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A program for numerical classification
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In a previous paper (Wallace & Boulton, 1968) the information measure was derived. It is
designed to measure the objective goodness of a nonhierarchical taxanomic classification and can
be used to choose the best of a number of different classifications of the one data set. The
information measure can also form the basis of a classification algorithm which searches directly
for that classification with the best information measure. In the present paper such a classification
algorithm is described together with an ALGOL program called Snob incorporating this algorithm.
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Introduction

At present there are a number of different methods of
numerical classification available to a user, but all will
not necessarily produce the same solution to a given
problem. It would be desirable to have an objective
measure of classification goodness to enable the best of
a number of different solutions to be chosen.

In Wallace and Boulton (1968), we presented a view
of the aim of classification which allows a measure of
goodness to be defined. The measure is called the
information measure as it arises from information
theory.

We derived the measure for non-hierarchical classifi-
cations with any mixture of continuous and unordered
multistate attributes, both subject to missing values.
The information measure can in principle be extended
to other cases.

Rather than use the information measure simply to
compare existing classifications, we have incorporated it
in a program called Snob, which searches directly for
the classification which minimises the information
measure. Snob was written in ALGOL for the Uni-
versity of Sydney’s KDF9 computer and is described
here.

The information measure

Given a set of S things, usually considered as a sample
from a large population, and for each a set of D attribute
values, a classification (in the taxanomic sense) is a
partition of the S things into T classes such that all
things within a class can be treated as alike in certain
discussions.

Our view of classification is that it is a method of
modelling the population density distribution in D-
dimensional measurement space (wherein each thing is
represented by a point) by the union of T simple class
distributions. Each class distribution applies over a
region of measurement space and a thing belongs to the
class in whose region of application it lies. The complete
distribution model is thus composed of segments of each
of the T simple class distribution models.

The probability of finding a thing with a given set of
attribute values is estimated from the density of the
composite model in the thing’s vicinity. That is, if the
thing lies in class ¢ its probability is estimated from the
density of the model for class ¢ weighted by the relative
abundance of class r. The class distribution parameters
are estimated from the given population.

We now consider the length of a message which can
convey the description of all S things as is contained in
the S x D attribute values. The optimum method of
encoding this message is to use a Shannon-Fano code
(Oliver, 1952) where the length of message required is
minus the logarithm of the probability of obtaining the
given set of things. This probability is the product of
the probabilities of obtaining each of the individual
things if we assume the S things to be independent
random selections from the population. If natural
logarithms are used the message length is measured in
In2 bits (i.e. nits).

We have assumed that within each class different
attribute values are uncorrelated. Hence, the prob-
ability of obtaining a particular thing, given that it
belongs to class ¢, is simply the product of the marginal
probabilities of each of its D attribute values within
class 7. If an attribute value is missing then its marginal
probability is omitted from the product.

For multistate attribute d the class ¢ marginal distri-
bution is assumed to be multinomial with probabilities

plm,d,t] (m=1,2,..., M[d]),

where M[d] is the number of different states. Continu-
ous attribute values are assumed to be accurate within a
range e[d] so there are only a finite number of different
values possible in a finite range. The marginal distri-
bution is assumed to be normal with a mean p[d, ¢] and
standard deviation o[d, f]. The relative abundance of
classes is assumed to be multinomial with probabilities

"] ¢=1,2...,7).

All these distribution parameters are estimated from the
given population.
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64 D. M. Boulton and C. S. Wallace

The length of the message describing the S things is
minimised by using the maximum likelihood estimates
for the values of the class distribution parameters.
However, unless a receiver of the message has knowledge
of these assumed values he will be unable to decode the
message. Thus a further message, called the class
description message, which specifies the assumed distri-
bution parameter values, must accompany the descriptive
message (Boulton and Wallace, 1969).

The information measure is equal to the length of the
complete message: class description plus descriptive.
We consider that the best classification of a given data
set is that which results in the shortest message, that is
minimises the information measure.

The information measure is discussed in more detail
and the lengths of the two parts of the message are
derived in Wallace and Boulton (1968).

The information measure is thus a function of the data
x[d, s], measurement accuracies e[d], the number of
classes T, the distribution parameters r[t], p[m, d, 1]
uld, ] and o[d, t], and the assignment of individual
things to classes. Of these, the first two are fixed data
and the remainder are at the disposal of the designer of
the classification.

Minimisation methods

The program Snob is basically a collection of tactics
for modifying a classification so as to decrease its
information measure. The measure is a rather poorly
behaved function of a large and variable number of
variables. We may classify these as follows:

(a) The number of classes T.
(b) The presumed relative abundance r[¢] of each class.
(¢) For each class:
(i) for each multistate attribute the presumed
probability of each state, p[m, d, t];
(ii) for each continuous attribute the presumed
mean p[d, t] and standard deviation o[d, 1].
(d) For each thing the class to which it is presumed to
belong, i.e. the class distribution chosen as the
basis for encoding its attribute measurements.

No explicit method has been found for calculating the
optima of these variables. However, optima of some
variables can be found subject to the others being held
constant.

Five different tactics are employed:

(i) Distribution Adjustment: with variables (a) and
(d) held constant, the simultaneous optimisation
of variables (b) and (c). Essentially, this opti-
misation amounts to a maximum likelihood
estimate of variables (b) and (¢). However, the
likelihood functions of variables (b) and (c) are
slightly modified by the inclusion of the message
lengths needed to encode these variables.

(ii) Reclassifying: with variables (@), () and (c¢) held
constant, simultaneous optimisation of variables
d).

(iii) Splitting: splitting of a single class into two and
at the same time making an optimum choice of
the variables (b) and (c) for the new classes.

(iv) Merging: merging two classes into one and at the

same time making an optimum choice of variables
(b) and (c) for the new class.

(v) Swapping: splitting a class into two and adding
one of its parts to a second class. This will be
explained in greater detail below.

The program Snob employs all five tactics to improve
an initial classification and halts when no tactic yields
an improvement. Unfortunately, this may occur before
the true minimum of the information measure has been
found. Further development of the program would
require the development of other and more powerful
tactics, but we feel it unlikely that any tactic will be
found which will guarantee the true minimum.

Distribution adjustments

In this tactic, the number of classes and their member-
ship are held constant. Thus the adjustment of the
distribution parameters and class name labels for each
class affects only the encoding of members of that class,
and each class can be considered separately.

Within a class, the shortest encoding of its members’
attribute value sets is obtained with that distribution
function which fits the observed measurement points
best in the maximum likelihood sense. The message
length for the value sets is, in fact, minus the logarithm
of the likelihood function. However, we show in
Wallace and Boulton (1968) that including the descrip-
tion of the distribution parameters in the message length
to be minimised leads to optimum parameter values
which differ slightly from the normal maximum likeli-
hood estimates. The length of the parameter descrip-
tions play the role of minus the logarithm of an a priori
probability.

The optimum estimates and corresponding message
lengths are found to be as follows.

1. The optimum value for r[¢] is n[t]/S, where n[t] is the
number of things in class ¢z. The resulting length of the
class name label is

I[1] = In (S/n[t]) M

The class name label is the message segment included in
the description of each thing to indicate the class to
which it belongs.

The total length of message for all classes due to the
class name labels of the S things and the description of
the manner of encoding class name labels is

(T — D)(In(S/12) + 1) — In (T — 1)!
+ 2 6l + HIn (Sl @)

It is convenient to recast the above as the sum of two
terms:

H(T) +I§T1L[r] — (—In(T — D! — }In(S/12) + 1)}

+{£,400 1D+ + 6 + HIn (S
®

The second term contains contributions L[¢] which may
be calculated for each class separately, and which will
be called the class name term for that class. The first
term, H(T), which depends on the number of classes,
will be called the class dictionary term.
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2. For each unordered multistate attribute d, the
probability of occurrence of state m of the attribute in
class ¢ is estimated by

(n[m, d, 1] + 1)/(n[d, 1] + M[d]) 4)

where n[m, d, t] is the number of things in class ¢ having
state m of attribute d, n[d, ¢] is the number of things in
class ¢ having any known value of attribute d, and M[d]
is the number of states of attribute d.

The length of the label used in class ¢ to indicate
possession of state m of attribute d is therefore

c[m, d, 1] = —In ((n[m, d, 1] + D/(nld, 1] + M[d])) (5)

The estimate (4) is slightly biased to prevent diver-
gence of (5) when n[m, d, ] = 0, and has the useful
effect of allowing a thing to be assigned to a class without
excessive cost even though it has a state m not possessed
by any existing member of the class.

The total message length attributable to encoded values
of multistate attribute 4 in class #, and to the description
of the manner of encoding is given by

Fld, {] = ¥{M[d] — 1) In (u[d, £]/12 + 1)
Mld)

+ 2 (n[m, d, 1] + efm, d, 1] — In (M[d] — D! (6)

3. For each continuous attribute d the distribution is
assumed to be normal within the class ¢z. Its mean is
estimated by

/J’[d’ t] = (Et x[d’ S])/n[d’ t] (7)

(where ¥ means summation over those things in class
int

t having a known value of attribute d) and its standard

deviation is estimated by

old, 1] = (E, (<[4, 1)) — nld, 1)uld, (DI (rld, 7] — 1)

The minus one in the denominator is not present in a
normal maximum likelihood estimate, but arises from
the need to quote the mean to an accuracy dependent
on the standard deviation.

Because (8) fails when n[d, f] = 1, we use a modified
estimate

old, 1] = ((a[d, 0])* + (e[d])* + 2 (x[d, 5]

- I‘L[d9 t])z)/n[ds t]’ (9)

where o[d, 0] is the standard deviation of the population
as a whole.

The total message length attributable to the encoded
values of continuous attribute 4 in class ¢ and the
description of the distribution parameters is

Fld, 1] = } In ((o[d, O))*n[d, t)(nld, 1] — 1)/(9(o[d, 1]*)))
+ nld, 1(In (o[d, ]/ke[d]) + 1) + 1, (10)

where k = 1/4/2m7.

This form assumes that the ranges of possible values
within which the values of u and ¢ must be located are
40(d, 0] and o[d, 0] respectively.

The program contains a routine ‘fyprob(t)’ which
calculates the optimum parameters for a class #, and finds
the total length of message contributed by the class. It
requires as data:

(a) the fixed information:
S;
M |d] for each discrete attribute;
e[ld], uld,0] and o[d, 0] for each continuous
attribute.
This data is set up at the beginning of the
program, and is available to all routines.
(5) nl1];
(c) for each state of each discrete attribute, n[m, d, 1];
(d) for each continuous attribute X, x[d, s], X (x[d, s])?
and n[d, 1]. int int

Typrob(t) calculates from this data the shortest possible
total message length for the class, i.e.

Flf]= L[] + él Fld, 1]. (11

It also calculates and tabulates for later use:
(a) the class label length /[t] = In (S/n[]);
(b) for each state of each discrete attribute, the state
label length c[m, d, t] given in (5);
(c) for each continuous attribute the mean u[d, ]
given in (7), the standard deviation o[d, ¢] given in
(9), and a distribution normalising constant

gld, 1] = In (od, 1]/(ke[d])). (12)

Where a class has no member having a known value for
an attribute d, typrob(t) tabulates for c[m,d,t] or
u, o, g[d, t] the appropriate values for the population as
a whole.
The complete distribution adjustment process, which
is performed by a procedure ‘adjust’, consists of:
(a) scanning the classes to eliminate any which have
lost all their members, at the same time reducing
T, the number of classes, and renumbering the
remaining classes so their numbers form a compact
set from 1 to T}
(b) applying typrob(t) to all classes;
(¢) calculating the total message length

F= H(T) +élF[t]. (13)

Reclassifying

This tactic finds the optimum assignment of the S
things to the T classes, the number, distribution para-
meters and class name labels of the classes being kept
constant.

Reclassifying consists simply of finding, for each
thing, the class distribution which allows the most
economical description of its attributes. That is, the
class is found which has the highest density in the
neighbourhood of the thing in measurement space. A
routine ‘samprob’ calculates the message length Fs, ¢]
required to encode the attributes of s using the density
distribution of class ¢. Samprob uses the values
c[m, d, 1], I[t] and p, o, g[d, ] tabulated by typrob(t) to
calculate

Fls =1+ 3 cx[ds].d,1]
+ X (gld, 1] + (x[d, 5]
— pld, 1)*/2(old, (). (14)

d continuous
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66 D. M. Boulton and C. S. Wallace

During the classify process, performed by a routine
‘classify’, each of the S things is treated in turn. No
notice is taken of the previous classification of the thing.
The thing is assigned to the class giving the least cost as
calculated by samprob. If two or more classes give the
same cost, the thing is assigned to that class to which
the fewest things have so far been assigned. If there is
still a tie between two or more classes, the assignment is
made randomly to one of these classes.

As classify assigns things to classes, it accumulates
for all classes and dimensions the quantities n[¢], n[d, ¢]
and X, x[d, s] and X (x[d, s])?, or n[m, d, ] which are

int

int

required by the procedure adjust.

Splitting

This tactic enables the number of classes to be
increased. A class can be split into two and at the same
time the optimum choice of the class distribution
parameters is made for the two new classes.

Distribution parameters are tabulated for each class,
and also for each of two subclasses of each class. The
procedure classify, having decided to assign a thing to a
particular class then uses samprob to assign it to one of
the two subclasses of that class. Sums of variables, sums
of squares, and numbers in states are accumulated for
subclasses as for classes.

The procedure adjust uses the accumulated sums for
subclasses to optimise the subclass distribution para-
meters exactly as for classes, and calculates and tabulates
the F[¢] function for the subclasses.

When a class is split by the splitting tactic, it is
replaced by what were its subclasses. The split affects
the class dictionary term H(¢), and the term F[¢] for the
class split.

The decrease in message length if class ¢ is split into
its two subclasses # and v is given by

B() = H(T) — H(T + 1) + F[1] — (F[u] + F[v]) (15)

In the program a procedure split finds the class yielding
the largest value of the function B(¢) and if B(f) > 0 and
there is still storage space to accommodate more classes,
the split is carried out. All parameters of class ¢ are
replaced by those of one subclass and the other subclass
parameters are transferred to class (T 4 1) which was
previously vacant.

The two new classes now have no subclasses so as a
starting point the subclass parameters are set equal to
those of their parents. This causes a tie for subclass
membership during the next classify step, resulting in
two pairs of random subclasses being set up. Further
reclassifying should improve these.

Merging

This tactic is the exact opposite of splitting: two
classes are combined into one, thus reducing the total
number of classes by one. The optimum choice of
parameters is made for the new class. The decrease in
message length if classes ¥ and v are combined to form
class 7 is given by:

A(u,v) = H(T) — H(T — 1) + F[u] + F[v] — F[z]. (16)

A routine merge (u,v) evaluates A(u,v). The term

F[t] is evaluated by typrob(t) which requires the terms:
(a) n[1];

(b) for each multistate attribute n[m, d, t];
(c¢) for each continuous attribute X x[d,s] and
S, (x[d, s])%
nt
These are formed by merge (u, v) each as the sum of the
corresponding pair of terms for classes u and v.
After combining two classes their parameters are
retained as those of the subclasses of the new class.

Swapping

This tactic forms two new classes from two existing
classes by transferring a subclass from one to the other.
There are four ways in which this may be done, but
the total number of classes remains unchanged. The
optimum choice of class parameters is made for the new
classes.

The decrease in message length when class u transfers
a subclass to class v to produce classes ¥’ and v’ is given
by

W(u,v) = Flu] + F[v] — (Fw] + F') (17

The routine swap, which calculates W(u, v) uses typrob(t)
in the same way as merge does for F[t], to evaluate
F[v']; F[u’] is already known as it was a subclass of u.

After swapping, the swapped subclasses of u and the
old v are kept as subclasses of v. The new class «’ has
its subclass parameters set equal to its own as is done
after a split.

In the program merging and swapping are both carried
out together by a procedure combine. Operations yield-
ing the greatest decrease in message length are carried
out first. Combine uses swap (u, v) and merge (u, v) to
find the largest of the terms W(u, v) and A(w, v) for all
combinations of  and v. If worthwhile, then the merge
or swap operation is carried out. This procedure is
repeated until there are no more swappings or combin-
ings worthwhile.

If there is no spare class storage, which is possible if
nothing has been combined, then spare storage for one
class and subclasses is made available by combining the
pair of classes with maximum (negative) A(u, v). At this
point the compaction procedure is again used to remove
any classes with no members and form a compact set
numbered 1 to T.

Programmed minimisation strategy

An iteration

The four procedures incorporating the five minimisa-
tion tactics are combined into a single iteration. This
iteration can be split into two stages. The first using
classify and adjust will by itself improve the information
measure by altering the class membership, but is unable
to increase the number of classes. The second stage
utilising split and combine allows the number of classes
to change and will also reshuffle subclasses to help
prevent the first stage from becoming trapped in a false
minimum. It can be shown that repeated iterations will
converge (not necessarily to the true minimum) after a
finite number of iterations.

20z 1Mdy 61 uo }sanb Aq £Z068€/€9/1/€ L/o101e/|ulWod/Ww oo dno-ojwapede//:sdiy wolj papeojumo(




A program for numerical classification 67

Start up

The iteration requires as a starting point at least one
class with values of all the distribution parameters for it
and its two subclasses.

If Snob is required to assess and attempt to modify a
known classification, then the classes of this given
classification provide the starting point. These classes
may be specified to the program either by listing the
class distribution parameters or by listing the class
membership of each thing. For the later case, the
distribution parameters are obtained by first accumu-
lating the necessary quantities (in a dummy classify
phase) and then using adjust. All subclass parameters
are set equal to those of their parents which causes the
initial allocation to subclasses to be random.

If no initial classification is supplied then a classi-
fication consisting of a number of random classes is
generated. This is achieved by setting the distribution
parameters of the required number of classes and their
subclasses all equal. The initial classify stage will
allocate things to the classes and subclasses randomly
as a result of the ties due to identical parameters. For
the first few iterations combining is inhibited to stop
the random classification from collapsing and to allow
the classes to stabilise.

Possible improvements to an iteration

It has been found in practice that the split-combine
stage does not usually find any worthwhile changes to
perform every iteration. It thus need not be applied
during every iteration.

It is also found that modification of subclass member-
ship generally continues for a number of iterations after
the class membership has become constant. Reclassi-
fying of subclasses is continued until the subclasses
stabilise, as a split or swap may become worthwhile as
they improve. Computation time can be saved at this
stage by applying classify-adjust only to subclasses once
the class membership has become constant. To achieve
this saving we must store the current class membership
of each thing so that we know which two subclasses it
can belong to.

Computer considerations

Storage

The bulk of the data is the matrix of D x § attribute
values. As this is only accessed when each thing is
being reclassified, only one column containing the D
values of the thing being classified need be held internally
at any time. The whole matrix can thus be kept on
magnetic tape making the number of things that can be
classified not limited by internal storage considerations.

The information measure is minimised with respect to
the number of classes. However, due to storage con-
siderations an upper limit to their number must be set.
Except for very large problems this limit 7m is usually
greater than the number of classes in the final solution.
It can, however, be intentionally set lower, in which
case the optimum solution of not more than (Tm — 1)
classes will be found.

The value of Tm imposed by storage considerations is
approximately given by:

Tm = (“ 2PB+ 5 —2)[3

where A is the available data storage, B is the size of the
segment of the data matrix x[d, s] actually held in core

and P = Z pld] where p[d] = 3 for d continuous, and
pld] = M[d] for d multitstate.

Input
The following information is input to Snob.

(a) The type of each attribute, that is, multistate or
continuous.

(b) For each continuous attribute e[d].

(¢) For each multistate attribute M [d].

(d) The data matrix x[d, s].

For multistate attributes the states are arbitrarily
numbered from 1 to M[d]. There is no need to normal-
ise continuous attribute scales as the range of values
does not affect the weight attached to an attribute.
Missing attribute values are indicated by an extreme
value of 10+°.

We use another program to record the data matrix on
magnetic tape. It has facilities for excluding any com-
bination of attributes and for replacing a group of a
number of binary attributes by a single equivalent
multistate attribute. This is done when M-state data
has been coded in terms of M mutually exclusive binary
attributes because of the inability of some process to
deal with it in the multistate form.

(e) Tm, that is, the maximum number of classes plus
one.

(f) A value to set up the random number generator
used for resolving ties.

Different initial settings of the random number
generator will often result in final classifications with
slightly different information measures, and slightly
different class memberships.

Output

The optimum classification may be specified either by
the class membership of each thing or by the set of
distribution parameters of each class. Both of these
specifications are output by Snob. The distribution
parameters are always held in core, however the class
membership need not be so held. It can, however, be
generated by reclassifying.

To indicate the diagnostic efficiency of different
attributes the following additional information is output
for each:

(@) For a continuous attribute the population is
dichotomised in T different ways, one per class.
The dichotomy for class ¢ is between class ¢ and
the rest of the population. The mean and standard
deviation of class ¢ and of the rest of the population
are output.

(b) For multistate attributes 7, M[d] X 2 contin-
gency tables are constructed, one for each class.
For class ¢ the M[d] x 2 table compares the
incidence of the attribute in class ¢ with its
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incidence outside class #. For each such table a
value of chi-square is output.

Computation time

The computations during classify as the computer
scans the data matrix on tape are quite simple. For
each thing T + 2 samprob calculations are made which
involve only table lookup operations and the evaluation
of squared differences. The more extensive calculations
of the adjust and combine procedures are carried out
during tape rewind and the time they take is independent
of S.

About 10 iterations are normally required, depending
on the size of the problem and how well the starting
point leads to the final solution.

For a problem involving 200 things and 80 binary
attributes about 30 minutes of computation time were
required when starting from one random class. We
would expect quite a large reduction in computation
time if the program was rewritten in assembly language,
as KDF9 ALGOL is rather inefficient when a large
amount of sequential array addressing is involved, as is
the case here.

Discussion

Snob can be discussed on at least three levels: first,
on the merits of what it attempts to do, i.e. on merits
of the minimum information measure concept, second,
on the merits of what it actually does, i.e. the efficiency
and effectiveness of the minimisation tactics, and third,
on how it does it, i.e. program structure. We do not
intend to discuss the third level, especially as the program
is designed for ease of modification and experiment
rather than efficiency.

The information measure

Discussion of the first question is difficult in that few
other objective criteria for judging classifications, based
on a clearly stated aim, have been discovered by us in
the literature. However, we may make some modest
claims for the information measure.

Firstly, and perhaps most importantly, we hope that
its proposal will stimulate others to consider whether
or not the excellence of different classifications can be
objectively compared, and if so, on what criteria.

Secondly, provided that our premises concerning the
expected forms of density distributions of classes are
acceptable, a classification which minimises the informa-
tion measure has the following properties:

(a) A probability distribution function in measure-
ment space is provided for each class.

(b) The parameters describing the probability distri-
bution for a class are assigned values which are
essentially maximum likelihood estimates based on
the things assigned to that class.

(c) Each thing is assigned to that class most likely to
contain a member like that thing.

If the context of the classification problem is such that
it is reasonable to expect the classes derived to have a
simple and compact internal distribution in measurement
space, the notion of a probability distribution function
for a class is natural. If the context leads one not to

expect a compact internal distribution within each class,
no other classification technique known to us has much
hope of success.

Given, then, that a distribution function is a reasonable
concept, there seems little point in not attempting the
best possible estimate of its parameters. The nearly
maximum likelihood estimators used by Snob can be
expected to yield estimates nearly as good as can be
achieved by any estimators. Again, if the concept of a
probability distribution is accepted, there seems little
point in assigning a thing to a class which, on the basis
of the estimated distributions, is not the most likely to
contain such a thing.

Note that these remarks are not intended as a justi-
fication of our particular choice of model distribution
functions, viz. uncorrelated normal and unordered
multistate probability functions. However, this choice
is not central to the information measure concept, and
the mathematical form of the measure can be modified
to accommodate different forms of distribution function
(e.g. poisonnian, log normal, correlated multivariate
normal, etc.) where these are appropriate.

It may be instructive to compare the information
measure approach with one recently proposed by G. H.
Ball and D. J. Hall (1967). The latter sets up a measure
which is the total within-class variance, and seeks to
minimise this measure by an iterative technique similar
to our own. It may be shown that the resulting classi-
fication is a maximum likelihood estimate of the para-
meters of a complex hypothesis about the data, the
elements of the hypothesis being:

(a) That each thing belongs to a certain class.

(b) That each attribute is distributed normally within
each class with a certain mean, and that attributes
are uncorrelated within a class.

(¢) That all classes are equally abundant.

(d) That all attribute distributions in all classes have
the same (unspecified) standard deviation.

By contrast, the information measure approach gives
estimates of the parameters of an hypothesis containing
elements (a) and (), but replacing (c) and (d) by separate
estimates for each class of its relative abundance, and
within each class, of the standard deviation of each
continuous attribute.

The inclusion of class description information in our
measure is perhaps more contentious. If the aim of
providing an efficient encoding is accepted, the class
description information is undoubtedly an essential part
of the total message length. If, however, Snob is viewed
as producing maximum likelihood estimates, the class
description information plays the role of an a priori
probability, and has the effect of yielding an optimum
number of classes. (By contrast, the number of classes
is controlled by Ball and Hall by imposing arbitrary
upper and lower limits to the variance within a class.
If the upper limit is exceeded, the class if split. If the
total variance of two classes falls below the lower limit,
they are combined.)

Work is at present proceeding to relate the prior prob-
abilities in our measure to tests of the statistical
significance of the distinction between classes. Although
this work is at an early stage, it appears that at least in
some simple cases, the cost of class splitting introduced
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by the class description terms is of the same order as the
expected benefit in likelihood resulting from the most
advantageous split of a random sample from single-class
population.

The minimisation tactics

The tactics used by Snob to find the minimum informa-
tion measure are deficient in that the minimum is often
not found. The problem of false minima is inherent in
the iterative approach to the solution, in which at each
stage we seek to improve an existing class structure by
relatively minor adjustments. Locally optimum struc-
tures can occur which cannot be improved by any minor
adjustment, but which differ grossly, e.g. in the number
of classes, from the optimum.

The tactics of splitting, merging, and swapping are
certainly useful, but even they make adjustments to at
most two classes simultaneously. No doubt tactics
which considered restructuring groups of three or more
classes simultaneously would reduce the number of
inescapable false minima. The number of possible
groups, and the number of possible rearrangements of
each group, are large and would present a formidable
computing task unless some simple technique were found
for selecting for examination those regroupings most
likely to be profitable.

Even within the armoury of tactics we employ, there
is room for considerable variation in strategy, which has

References

not yet been fully explored. However, there are indi-
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