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The stability of the Du Fort-Frankel method for the
diffusion equation with boundary conditions

involving space derivatives

P. dJ. Taylor*

* Department of Mathematics, The University of Calgary
(On lease from the Department of Mathematics, The University of Southampton)

It is shown that the Du Fort-Frankel method is unstable for the diffusion equation, if the usual
central difference approximations are made to linear boundary conditions involving first order space
derivatives. This is shown to be true even when the corresponding differential equation is stable.
A modified boundary condition is presented which is proved to be stable provided the differential

equation is stable.
(Received January 1969)

1. Introduction

The explicit formula, due to Du Fort and Frankel (1953),
for the numerical solution of second order parabolic
differential equations, has in recent years been applied
to the numerical solution of non-linear equations (e.g.
Fromm (1966)), with various boundary conditions. The
purpose of this paper is to re-examine the stability of the
method for the diffusion equation with linear boundary
conditions involving first derivatives. It is shown that,
if central differences are used in approximations to such
boundary conditions, instability will occur unless the
conditions are modified in a manner consistent with the
Du Fort-Frankel method. Although these results are
only obtained for the diffusion equation in one space
dimension, they may be extended to some problems in
higher dimensions using direct products of matrices and
Afriat’s Theorem for eigenvalues of partitioned matrices.

2. The problem and its partial discretization

The problem we shall consider is that of solving the
equation

h(x, 1) _ (x, 1) |
T w2 M
in the region 0 < x < 1, ¢ > 0 with initial condition
Bx,0) =glx) 0<x<1 2
and boundary conditions
0,1
aOVB(O’ t) BO 4)( ) - O(Z)’ (3(1)
1, ¢
ad(l, ) + By — d)( 9_ = 71(0), (3b)

where yo(f) and y,(r) are continuous and bounded as
t— o0. We suppose first that (1) is replaced by a partial
discretization. We divide the region 0 < x < 1 into a
set of (n + 1) mesh points x; = jh, where A = 1/n is the
mesh length. We replace (1) by the system of ordinary
differential equations

dcb(t) 1
Tdt n

where ®()T = [$o(t), $1(2), - . . d()]. J(¢) denotes
the solution of these ordinary differential equations along
the line x = jh for t>0. Misan (n +1) X (n +1)
matrix derived from the boundary conditions and the
usual three point difference approximation to 32¢/dx2.
The elements of the vector b(¢) depend entirely on the
known terms in the boundary conditions. The initial
conditions are ¢,(0) = g(jh) forj=0,1,2,...,n

M®(1) + b(2) 4

3. Stability of the partial discretization

We consider first the stability of (4). If Ag, A, ..., A,
are the eigenvalues of M, we say that equations of the
form (4) are stable, if max RZ(A,) <0, or, if max R(A,)

= 0 and every A,, with 9?()\ )=01is a 51mple zero of
the minimal polynomial of M (i.e. the Jordan normal
form of M contains only submatrices of order 1 X 1
corresponding to such eigenvalues). Otherwise we say
that (4) is unstable. In general, a perturbation of the
initial value of the solution vector of (4) will produce a
uniformly bounded error for the stable case and an
unbounded error for the unstable case.

This may be proved using the results for Jordan
matrices established by Varga (1962) (particularly
Lemma 8.1).
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If (3a) and (3b) are replaced by
xoPo(t) — Bo W = yo(?) (5a)
and

)+ O by s

the matrix M is given by

[ 2(142) 2
¢ 1 -2 1 0
1 -2 1
M—
0 S
1 —2 1
i 2 —2(1+%)J

where wo = op/By and u; = o,/B,. Taking a par-
ticular case of the results of Campbell and Keast
(1968), we deduce that the system (4) is stable for
ottt + (o + p1) > 0 and (uo + ) > 0. Campbell
and Keast also show that if these conditions are satisfied,
the solutions of the parabolic equation (1) are bounded.

4. The eigenvalues of M

In the next section we shall need more information
regarding the eigenvalues of M. If x and A are an
eigenvector and eigenvalue of M with

Mx = Ax,

then the components x; of x satisfy the difference
equations

X1 — QR+ Nx; +x;_,=0, (6)
with boundary conditions

X_;=x —2@):0 (7a)
Xpr1 = X,_1 — Z%xn. (7b)
The general solution of (6) is
x; = A.cos j0 + B.sin jO ®)
where
.0
A= —4.sm2§ )

unless A =0 or —4 when a term of the form j(+1)/
must be included in (8)). The general solution (8)
satisfies (7a) and (7b) if

A‘%Q—B.sinezo
and

A(cos (n+ 1)0 — cos (n — 1)0 + 2'l—L'1—].cos n0)

+B(sin(n 1+ 1)8 — sin(n — 1)8 +2%.sinn0) =0.
D

We obtain a non-zero solution if the determinant of the
coefficients of 4 and B in the above equations is zero,
that is, after some manipulation, if

16 = (cos 20 + 2 “:;’;L' — 1).sin nf

+2 (W) sin @ cos nd = 0. (10)

The (n + 1) eigenvalues of M are thus given by (9) where
0 is given by the (n + 1) roots (excluding one root § = 0
and one root 6§ = =) of (10).

We show that f(6) has at least n — 1 real zeros (apart
fromf =0and n). Forr=1,2,...,(n—1),

iy ()

which alternates in sign and, therefore, there are at least
(n — 2) real zeros, at least one being in each of the
intervals [ro/n, (r + Da/n],r =1,2,...(n — 2). Also,
as f(m) = 0 and

S() = 2A=D"(pops — po — p)/n, (11

there is a further real root in ((n — 1)w/n, m) if
HoM1 — Mo — pp and pg + pq are of opposite signs. If
oty — po — py = 0, then f’(7) = 0 and there is a root
0 = m, when A= — 4 is an eigenvalue with corre-
sponding eigenvector components x; = (uoj — n)(—1)%.
We now seek roots of the form 8§ = = + iih.  Let

Gp) = — i(=D"f(7 + i)
— (chz¢+2“";§“ —1).sh

2 ("Lj:—"—‘) sh 4 ch mf.

G() ~ e DY as Y00
>0,
G(0) =0

f(%ﬂ) 2(#0 + )

and
, 2
G'(0) = ;(uom — o — M)

and thus there is at least one root of the form 6 = = + i}
if popy —po—py <0. So far, for pop; —po—p1 <0
we have located at least n roots for pg 4+ p; >0 and
(n — 1) roots for py + p; <O.

If pomr — po— 1 >0 and po + py >0, which
implies uo > 0 and p; > 0, let

g = sh=1(\/ pop/n)
when
G(y*) = 4.”“;’1—’2“ .sh ny*
to M)\/Mol‘-l ch ny*

) -
<;2 Qpops — (o + )V popy). ch ny*

-2 I
—7 Viom(vpo — v/pi)*.ch n*
<O0.
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Thus in this case there are two roots of the form
0 = 7 + iy, as G(0+) > 0 and G(o0) > 0.

We can similarly consider the behaviour of f(f) at
0 = 0 and seek roots of the form 0 = ih. All (n + 1)
roots can thus be located and a summary of results is
shown in Table 1. If a root is of the form 6 = i, the
corresponding eigenvalue satisfies

)\=4.sh2l2£>0 (12)
and (4) is unstable. If a rootis § = & + i then
)\=—~4.ch2%<0 (13)

which does not make (4) unstable. If @ is real the
corresponding eigenvalue is clearly non-positive. There
are no repeated zeros of the minimal polynomial of
M, as M is similar to a symmetric matrix as was shown
by Campbell and Keast, and, therefore, Table 1 is
consistent with their results.

For A given by (12), the corresponding eigenvector
has components of the form

x; = C.shji{

where C is arbitrary. For A given by (13) the compo-
nents are
xj =S C.Chjl,b

The eigenvectors are therefore hyperbolic in form and
do not represent waves.

Table 1

Number of roots of (10) of the form 6 =i and 6 =7t +-i.
The remaining roots are real

Hop Hort . ;
Ho + m ‘I'N(;)‘*f,ul —,“00—1/11 O=ip \0=m+if
>0 0 2
>0 '
>0 <0 0 1
<0 <0 1 1
>0 >0 2 0
>0 1 0
<0 <0
<0 1 1

5. Stability of the Du Fort-Frankel method

For a time increment 6¢, the Du Fort-Frankel formula
for integrating (4) is

1
2'“—8t(q>s+l _q)s—l) (14)

1
:h—z[(M+ 2I)¢s_q).r+l - q)s-— 1] + b(S'St)

where ®T = [¢g ;, b1 .5, ..., Pn,s] and ¢; ,is the solution
of the difference equation at the point (jA, s.6f). We
rewrite (14) in the single step form

I::z+1]:A[::_J+[2.8t.(l +20a)—1b(s.3t):| 15)

where A is the 2(n + 1) X 2(n + 1) matrix

21 +20)~'a(M +2I) (1 +20)= (1 — 2T
A— [ ; o } (16)

and o = 8t/h*(>0). We shall say that the recurrence
relation (15) is stable, if all eigenvalues of A4 lie in or on
the unit circle and eigenvalues on the unit circle are
simple zeros of the minimal polynomial of A. Other-
wise we shall say that (15) is unstable. As for the partial
discretization, in general a perturbation of the solution
vector in (15) will produce uniformly bounded errors for
a stable relation and unbounded errors for an unstable
relation. (See e.g. Varga (1962).)

Theorem 1

The Du Fort-Frankel method (14) is stable, if and only
if the eigenvalues of M lie in or on the ellipse E in the
complex plane, defined by

(22T e =1 a)

and any eigenvalues on E are only simple zeros of the
minimal polynomial of M.

Proof:

The eigenvalues of the matrix 4 of (16) are the 2(n + 1)
roots of the (n + 1) equations
A 4+20)? — 20X, +2)v — (1 —20) =0

r=0,1,2...,(n+1), (18)

where A,,r =0,1...,(n + 1) are the eigenvalues of M.

We consider the transformation

2a(d +2) = (1 +20)v + (2—“1}—1) (19)

from the complex v-plane to the A-plane. The closed

region between the circle |v| = |2« — 1|/« + 1) and

|v| = 1 is mapped on to the closed interior of E (Fig. 1).

The circle |v| = 4/[|2« — 1]/(2« + 1)] is mapped into a

cut of length 24/|42? — 1|/« which is along the real axis

a for 2o« — 1> 0 and along the line Z() = — 2 for
20 — 1 < 0.

The inverse correspondence is such that to each
point in or on E in the A-plane, there corresponds
two points in or on the unit circle in the v-plane. To
a point outside E, there corresponds one point inside
[v| = |1 — 2«|/(1 4 20) and one point outside the unit
circle.

The final part of the theorem is proved by considering
the eigenvectors of M and 4. If an eigenvalue Ais on E
and is of multiplicity p, there are m corresponding
Jordan submatrices in the Jordan normal form of M, if
the space spanned by the eigenvectors corresponding to
A is of dimension m. The two roots of (18) for A, = A
are distinct and, therefore, 4 has a corresponding eigen-
value ¥ on the unit circle and of multiplicity p. As the

. VX .
eigenvectors of A are of the form [x]’ where x is an

eigenvector of M, the eigenvectors of 4 corresponding
to ¥ span a space of dimension m. Thus there are m
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Jordan submatrices corresponding to v in the Jordan
normal form of 4. Hence all the Jordan submatrices
corresponding to ¥ are 1 X 1 (i.e. ¥ is a simple zero
of the minimal polynomial) if and only if m = p.

6. The effect of boundary conditions on the

Du Fort-Frankel method

For the boundary conditions (5a) and (5b), we have
shown that either M has a positive eigenvalue when the
system (4) is unstable, or M has an eigenvalue of the
form —4.ch? 14 where i is real. In both cases, M has
an eigenvalue outside E and we conclude that the
Du Fort-Frankel method is unstable, even when (4) is
stable. This instability may be considered as due to
the effect of the ‘hyperbolic’ form of the corresponding
eigenvectors.

Du Fort and Frankel show that their method is stable

if the boundary conditions, applied to the solution of (6),
are of the form

X1 — Xg = CoXp (20(1)

Xp—1 — Xp = C1X, (20b)

where ¢, and ¢, are positive constants. Such conditions
may be obtained by replacing (3a), for example, by either

aotal®) — Bo (P 2DY iy an

or

%) (- 1/2(8) + ¢1)2(0)) — %)(951/2(’) — ¢_1,2(8)) = yo(®).
(22)

For the latter condition, the grid is taken at points
(i + $)h so that the boundaries bisect a mesh interval.
In replacing (3a) by (21), the truncation error introduced
is O(h) and, as c¢; = a;h/B;, i=0, 1, we require
a;/B; > 0if ¢y and ¢, are to be positive. This restriction

[v|=
[1-2a|/(1+2a)

-2+({/
AMh-2a|/(1+2a)

may however be relaxed by completing a stability
analysis for (20a) and (20b), similar to that of Sections 3
and 4. In view of its large truncation error we shall
discard (21).

The truncation error for (19) is O(h?) and to ensure that
¢y and ¢, are positive, we require o;4/(8; — «;h/2) >0
but again this condition can be relaxed. Unless we
have h < 2|B;/a;| for i =0 and 1, (22) will not be
satisfactory. For example, if A = 28/, (19) reduces
to the Dirichlet condition ¢_;;; = yo(f)/oe. As this
restriction on A may be severe, we shall consider instead
a modification of conditions (5a) and (5b).

7. Modified boundary condition

We shall assume throughout this section that ugu,
-+ po + py > 0and py + py > 0 when (4) is stable.
We investigate the use of the difference approximation

%) (fo, 521+ do, s 1) — 2/3—2(‘251, s— b1, ) = vols. 80
(230)

%((ﬁn,s#l + ¢n,s- 1) + 2/3—;,(¢'n+ 1,s — ¢n~l,s) = YI(S'St)
(23b)

with the Du Fort-Frankel method. The truncation
error for these boundary conditions is 0(8£2) + 0(h2).
The resulting method may be written in the form

¢s+1 _ B Qs
q’s N |:¢x— lj| + €s (24)

where B is the 2(n + 1) X 2(n + 1) matrix

B= [7 0}

Nis the (n + 1) x (n + 1) tridiagonal matrix

V-PLANE A- PLANE FOR 2a-120 A-PLANE FOR 2a-1<0

Fig. 1. The transformation (19)
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0 4o
1+ 20:(1 + %")

2

(it3) 0
N =
2
(l —{—a2a>
0

and D is the (n + 1) X (n + 1) diagonal matrix
i o
1—2a(1+ 7)

1+ 20:(1 +%°)

1 — 2«
1 4+ 2a

¢, is a suitable vector. All elements of NV, D and c, are
finite as pg > — land py > — 1.
If vis an eigenvalue of B with corresponding partitioned

eigenvector [ﬂ, then clearly,
y=vx

and, if T = [yoy; . . . ¥u] and x7 = [xox| . . . X,);

2oc) (Za ) 4_1—20:) .
1_{_20‘);[*1_*- 1_’_2&)#1\ 1+2axi4".}i
i=12....(n—1).

Thus
20vx;_ 1 + [1 — 22 — v¥(1 + 20)]x; + 200x;,, =0
i=12...,(n—1). (25)

For the first and last elements we obtain,

davx, +{1 — 2oc(l +nﬁ‘1 )

- V2[1 +2a(1+ ili" ):l}xo —0 (260)

and

0 _
2
)
)
0 l+a2<x)
4o
1 0
1+ 2a(1 4 7)
0
11— 24
1+ 2«
1— 20((1 4 Hn—‘)
1+ 2«(1 + —’%) |

davx, | + {1 — Zoc(l 4 ﬁn‘)

— v2|:1 +2a(1 + %‘)]}x —0. (26b)

For v # 0 we can rewrite (25) as

1 — 2«

2ax;_1 + |: —v(l + Za):]x,- + 2ax;.1 =0

27
and on substituting (25) in (26a) and (26b), we obtain

1
X_ | — Xy — &O(V + ;)XO (280)
1
Xt = gy — (v + ;)x,,. (28b)
Now for ue=>0, p;>0, 1—20>0, 1—2a(l+po/n)=>0

and 1—2a(1+p,/n)>0, the Gershgorin discs of B are

14+ 2a(1 — ,U.J;/_n)
2l < T 2a + i

lz| < 1.

j=0and 1
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Hence by the extension to Gershgorin’s Theorem for
irreducible matrices (see e.g. Varga (1962)), all the
eigenvalues of B lie inside the unit circle. The eigen-
values of B are continuous functions of «, u, and y,
and we show that B cannot have an eigenvalue on the
unit circle unless pou; + po + uy = 0. We thus con-
clude that all eigenvalues must lie inside the unit circle
if popr + po + py >0 and py + uy > 0.

If v is an eigenvalue of B and it lies on the unit circle,
(v 4 1/v) is real and the difference equation (27), sub-
ject to boundary conditions (284) and (28b), is the same
as (6) subject to (7a) and (7b), with u; replaced by
(v + 1/v)/2 for i = 0 and 1 and A related to v by (19).
In Section 3, it was shown that for any real p, and u,,
all solutions of (6) must yield real values of A and thus in
this case A must be real. Hence from (19) and Fig. 1, we

can see that either A=0andv = + 1, 0or A = — 4 and
v=—1. A=0 gives a non-trivial solution of (6),
subject to (7a) and (7b), if and only if

pott + (o + py) =0, (29

which for (25) subject to (26a) and (26b) becomes

%(V + }/)-(Ho}hé(" + i) + o + P«l) =0

For v = 1 this reduces to (29). Similarly A = — 4 isa
solution of (6) subject to (7a) and (7b), if and only if

poty — (o + py) =0

and, for (25) subject to (26a) and (26b) with v = — 1,
this again reduces to (29). Thus we have shown for all
positive values of o, that unless (29) is satisfied, B cannot
have an eigenvalue on the unit circle. If (29) is satisfied,
B will have simple eigenvalues at v = + 1. We con-
clude that the Du Fort-Frankel method using (234) and
(23b) is stable when (1) is stable.

As in the main Du Fort-Frankel approximation, a
term of the form (8¢)2. 82¢4/9¢2 has effectively been added
to the boundary conditions. This has altered the
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difference equations sufficiently to ensure that the
‘hyperbolic’ eigenvector is damped.

8. Numerical example

We consider as an example the case oy = By = o
=B1=1, y(t) =0, y(t) =2e~*.cos 1-0 when the
exact solution of (1) is

P(x, 1) = e~* (cos x + sin x).

Results for n =19 and « = 0-25 are presented in
Table 2 for the Du Fort-Frankel method using (5a) and
(5b) (with ¢(s. &¢) replaced by ¢;, ,) and (23a) and (23b).
E is the maximum absolute error, i.e.

E; = max |¢j, s ?S(]h, s. St)l
J

Table 2

Numerical results for problem of Section 8

BOUNDARY CONDITIONS
S
(5a) and (5b) (23a) and (23b)
Es x 106 Eg x 106
500 137 137
1,000 142 141
2,000 111 107
3,000 88 68
4,000 131 41
5,000 426 23
6,000 1,798 13
7,000 7,907 7
8,000 34,960 4

The results are consistent with the theory presented in
this paper.
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