, using the left factored
partial ALGOL 60 syntax from the introduction we
obtain;
boolean procedure program;

program = if unlabelled program then true else

if label then
if terminal(‘:’) then
if program then true else goto
ERROR
else goto ERROR
else goto ERROR;
boolean procedure unlabelled program;
unlabelled program := if terminal (‘begin’) then
if program tail then true else
goto
ERROR
else false;
boolean procedure program tail;
program tail := if compound tail then true else
if declaration then
if terminal(‘?’) then
if program tail then true else
goto ERROR
else goto FRROR
else false;
comment and so on;

We should point out that ALGOL 60 is not left
factored because it does not have the power property.
It contains the constructs:

if BE then ("BE)" else BE
and if BE then ("AE)" else AE
but not if BE then ("AE)" else BE or

if BE then ("BE)" else AE;. This can be over-
come by allowing the last two constructs syntactically
but discarding them during the semantic analysis.
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Appendix 2

LF(k) grammars and languages

We define a generalisation of LF grammars which we
call LF(k) grammars. Basically an LF(k) grammar
requires a look-ahead of k terminal symbols to decide
which alternative to use next (thus LF(l) is LF). We
sketch the proof of a solution to the decision problem
for LF(k) grammars.

Let w/k where w is a word, and k a positive integer
represent either

woif |w <k
or u if |w| >k and
w=uv, |ul ==k

If L is a set of words {w}, then L/k = {w/k}.
The partial k left terminal set of a word w, k > 0, with
respect to a grammar G is:

{alk: w= a, welT* ae T*}.

This is denoted by k: (X, uwv) G or k: (Xuwv) if G is
understood, where X —uwv or welT*. We write
k: <X, w) or simply k:{w) if no difficulty of interpre-
tation exists. Informally k: {w) is the set of terminal
strings of length at most k that can begin the terminal
derivation of w.

The k left terminal set of a rule X — w, k > 0, with
respect to a grammar G is:

{a/k:S*—i> uXv, Xv=wva, u,v,welIT* ae T*}

This is denoted by k: [X, w]G or k: [X, w] if G is under-
stood.

An intermediate symbol X, is LF(k) if for all
v, We Ay, k: [X,v] nk:[X,w] = ¢, where v*=w. A
grammar is an LF(k) grammar if each X eI is LF(k).
An LF(k) language is a language generated by an LF(k)
grammar. (Note that LF(l) is equivalent to LF.)

Theorem Al
If a grammar G contains a left cycle, then G is not
LF(k) for any k.

Proof:

This proof is very similar to the proof of Theorem 1.
Any left cyclic intermediate symbol with at least two rule
alternatives, at least one being left cyclic must have some
terminal derivations in common. Therefore this inter-
mediate symbol is not LF(k) for any k (for example the
grammar S — Sa|b).

Lemma Al

If a grammar G contains an intermediate symbol
which has at least two nonfalse rule alternatives, then G
is not LF(k) for any k.

Proof:

This follows immediately by the definition of the
LF(k) property.

As for LF grammars this gives two necessary conditions
for a grammar to be LF(k) for any k.

Theorem A2
Every LF(k) grammar is unambiguous.

Proof:
This requires trivial changes in the proof of Theorem 2.

Similarly Lemma A2 and Theorem A3 follow for LF(k)
grammars.

We now give the LF(k) versions of Algorithms 1, 2
and 3; however we do not prove that they are correct.

Algorithm A1. Calculate k: {w)

The method is based upon that used in Algorithm 1
except that instead of terminating when 1: {w) has been
bound we repeat to find 2:<w),..., k:<{w). This
means that we have to keep terminating nodes during
a pass through Algorithm 1 (i.e. the elements
W, X)eD;,, — U;;,), call this set K;, defined by
K;=K;v(D;.; — U;). We also use a count j
which goes from 1 to k. To simplify the algorithm
replace w by w # ¥, then on termination of the algorithm
replace # by e wherever it appears in k: {w # *.

stepl: Let j =1, w=w #k Ky = {(w, ¢)} and
T=Tv{#}
Slep 2: Let D]l == Kl_ 1

Let w= wyw,...w, where each w; e IT’, then
Uy ={w, X):w;el, (w, X)eK;_ 1},
K;={w X):w;eT’, (w,X)eK; }

and i = 1.

step 3: If U;; = ¢ then step 4 otherwise calculate:

Dy ={w,r(Y)Vy,: (Y)=y=y;...0. - Im}:
YeUy,y Ed w},

Uji+1 = {(W, X) wj € 19 wjl' ¢ Xa (W, X) € Dji+ I/’
if w; € X then X = (X — {w;}) V{wj}},

K; = K; v (Djiyy— Ujiyy)
increase i by one and repeat step 3.

step 4: If j = k then step 5 otherwise increase j by one
and repeat steps 2 and 3.

step 5: k:<{w £ %> = {ulk: (u, X) € K.}
Therefore k: {<w) follows by replacing any appearance
of £ in k: {w # k) by e.

Algorithm A2. Compute k: [X, w]

k:[X, w] can be computed in a similar manner to
[X, w] with, however, one main difference. Whenever
the calculation of a partial k left terminal set occurs we
must keep track of any terminal derivations of length
less than k. In this case we must compute the follow (X)
(as Knuth (1968) calls it), as we did in Algorithm 2
when we had an empty derivation. Assume that a new
sentence symbol Sy, is introduced together with a pro-
duction Sy — S # k. On termination of the algorithm
replace any appearance of # by e in k: [X, w].

step 1: Let n = Card(l), H, = {(X, a): X - w,
ack:{X,w},

W,={a:(X,a)e H,, |a| =k} and i = 1.
step2: H; .y = {(X, ba): (Y, b) e H;, |b| < k,
X —>uYw, uwell*
aep:{X,u¥Yw>,p =k — |bl},
if H;,; = ¢ then step 3, otherwise
Wi =W,via:(X,a)e H;yy, la| =k},

increase i by one, if i # n + 1 then repeat step 2.
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step 3:If a#7e Wy,aeT*, j< k (N is the value of i
on transfer to step 3) then replace it by a and stop.

This completes the LF(k) versions of Algorithms 1

and 2, Algorithm A3 follows similarly.

We are interested in the following problem. Are
LF(k + 1) languages also LF(k) languages, k > 1? It
seems appropriate to make the following definition. An
L(k) grammar (k > 0) is either

an LF(k) grammar if k > 0,
or an S-grammar if k = 0.

We first consider e-free L(k 4 1) grammars (k > 0).
This gives the following theorem.

Theorem 1
An efree L(k + 1) grammar G, (k> 0) can be
reduced to an equivalent L(k) grammar G,.

Proof:

Assume, without loss of generality, that G is in normal
form (by Theorem A3). If k = O then trivially we have
an L(1) grammar is an L(0) grammar by definition.
Otherwise form a partition on I as follows:

H={X:Xel, XisL(k)}and
J=I1—H.

If J = ¢ then G, = G trivially, otherwise examine each
intermediate symbol in J in turn. Each X eJ has
associated rule alternatives of the form:

X — Ax |Ayx,| . . . |4,,x,,, Where
A;eT, x;el*, 1 <i< m

We now left factor any alternatives that begin with
the same terminal symbol. For example, suppose
A,=A,=A,,1< p< g<r< m,and there exists no i
such that 4; = 4, where i #p, i #q and i #r. We
then write

X—~>A4,Z,

Z — x,|x,|x,

replacing the alternatives X — A,x,|4,x,|A4,x,. Now

Z, is L(k) because k + 1:[X, 4,x,], k + 1: [X, 4,x,]

and k + 1:[X, 4,x,] differ at the k + I1th symbol at

most, therefore k:[Z), x,], k:[Z,, x,] and k:[Z;, x,]

differ at most at the kth symbol. We generalise this:
define a partition on Ay as follows:

p
Ax =V R(4;), 1 < p< m, A; € T and we number the
i=1
rule alternatives such that if i 5 j then A4; # A4,

1 <i,j<p. Where we have

R(A4;) = {Agxg: X — Agxg Ag=A4;,1 < g< mj.

Automatically the partition is disjoint. For each member
of the partition carry out the left factoring as above (this
is of course only necessary if Card(R(4;)) > 1). This
produces a number of new L(k) intermediate symbols Z;.
The effect upon X is also to reduce it to L(k) because
similar starting rule alternatives have been collapsed into
one rule alternative. After processing each member of
J we have a grammar which is L(k).

We now look at general L(k) grammars, and examine
the following conjecture.

Conjecture:

An L(k + 1) grammar G(k > 0), can be reduced to
an equivalent L(k) grammar G;.

As in Theorem 7 we only need examine e-normal form
L(k + 1) grammars. As before we can define a par-
tition on 7.

H={X:Xel, Xis L(k)} and
J=1I1—H.
We define follow(X), where X € I, as the set
{A:AeT’, S= uxv2 uXAw, u,voweT*).

In finding [X, €] we, in fact, calculate follow(X) (see
Section 4, Algorithm 2).

As in Theorem 7 we examine each intermediate symbol
in turn, let the corresponding rule alternatives be:

X — A1x||A2x2|. . .|Amxm|E,

where A;€ T, x;eI*, E =0 or € (Q is the semi-group
zero, X — x|Q or X—0Q|x is the same as X — x, and
x0 = 0x = 0). We have two cases.

() E=0 ie X+>e.

This intermediate symbol can be reduced to L(k) as
in Theorem 7.

(ii) E=e.
This can be broken down into two sub-cases.
@ {dA;:1<i<min[X, €] = ¢

If the set {A4;x;: 1 < i< m}is L(k + 1) then this
can be reduced to L(k) as in Theorem 7. Follow(X)
is irrelevant, because it does not share any
elements with {4,}. This can be illustrated with
the following example:

S — qQpr|rQpc,
QO — aQ|bB|e|bc
B — bB|e, where S is the sentence symbol.

This grammar is L(2) because 2: [Q, bB] = {bb,bp}
and 2: [Q, bc] = {bc}, it can be reduced to L(l)
by replacing the Q productions with:

0 —aQ|bCle, C— c|B.
B {41 <i<min[X, €] # ¢

Using the following example, we illustrate a
possible method for carrying out the left factoring
process in this case. Again S is the sentence
symbol,

S — qQpr|rQpc,

Q — aQ|pbBle,

B — bBJe.
This grammar is L(2) because 2: [Q, pbB] = {pb}
and 2: [Q, €] = {pr, pc}. To enable left factorisa-
tion to be carried out we must let the ‘pr’ and ‘pc’
bubble upwards into the Q productions. This will
give us

S — qQ|rQ and
Q — aQ|pbBpr| pbBpc|pr|pc,

left factoring gives
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0 —aQ|pC,
C— bBpD|D and D — r|c.

The grammar is now L(1).

Notes

1. We did not put pC after the rule Q — aQ. Because
this rule is cyclic @ — aQpC is not equivalent to Q — aQ
in the original grammar.

2. In general we only want to bubble those parts of
[X, €] which are relevant.

3. We do not want to disturb the use of an inter-
mediate symbol where it does not contribute to the left
factoring.

4. If X is directly right cyclic any transformation we
carry out must deal with this case separately, see the
example above.

This leaves us with an algorithm that bears some
similarity to the calculation of [X, ]. Before stating the
algorithm we will formalise our notation. Define the set
U={4;}n [X, €] as the head set. By the rules of X,
X €I we mean each production X —w, we dy. Leta
use of X be any appearance of X in a right side of a
production belonging to P, for example in Y — uXv.
By the tail of a use of X (or simply a tail of X) we mean
that part of the right side of a production following a use
of X, for example, v, is a tail of X in ¥ — uXv. The left
of a use of X (or simply, the left of X) is Y, where
Y — uXv.

After many false starts, taking into account notes (1)
to (4) above, we arrived at the renaming algorithm which
is described below.

The renaming algorithm

Assume that all elements of J that fit the other cases
have been removed; this can always be done. If J = ¢
we have finished, otherwise for each X € J we calculate
the associated head set U. The algorithm works by
uniquely renaming each relevant use of X, and then
incorporating the tail of X in the rules of each renamed
X. For example, if a use of X is:

Y—uXv, where [Y,v]nU+# ¢
and X — A1xi|Arx,|. . | Apx,|e,
then we replace the production Y — uXv by
Y — uX!

and add the rules

X' Ax,Z,|4yx,Z,)|. . |ApxZ,|Byzy|. . .|B,z,|E
where Z, — B z,|B,z,|. . .|B,z,|E,
where v Bz, v Byzy, ..., A;,B; €T, x;, z; € I'*,

E =0 or e. However, if X is directly right cyclic then
we do not append Z; to those rule alternatives with
which X is directly right cyclic. Let the set of the indices
of these alternatives be F, then for each i € F we write

A,-x,- = A,-uiX,
as Au X1,

In the rule X— A,x;,ieF, x; cannot be equal to
u;Xw;, w; > e. This would lead to an ambiguous
c

grammar which cannot therefore be L(k) for any
k >0 (see Example 2, below). Now if X! ¢ and
[X', €] n U # ¢ we repeat the algorithm with Y this
creates renamed Xs as well as renamed Y’s. If we
denote this second level by a second superscript we will
have

Y5 uX'y, Y2 > uX'2%,, . .

*
the v; are then absorbed in the associated X! to give

Y' > uX Y2 5 yxt2 .

giving
XYV — Ayx,Zy). . |AmXmZyi|Bizyvi|. . .| B,z,v;]

Byzyl. . '|Briizrii|E’
where

Zyi— Bizyw,|. . .|B,z,v| By;zyl. . | Bzl E.

If there still remains an X' such that X% — ¢ and
[X', e]n U # ¢ then we repeat the algorithm for a
third time, and so on. Eventually we have a number of
renamed X’s, Y’s, . . .; reverting to single subscripts let
these be X, X,, ..., Y;, Y, ... and so on. Each of the
renamed rules is then of the form

Xi'ﬁAlxllAzle. . .lAmxm|€
where X eln{di: 1 <i<m}=¢.

This reduces the problem to subcase (a), that is, left
factoring can be carried out. Let J = J — {X} and
repeat the algorithm. Now because we know that X is
L(k + 1), this algorithm must eventually find all relevant
members of follow(X). By the construction we can
left factor each renamed X, which reduces it to L(k).
Renaming does not affect any of the other productions;
it can, however, introduce many new rules. The final
grammar before left factorisation takes place is also in
e-normal form as each renamed X is constructed to be
in e-normal form, as is each intermediate symbol Z,.

The only outstanding problem with the Renaming
Algorithm is: does it terminate given any Lk + 1)
grammar? We give three examples, the first two were
used in trying to break the Renaming Algorithm.
Example 3 provided by Kurki-Suonio (1969a) is an
L(k + 1) language which can never be given an L(k)
grammar.
Example 1. S — qQpr|rQpc
O — aQ|pbB|e
B — bBle,

as we have seen, this is an L(2) grammar.
We obtain

S —qQ!'|rQ?
Q' — aQ'|pbBZ,|pr
Z,—pr
Q? — aQ?|pbBZ,|pc

Z,— pc

and unchanged Q — aQ|pbB|e, B — bB|e; because Q is
not now used, we can delete it and the rules of Q. Note
that because Q is directly right cyclic we have invoked
the special transformation under the renaming algorithm.
The above productions can now be left factored giving
finally
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S‘*QQII’Qz
Q1 — aQ,|pQ;
Qs — bBpr|r
Q2—>‘1Q2|PQ4
0, — bBpc|c

B — bBJe.

This example leads to the consideration of the follow-
ing rules of Q:

Example 2. Q — aQB|pbB|e, where S and B are as
above. This grammar which does present some prob-
lems is, however, not L(2). Since

0 L aQB L aaQ BB
= aaBB
= aabB or aaBb,

both lead to identical terminal strings, therefore the
grammar is ambiguous, and therefore not L(k) for any
k,k > 0. The ambiguity arises because the rule
B—bBle is not L(k) for any k >0 in the above
grammar. The equivalent unambiguous grammar is,
however, L(2),

Q — aQ|BC, C — pbBle.

Note that the rules Q — aQC|pbB|e, C — b|e would lead
to ambiguity. This means that a direct right cycle must
be of the form X — AuX.

Example 3. S — |-A-|
A — aAB|e
B —akbA|c

for any k > 1 is an L(k 4+ 1) grammar which cannot be
reduced to an L(k) grammar.
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