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Alternating direction methods for
parabolic equations in two space dimensions

with a mixed derivative

S. McKee and A. R. Mitchell*

* Department of Mathematics, The University, Dundee

An alternating direction implicit (A.D.I.) method, which requires the solution of two tridiagonal
sets of equations at each time step, is derived for solving a parabolic equation with variable
coefficients in two space dimensions with a mixed derivative. The method is shown to be un-
conditionally stable for two semi-infinite ranges of an auxiliary parameter. Other existing finite
difference schemes are mentioned and numerical results are presented.

(Received March 1969)

1. Introduction
Consider the linear parabolic equation

ou I
3= L (1.1
where
I 2 2 2
= a(x9y> t)b? + 2b(x> ) t)bx—by + c(x, ) t)-72

subject to @ >0, ¢ >0, b?> <ac, in the region of
(x,y,t) space given by R X (0<t< T), where
R=0<x,y<1), and x,y are the distance co-
ordinates and ¢ the time co-ordinate respectively. It is
assumed that weC* and a, b, ceC2. Existence and
uniqueness of the solution of the partial differential
equation (1.1) with appropriate initial and boundary
conditions have been studied by Dressel (1940), Protter
and Weinberger (1967) and other authors.

The region is covered by a rectilinear grid with A the
grid spacing in the x and y directions and k the grid
spacing in the ¢ direction. The point (x, y,?) is an
internal grid point if

x=ihy=jht=nk(l1<ij< M—1,1<n<N—1)

where Mh =1 and Nk = T. 1t is the purpose of this
note to derive a two level alternating direction finite
difference scheme which is an approximation to (1.1),
and which, despite the presence of a mixed derivative,
requires the solution of only two tridiagonal sets of
equations at each time step. This is in contrast to the
A.D.I. method of Douglas and Gunn (1964) which
requires the solution of four tridiagonal sets of equations
at each time step. We define notation consisting of U7,
the solution of the difference equation at the grid point
X = ih, y = jh, t = nk; r the mesh ratio k/h?; and

8Un, = U, ; — 20", + Uy

S;U’;',; = U’;‘,H—l - ZU':',,' + U’:',,‘~1

H.U ;= Uty — Uiy

HU}, =U% ;0 — Ul
oWU%, = Uty ji1 — Uty — Uty + U,
oPUL ;= Ul — Uty 0 — Uty + Uy
odUL, =U%, — Uty ; — Ui ;o + Uty
o®WUY, = Ulyy,; — UL — Uty jo1 + Ul

2. Existing two level difference methods for solving (1.1)

Several difference schemes have been proposed for the
solution of (1.1) (and (1.1) with constant coefficients)
subject to appropriate initial and boundary conditions.
Lax and Richtmyer (1956) proposed the scheme

urtt — o, = r[0L, U + (1 — 0L, U ] 2.1
where L, =ad2+ 1bH . H, + c8}, and 0< 0 < 1.
The scheme is explicit when 8 = 0 and conditionally
stable. For 0 < 6 < 1, the scheme is implicit, and
relaxation methods are suggested for solving the block
tridiagonal set of equations at each time step. Even
using modern relaxation methods like S.O.R. the method
is exceedingly laborious. When 6 =1 this scheme
reduces to Saul’yev’s scheme (1964).

Seidman (1963) constructed various types of schemes
for the solution of (1.1). They consisted of explicit,
completely implicit and sweep explicit schemes. The
last named depended on splitting the difference operators

. .. W d % . b
which replaced the derivatives 32’ W , and 372 in suc
a way that in some problems, judicious use of the
boundary conditions enabled the overall difference
formulae to be solved explicitly.
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82 S. McKee and A. R. Mitchell

Russian authors have suggested many split difference
formulae for the solution of (1.1). The Russian name
for these methods means literally ‘fractional steps’, and
they include the schemes

(1 — ar®)UrH12 = (1 + 4brH,H)U",
(1 — erd)UF = (1 + 3brH H)U 12 (2.2)

of Yanenko, Suchkov and Pogodin (1959),

(1 —ar)Urt2 = U,
(= &)U — (1 + br(o® 4 o) ULF 12
(2.3)

of Samarskii (1964) (see also Samarskii (1962)), and

(1 — ar@)ULF1B = Uy,
(1 _ CrSZ)Un+2/3 — Un+1/3
U = (1 4 1brH H U3 (2.4)

of Sofronov (1963). The schemes (2.2), (2.3), and (2.4)
are classified as two level schemes, despite the presence
of intermediate levels. The unsplit scheme

(1 — Aar&)(1 — Aer&)(UMT — UL
= r(ad2 + ¢ + b(e? + o M)UT,; (2.5)

where A is a parameter, has been proposed by Andreev
(1967). These schemes were not derived in any
systematic manner. They were considered because they
looked feasible schemes and were shown to work under
certain conditions.

Finally, Douglas and Gunn (1964) considered the
scheme

Uit — Un, = r(ad? + 82 + 2b8%,) UL (2.6)

where &%, is either 3(o¥ 4 o®) or (@ + o@¥),
depending on whether b > 0 or b < 0. The alternating
direction form of this scheme is extremely complicated
and, in the case of b positive and negative in different
parts of the region, four tridiagonal sets of equations
have to be solved at each time step. The four basic
directions are the x-direction, the y-direction, and
directions inclined at an angle 7/4 with the positive and
negative x-axis respectively.

3. Derivation of A.D.I. scheme

In order to derive an A.D.I. scheme which meets our
requirements, we assume initially that the coefficients
a, b, cin (1.1) are constant. We then consider a general
two level finite difference formula of the form

[4A+BH,+ CH,+ D& + E8 + FH H,

+ G H,8 + J1H,8; + K, 8&]U7}!
=[A + BH, + CH, + (D + arA4)8?
+ (E + crd)8? + (F + 3brA)H, H, + G,H. 3}

+ J,H 82 4+ K,82821U%,  (3.1)
where 4, B, C, D, E, F, G,, J, K,, G,, J,, K, are arbitrary
real parameters. Straight forward Taylor expansions of
the operators in (3.1) show that the latter is a finite
difference approximation of (1.1) of order of accuracy
0(h? 4+ k). Moreover, despite the twelve arbitrary

parameters in (3.1) which can be assigned any values we
please, a two level scheme of local accuracy 0(h? + k?)

cannot be obtained from (3.1). When a = ¢, however,
a scheme of accuracy 0(h* + k2) can be obtained. It is

1 b 1
[‘—g(’—é)Si“g("‘az)ai—a(’—a)f’x”y

+ GH,8 4 J,H,8 + K@fﬁi} Ut

IR GIO LRk

b 1
+4(r+ ) HoH, + GH.8 + J\H,5;

+ {K, e+ 4b2/a2)} sisg] U,

Since we have been unable to split this scheme and so
ease the calculation of UZ;!, it is of little practical use,
and its stability has not been considered.

A suitable condition in forming A.D.I. schemes is that
the difference operator at the advanced time level is
capable of factorisation. To facilitate this, the arbitrary
parameters in (3.1) are chosen to satisfy the conditions

G, =J, =0,
A—1,B=C=F=0,K, = DE.

The modified scheme, with G, = J, = 0 for convenience,
becomes

(1 + D&)(1 + EUL =[1 + (D + ar)é;
+ (E + cr)82 + $brH, H, + K,825]] U},
(3.2)

which can be written in the Douglas—Rachford alternating
direction form

(1 + DU ™ = [1 + (D + ar)8% + crg;

+ YbrH H, + (K, — DE)8282]U"

(1 + EQ)UIF' = Unp* + ES2UT, (3.3)
where U7f'* denotes an intermediate value of Ut

However, 1f we reduce the number of parameters further
by setting

Dz}—%ra E~l—%rc,
(f 2 )(f 2’0)
the scheme

|:1 +(f 2ra 5{'[1 +(f QTC)SZ] Uit
:{[1 + (}+%ra) 85][1 +(;,+%rc) 33]
—]—%rbeHy} U, (34

is obtained, which involves the single parameter f. When
split in Douglas-Rachford form, this scheme becomes

[+t [+ G b
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1
+ red? +§rbeHy —I—}(a + c)8§8§] U,

[1 + (;lp—%rc) 33} Ur

1 1
= Uri'* 4 (7— 3 rc) U, (3.5
Special cases of (3.4) are already in existence when
a=c=1, and b=0. These are the Peaceman-—
Rachford formula (1955) when f= oo, and the high
accuracy Mitchell-Fairweather scheme (1964) when
f=12. It should be noted that (3.3) (and (3.5)) involve
the solution of two tridiagonal sets of equations at each
time step.

The principal part of the truncation error of (3.4) can
be shown to be

d%u
4 4
arh (f 12)a 4t brh (“’+ +3)bx3by
4 b4u
2,24

+ 2b%%h 232+brh (cr+ +3 Sx0y3

o4

+crh4(f 5 b’j (3.6)

If we now return to the original equation (1.1) and
allow a, b, and ¢ to be functions of x, y, ¢, it can be
verified by Taylor expansions that (3.4) (and (3.5)) still
retain an order of accuracy 0(h? + k).

4. Stability

(i) Constant coefficients

For a two level scalar difference scheme such as (3.4),
the von Neumann condition is sufficient as well as
necessary for stability. The von Neumann method of
examining stability will now be employed to demon-
strate the stability of (3.4). It is assumed that the
coefficients a, b, c are again constant, and that any initial
and boundary conditions are periodic.

Fourier decomposition of the space variables in (3.4)
leads to

[1—4(;,—%ra)sin2—§:|[ 4(f 57 )smz(;],u,
- [1 _ 4(1f+%ra) sinzg] [1 — 4(;—{—%rc) sin? %5}

— 2rb sin § sin ¢, “.1)
1
where 6 = Bh, ¢ = yh, with B and y arbitrary rea
numbers, and where p is the amplification factor of a
Fourier component. The von Neumann condition for
stability is |u|<1. Provided
1 1N, .8 | S N
— —Yan2- _ — —)qan2 L
1 J;—4(2ra f)sm 2>0and 1 +4(2rc f)sm 2 >0,
(4.1a)

the two inequalities resulting from applying this condition
to (4.1) are

4 0 4 . ¢ 16 . ,0 .
DL B LY I 2 2 222 ?
1 fsm > fsm 2 +(f2+4r ac) sin® 5 sin 5
— rbsin Osin ¢ > 0, 4.2)
and
4 ¢ 4 ¢
22 2 ¢ 2_ 2 P
a sin +c51n 2 f(a—l—c)sm 2sm >
+ 4bsin 0sin ¢ > 0. 4.3)
If ¢ = 0 or 2w, (4.2) reduces to
0
l—ﬂsin2—>0. 4.4

f 2

This will (only) be true if /<0 or f> 4, and so a
necessary condition for (4.2) to hold is

f<0 or f>4.
This condition implies that (4.1a) is true.
4
Consider (4.2) again and let 7 = 1 — € (e not neces-

sarily small). This time (4.2) becomes
.0 é L0
— 2 27 2 2
1 (sm 3 -+ sin 2) + e(sm 3 + sin 2)
) o
+ [(1 — ) 4 4r?ac] s1n2§sm25 —rbsinfsin ¢ > 0

which leads to

6 ¢ L0 ¢

2 - 27 27 2
cos 2cos 3 +e(51n 2—{—sm 2)
.0 . ¢

+ [€2 — 2e + 4rac] smzismzz

.0 0.4 ¢
— 4rb smzcosismi cosf >0,

and then

—. 0. ¢ b o ¢]°
[Zr\/ac sin 5 sin 5 ~ V@ cos 5 cos 2]

(ac—5) 8 ¢
—*—“_ac COoSs ECOS 5
L0 P 0 .. ¢
2” 2P 22 2P
+e(51n 2—{—sm 2) 2e sin 2sm 5
0 ¢
26027 02 P
+ €%sin 5 sin 2>O,

and finally

_ .0 ¢ b 0 ¢
I:Zr\/acsmisma—\/—(Tzcosicosi]

(ac — b?) 29 2¢> 20 zf
—I—Tcos 5 00s* 5 + €sin 5 cost >
0
—i-551n2¢cos2 + €2 51n2§sm2§>0.

This result is true if e > 0. But € > 0 implies either
f<Oorf>4 accordmg as e is greater or less than 1.
Note f'= 0 is meaningless in practice and can be dis-
regarded. Since the sufficient condition for (4.2) to hold
coincides with the necessary condition, it is clear that
the unique necessary and sufficient condition for (4.2) to
be true is
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84 S. McKee and A. R. Mitchell

f<0 or f>4.

4
Now consider (4.3) and let 7 = 1 — € (e not neces-

sarily small). Condition (4.3) becomes

¢

0 0
a sm2 + ¢ sin? 7~ (a + ¢) sin? 5 2 sin2

[
2

.0 . ¢
2”2 gin2 P
+ e(a + ¢) sin )

.6 0 ¢
-+ 2b sin 3 sin 3 cos 5

> icos > 0,

which gives

.6
a sin? = cos? ;

b .0
2. 2 __
> +CSII’1 CoS )

2

.0 . ¢
-+ 2b sin 3 sin 5 cos 3 cosi

0
+ e(a + ¢) sin? 5 sinZ% >0,

and finally
. 0 ¢ b . ¢ 072
|:\/a sin 5 cos 5 + Va sin 5 cos ﬂ

I Gl b’ . , ¢
a

0
? cos? —
5 cos® 5

0. ¢
12 0 gin2
+ e(a + ¢) sin 5 sin 5

sin2
>0

which is true if € > 0. Thus the necessary and sufficient
condition for the stablllty of 3.4)is f<Oorf> 4.

(ii) Variable coefficients

To establish the stability of (3.4) for the case of
variable coefficients, reference is made to an important
paper by Widlund (1965). For convenience in this paper,
it is assumed that the coefficients are independent of ¢.
The extension to the general case presents no new
difficulties. In Widlund’s notation, (3.4) is re-written in
the form

U;IJ-H — Un + Q Un+l + QOU?,,'

where
0, =1- [1 + (;— %ra) ag} [1 + (},~ %rc) 3@
and

o[+
[1 +(f+ re) 32]

The principal parts of these as defined by Widlund are

rbeHy} — 1

0%, = — (5= 57a) (D)D)

— (lf— irc) (D, )(hD_))

_ (}— ra) (1f— 37¢) (D YD )D.. )HD._,)

and

» — ( +5 ra) (kD )(hD_))
+ (? +5 rc) (kD ,)(hD_ )

n ( 7+ 2ra)( 7 2rc (hD. )(hD_)(hD, )hD_,)

+ 2rb(hDg,)(hDy,),
where

hD, U(x, y) =

hD. U(x,y) =

2hD,, U(x, y) =

2hDy, U(x, y) =

+(U(x * h,y) — Ux, »)),
+(U(x,y + h) — Ux, y)),
Ux + h,y) — Ulx — h, y),
Ux,y +h) — Ulx,y — h).

0 .
If hD., is replaced by 2isin ief"”z, hD,, by
2i sin%ei"“’/z, hD,, by isin 6, and hD,, by isin ¢, the

functions of period 2

) sin? t

— 16 (7— ira)(?— irc) sinzgsinzé—i),

, 1 1 .0 1 1 ., P
Qg):_4(?_,_§m szi__4(?+~rc) smzi

1 0
—{—16(f+ ra)(f+ rc smzzst%—Zrbsm()squ

Qm—4(f 2ra sin2 - +4(

are obtained and so

(1= Q%)= + 0P) =
[1 — 4(;— %ra) sin? gj|#l I:l — 4(;— %rc)sin2 ;}7

x{[1—4(;+%ra sinzg:‘[l ( frc)smz]

— 2rb sin 0 sin qS}
It is only necessary to show that
[1 —4 (lf— %ra) sin? g:l -
[1 —4 (lf— %rc) sin? %] -
X {l:l — 4(; 5 ra) sin? ]

[1 — 4(;+;rc sin? (215:| — 2rbsin §sin qb}}< 1

Thus Widlund’s analysis in this case is equivalent to von
Neumann’s analysis and so (3.4) is a stable approxima-
tion to the original equation (1.1) with variable
coefficients when f << 0 or f > 4.
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Parabolic equations in two space dimensions 85

The question of obtaining an optimum value of f in
these ranges is difficult to answer. Such a value would
probably minimise (3.6), but it is unlikely that this
optimum value can be obtained.

5. Numerical results

The A.D.I. method (3.5) is now used to solve examples
involving the partial differential equation (1.1) with
constant and variable coefficients.

Example 1. Constant coefficients
Here the problem consists of (1.1) witha =1, b = 3,
¢ = 2, together with the initial condition
ux,y,0) =sinm(x +y) 0<x,y<I1
and the boundary conditions

u(0, y, t) = e~ ™@+2+) sin 7y

u(l, y, t) = —e @B FINsin 7y
u(x, 0, 1) = e~ ™a+2b+) gin x
u(x,1,t) = —e ™a+2b+tgin gy,

The theoretical solution is
u(x, y, 1) = e" @259 sin 7(x + y).

Numerical calculations using (3.5) with f= —4, 12 and
h = 0-1 were carried out for four values of the mesh
ratio r. The maximum differences between the computed
and the theoretical solutions are shown in Table 1.
A comparison is given with numerical solutions obtained
using Samarskii’s scheme (2.3), which is probably the
best of existing split operator schemes.

Partial verification of the stability analysis presented
in this paper for A.D.I. method (3.4) is given in Table 2.
Here it is shown that instability occurs for f = 2, whereas
the calculations for f = —4, 4, 12 are stable. The errors
quoted in Table 2 are at t = .

Example 2. Variable coefficients

This time the problem consists of (1.1) with
a=1x? 4+ 32 b= —3(x? + »y?), c = x* + %y? together
with the initial conditions

u(x, y, 0) = x2y + xp?, 0<x,y<1

and the boundary conditions

u(O, Y, t) =0
u(l, y, t) = y(1 + y)e~*
u(x,0,1) =0

u(x, 1,1) = x(1 4+ x)e—".
The theoretical solution is
u(x, y, 1) = e~'(x?y + xp?).

The same numerical calculations were carried out as in
the constant coefficient case and comparative results
between the present scheme and Samarskii’s scheme are
given in Table 3. This time the mean deviation of the
difference between the computed and theoretical
solution is quoted.

6. Concluding remarks

Although the A.D.I. method (3.5) and most other two
level methods referred to in this paper have the same
order of local accuracy, namely O(h? + k), it appears
from Tables 1 and 3 that (3.5), at least for certain values
of f, has superior overall accuracy. A contributory
factor towards this increased accuracy is almost certainly
the fact that intermediate boundary corrections (see
Fairweather and Mitchell (1967)) can be applied to (3.5)
but not to any of the other methods mentioned in this
paper. From (3.5), the intermediate boundary values
are given by

1 1 1 1
UniE — [1 + (}.— Sre 82& grit — (7— Sre) gl
whereas Samarskii, for example, has to be content with

nt+1% __ on+1
Uij™*=gij .

Here g is written for U when the grid point is on the
boundary of the region. The values of g are of course
known and so the intermediate boundary values U7 !*
can be calculated from the boundary data, in advance
of the main calculation.

Table 1
MAXIMUM DIFFERENCE BETWEEN COMPUTED AND
THEORETICAL SOLUTIONS
VALUE OF NUMBER OF MAXIMUM
TIME - THEORETICAL
r TIME STEPS MCKEE-MITCHELL SAMARSKII SOLUTION
f=-4 f=12
0-1 1/20 50 0-0062 0-0001 0-0025 0-1389
1/10 100 0-0012 0-0000 0-0005 0-0193
0-5 1/20 10 0-0030 0-0035 0-0130 0-1389
1/10 20 0-0006 0-0006 0-0022 0-0193
1 1/20 5 0-0016 0-0083 0-0263 0-1389
1/10 10 0-0003 0-0015 0-0046 0-0193
5 1/20 1 0-1095 0-1287 0-1451 0-1389
1/10 2 0-0159 0-0218 0-0354 0-0193
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86 S. McKee and A. R. Mitchell

There is also little doubt that (3.5) is a much simpler Table 2
A.D.I. method than that based on (2.7) which is the only
other genuine A.D.I. method known to the authors for
solving (1.1).

Finally, the method of the present paper can be

Errors at ¢t = 1/10

extended to three level difference formulae, which will ~
certainly enable split schemes of an order of local NJr 0-1 0-5 1 5
accuracy of at least O(h% 4 k?) to be obtained. Of AN
course, this increased accuracy of three level schemes
will have to be balanced against their additional —4 | 0-0012 0-0006 0-0003 0-0159
complexity. 2 0(1089) 0(1038) 7-2300 0-0317*
All calculations were carried out to ten places of 4 0-0006 0-0012 0-0021 0-0254
decimals on the Elliot 4130 computer of the University 12 0-0000 | 0-0006 | 0-0015 | 0-0218
of Dundee. |
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Table 3
MEAN DEVIATION OF THE DIFFERENCE BETWEEN
COMPUTED AND THEORETICAL SOLUTIONS
THEORETICAL
VALUE OF NUMBER OF SOLUTION AT
r TIME TIME STEPS MCKEE-MITCHELL CENTRAL NODAL
SAMARSKII POINT
f=—4 f=12
0-1 1/20 50 0-0122 0-0129 0-0255 0-2378
1/10 100 0-0152 0-0159 0-0316 0-2262
0-5 1/20 10 0-0123 0-0129 0-0248 0-2378
1/10 20 0-0152 0-0159 0-0307 0-2262
1 1/20 5 0-0124 0-0130 0-0240 0-2378
1/10 10 0-0152 0-0158 0-0298 0-2262
5 1/20 1 0-0144 0-0155 0-0189 0-2378
1/10 2 0-0158 0-0164 0-0252 0-2262
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