123

Recovery procedures for direct access commercial

systems

A. Gunton

SPL International, 75 Grosvenor Street, London W1

Direct access peripherals used for mass-storage purposes present peculiar data recovery problems.
Fraser (1969) has described the solution arrived at by Cambridge University for their multi-access
system. This article discusses the different approach required for commercial systems: it is hoped
that the paper will stimulate those who are implementing such systems to give specific examples
of recovery procedures used in practice, the frequency with which recovery is required and any
consequential costs or difficulties from the service angle.

(Received May 1969)

Data loss or corruption in direct access systems is
potentially more significant in its effects than in magnetic
tape systems, especially when ‘update-in-place’ techniques
are used. Only by such techniques can one particular
advantage of a direct access peripheral be exploited: that
to update one section of a file it is not necessary to
reproduce all of it. Reliance on the simple but clumsy
expedient of regularly dumping all data onto backing
store, usually magnetic tape, and reloading whenever
necessary, implies the belief that hardware, software,
system design or operator failures will not occur fre-
quently enough to justify the cost of designing and
implementing recovery procedures within systems. The
main purpose of such procedures must be both to limit
machine and operator time lost recovering from system
failures, and to control the replacement of corrupted
data. The onus of development at present lies on
system designers, since manufacturers are so far unable
to supply any general purpose software, presumably
because requirements depend so much on system detail.

Basic requirements

It is, however, possible to generalise the problems
involved to a certain extent. Let us postulate a single
main file—a customer billing file, or a large corporation’s
stock-file—which is on line during working hours for
random interrogation, and which is updated daily by
batch processing runs. This file will be large enough to
make daily dumping of its contents an unnecessarily
tedious business, and, without this, recovery operations
in the event of any type of system breakdown during the
updating runs will seriously derange schedules that
attempt to make full and continuous use of the machine.
For the purpose of simplicity it has been further assumed
that only one program is allowed to update the main
file at any one time.

For reasons which will be explained later, standard
check-point and re-run procedures, designed to limit the
extent of re-run operations in serial access systems, are
usually inadequate in direct access systems, but the

The Computer Journal Volume 13 Number 2 May 1970

B

-

principle is still valid. Assuming also that, like check-
point and re-run procedures, the recovery system should
be as nearly as possible invisible as far as the main
system is concerned, typical requirements would be:

1. Tt should enable the system to absorb failures when
time is of greatest importance, i.e. during the work-
ing day, so that permanent corrective action, if
necessary, can be taken when convenient.

2. It should interfere as little as possible with normal
running of the system, also in terms of the peri-
pherals it uses, since these, rather thanthe processor,
are likely to constitute the limiting factor.

and an additional practical consideration:

3. It should make maximum use of existing software,
since skilled programmer labour is likely to be in
short supply.

Given these requirements, the primary decision that
must be taken is how much information loss can be
sustained temporarily in the interests of continuous
running. It is assumed that general reliance can be
placed on the hardware, so that, in a live and tested
system, major corruption or loss of data will be rare,
and that when this happens corrective action will in any
case have to be taken immediately. Means will there-
fore be required, written into updating systems, of
detecting and preventing operator mistakes, and of
recording and reporting minor hardware failures, so
that decisions can be taken about their significance, i.e.
whether recovery should be immediate or can be post-
poned until convenient. Obscure software and system
bugs will presumably reveal themselves in their own
particular fashion, and may or may not allow the luxury
of a decision of this type, but at least the system should
provide the option.

Checkpointing
Where serial processing media are in use immediate
recovery from errors of this kind is a straightforward

¥202 IMdy 61 U0 3senb Aq GOL6YE/ET L/Z/E L/oIoIE/|ulloo/woo dno-olwepeoe//:sdiy wolj peapeojumod

124 A. Gunton

operation, invariably catered for by manufacturers’
software, and requiring recording the contents of store
and the positions of all peripherals at selected intervals.
Restart is effected by re-loading core store with its
recorded contents and resetting peripherals, either by
program or by instructions to operators (for printers,
card-readers, etc.). Indeed, provided individual runs
are not too long, one can settle for holding past genera-
tions of input files, and repeating earlier runs whenever
errors become apparent. The inherent nature of direct
access files, when used in the most efficient manner,
makes either of these procedures inadequate, since both
require that data on input files shall be the same at the
time of breakdown as it was at the point one wishes to
return to and recreate, perhaps under slightly different
circumstances. If a direct access file is ‘updated-in-
place’, i.e. the same physical area is used for both input
and output, the system gains because only those parts
of the file that are updated need to be changed, but a
loss in security is sustained because a complete copy of
the file on a particular day is not available for record
purposes as a natural consequence of the updating
process. Furthermore, as soon as the first record is
updated during a processing run the file has been
changed and is no longer suitable for re-input to the
same processing run unless steps are taken to record
either the contents of records before updating or,
alternatively, the fact that particular records have been
updated.

A ‘trace’ of updating of this type could be used in
conjunction with standard checkpointing procedures,
either to inhibit re-processing of these records or to
re-instate them as they were at the point at which the
run is being restarted, in the same way, effectively, as
the contents of store are re-instated by the restart
program. The former method is economical in its use
of peripherals and processor, but in practice the
restraints it places on the system are such as to allow
its use only in the rarest of cases. After the restart
utility has reset core and peripherals, the updating
program is entered normally, but processing is only
simulated until the point is reached at which breakdown
occurred. The first requirement is that this point should
be exactly identifiable from the previously stored
‘trace’ of processing; the second that the simulated
processing should be able to reconstruct its previous
operations, from the wupdated main file, sufficiently
accurately to move output tape files forward to their
former positions, and to reconstruct blocks in store if
output is blocked. In practice, this must rarely be
possible.

The second method has the merit of simplicity and
can conveniently be packaged with the manufacturer
checkpoint and restart routines, allowing the main
system to run its own separate course. The routines
normally allow for entry to a ‘preparation’ routine after
restart, and within this the ‘pre-update’ copy file would
be used to reverse the effects of processing undertaken
between the restart point and the breakdown—updated
records would be over-written, deleted records re-
inserted and vice versa. The amount of peripheral
storage space allocated for this ‘pre-update’ copy
depends on the degree of security required. If it is not
considered necessary to be able to restart from the
beginning of the run, it can depend on the check-

pointing frequency, or, conversely, the checkpointing
frequency can depend on the space available being filled,
or half-filled, thus allowing a choice of two previous
restart points. Limiting the scope of the restart facility
in this way means that it will not cover certain situations,
such as, for example, an output tape being damaged
near load point, but if hardware considerations dictate
it, the risk must be taken and minimised in other ways.
Further sophistications to reduce the volume of data
stored can be introduced if convenient.

Pre-update trace

The sequence in which main file and pre-update trace
are up-dated is critical, and is detailed in block diagram
form in Fig. 1. The trace must at all times be complete
and either concurrent with or in advance of main file
processing. This means that:

1. Records cannot be blocked in store.

2. Successful transfer to the storage medium must be
confirmed before the main file is updated.

3. The last record must always be identifiable.

There are two obvious ways of fulfilling this third
requirement, each with its own advantages and dis-
advantages. An independent count or key field can be
maintained, and used on restarting to locate directly or
recognise the last record of the trace. Alternatively a
marker can be held in the last record itself: thus every

{1) ‘'READ MAIN FILE' MODULE

©

READ MAIN
FILE RECORD
INTO STORE

(2) 'UPDATE MAIN FILE' MODULE

TYPE INSERT
OF UPDATE?

DELETE

REPLACE
MOVE TO WRITE ORIGINAL WRITE KEY OF NEW
WORKING RECORD TO PRE RECORD TO PRE-
AREA UPDATE FILE UPDATE FILE

.

UPDATE MAIN FILE

CHECKPOINT
NECESSARY?
Y
CHECKPOINT
ROUTINE
EXIT
AFTER RESTART
?
Y

LOCATE LAST
RECORD OF
PRE-UPDATE

WRITTEN
AFTER CHPT?
Y

REVERSE UPDATE
ON MAIN FILE

MOVE POINTER
TO PREVIOUS
RECORD

Fig. 1. Block diagram of checkpoint/restart

¥202 IMdy 61 U0 1senb Aq GOL6YE/EZ L/Z/E L/eIoIe/|ulwoo/ w00 dno-olwepeoe//:sdiy wol papeojumod

Recovery procedures for direct access 125

time a record is written to the ‘pre-update’ file, the
previous record must be re-written without the ‘last
record’ indicator. The former method is clearly more
economical in terms of data transferred, but is likely to
involve head movement time on a disc, unless it can be
held on a separate volume from both main and pre-
update files. A further notable advantage is that it can
enable direct location of the last record of a file. When
complex patterns of deletion and insertion of records
are likely, confusion may well arise unless the main file
is ‘de-updated’ in reverse of the original processing
sequence.

Fig. 1 also shows how the complete system can be
incorporated within ‘read main file’ and ‘update main
file’ program modules.

Data loss or corruption

Turning to the problem of hardware failure, which
may range from head crashes on discs or card wrecks
on card files to parity errors in a single block, the
optimum situation is where software aliows the program
under execution to determine the extent of the damage
and act accordingly. If it seems appropriate to con-
tinue, movements which cannot be processed can be
written to a separate file which is re-input the sub-
sequent run and is thus processed normally as soon as
errors have been cleared. It can serve also as a record
of information loss to be used to determine which
sections of the main file to re-constitute from stored
information. This method of re-cycling is also a con-
venient means of ensuring that intermittent failures do
not cause movements to be processed out of sequence,
if this is likely to be of significance. Provided that
movements are dated and held in date sequence they will
be processed in the correct sequence as soon as failures
are cleared.

THE
FOLLOWING
DAY
‘ T T TTTTTET TS a

Unactioned
Movements

UPDATING RUN
(DAILY)

Running
Updating
Record

The simplest means of recovering data lost through
hardware failure, or indeed data corrupted by system
errors beyond hope of re-generation is the large-scale
dump and recovery operation mentioned earlier. A file
that was updated daily could be dumped weekly, and
updating runs undertaken since the dump repeated,
meaning a maximum of five updating runs after reload-
ing. If one is fortunate enough to have a system in
which updating of one record on the main file does not
depend on the contents of other records being current
with it, the re-loading and re-updating could be re-
stricted to corrupted sections of the file alone, but such
systems are rare. Both methods have the advantage
that little extra programming effort will be required,
possibly only facilities in the updating programs to
suppress output if not required during re-runs, but time
involved could be considerable, since loss of any part of
the file will normally necessitate regenerating all of it.

This factor points the advisability of keeping a record
of the results of processing input movements, rather than
the movements themselves. Here ‘results’ does not
necessarily imply complete updated records, since it will
only rarely happen that the entire contents of a record
changes as a result of movements. In this respect main
file design can be of significant importance: variable
composition records containing coded details of their
contents lend themselves to a system whereby only sub-
records that are changed and contents indicators need
be stored. It may also be possible to combine the
functions of pre- and post-update copies of records in a
single file, so constituted that, presented with a version
of the record before updating, it introduces updating
information, and vice versa. With this method it will
be necessary to write a separate updating program which
selects information stored in one of these forms, and
reconstitutes records that have been replaced, this latter

UNACTIONED MOVEMENTS USED

(1) TOSELECT DUMP REELS TO REPLACE DATA
(2) TOSELECT UPDATING INFORMATION FOR REPLACED RECORDS

Direct
RECONSTITUTION Access

> S
(When Necessary) ‘m'

Post
Update }- — — — - _ >
File

Direct
Access

\ Store '

) (Weekly, after

Previous
Week's
Dump

Selected
Dump
Reels

‘Clean’
File
Dump

FILE DUMP

Re-constitution)

Fig. 2. Example reconstitution system

¥202 IMdy 61 U0 1senb Aq GOL6YE/EZ L/Z/E L/eIoIe/|ulwoo/ w00 dno-olwepeoe//:sdiy wol papeojumod

126 A. Gunton

normally being possible by means of standard software.
Control of the operation can be achieved by using a
record of information loss output from updating runs
to determine selection of records.

The total system is summarised in Fig. 2, which shows
particularly the dual function of this ‘unactioned move-
ments’ file. Data cycled in this way will, of course, not
necessarily all be movements unactioned because of
hardware failure, but those that are can be designated
in a particular way and picked out by the reconstitution
program. When records are blocked on the main file,
one record being unreadable must also imply that those
blocked with it are inaccessible, and account must be
taken of the fact. Depending on the data organisation,
it may in fact be easier to reconstitute a larger area still,
possibly a cylinder, because data originally in a home
area has been transferred to an overflow area or vice
versa. Since all the up-date history has to be read in
any event, this will make little difference to the time
required for the operation.

General points

If the main file falls easily into logical sections that
can be dumped separately on a cyclical basis, the work
load can be spread more evenly, dumping, say, a quarter
of the file every week. But it brings its attendant
problems if used in conjunction with the above method.
Not only will a complete updating record have to be
maintained as far back as the oldest dump quarter that
is current, but also updating information selected during
reconstitution only if it is successive to the dump from
which a particular record was replaced. Possibly the
updating record could be purged of all information that
has become redundant, whenever a section of the main
file is dumped, but this seems unnecessarily involved
for the small advantage it procures. It is preferable in

Reference

terms of simplicity and machine usage to dump the
complete file and start the updating record from scratch
every time. :

No mention has been made in the preceding descrip-
tions of reporting procedures, which must be regarded
as essential. Full details of data loss not only aid de-
cisions about when to reconstitute, but also enable action
to be taken outside the main system if delay is critical.
With indexed files, it should be possible to ascertain the
precise extent of data loss due to hardware failure, but
if the manufacturer’s software regards indexes as a
private affair between itself and the hardware, a copy in
more accessible form can always be maintained elsewhere.
This is, in any case, advisable, since loss of part or all
of the index can render large sections or the whole of a
file immediately inaccessible.

Beyond these large-scale security arrangements, more
controls will be needed within programs that update
direct access files, to guard against operation errors.
The consequence of operators starting a run with old
input data, for example, can be to necessitate recon-
stitution of large sections of a file if not prevented by
programmed controls. For instance, a dummy account
could be held on the main file, and updated at the
beginning of each run, containing details of input files
previously processed and general information about the
state of the system. By reference to this, attempts to
input apparently out-of-date information could be
queried and prevented before permanent damage was
inflicted on the main file. The possibility of this happen-
ing, or of hardware or software proving fallible can be
ignored if it does not seem to justify the extra systems
and programming effort required, but it should be
recognised as a dangerous gamble under the present
state of development of manufacturers’ operating
systems.

Fraser, A. G. (1969). Integrity of a mass storage filing system, The Computer Journal, Vol. 12, No. 1, pp. 1-5.

Book review

Topics in Interval Analysis, by E. R. Hansen (editor), 1969;
130 pages. (Oxford University Press, £2.50)

This book is an account of lectures given by invited speakers
at a symposium on interval analysis sponsored by the Oxford
University Computing Laboratory in early 1968. The book
is divided into two distinct parts.

Part 1 consists of a description of interval analysis used to
obtain error bounds for computed solutions to standard alge-
braic problems such as the solution of linear and non-linear
equations and the inversion of matrices. A description is also
given of Triplex-Algol, a formalized language specially devised
to cope with interval analysis algorithms. The contributors
are R. E. Moore, K. Nickel, E. Hansen and J. Meinguet.

Part 2 deals with interval analysis applied to continuous
problems. These include numerical integration, the numeri-
cal solution of two point boundary value problems, initial
value problems for systems of ordinary differential equations,
and partial differential equations. There is also a section

devoted to statistical distributions of errors applied to linear
programming. The authors here consist of R. E. Moore,
E. Hansen, F. Kriickeberg and M. Dempster.

Considering the complexity of the subject, the book is
particularly easy to read. This has been achieved by the
individual authors concentrating on simple examples to illus-
trate the methods for bounding errors in the various computed
solutions. The conclusion to be drawn from this book is that
interval analysis has met with considerable success in the
analysis of errors for the numerical solution of algebraic pro-
lems. The same cannot be said, however, with regard to
continuous problems. The material is particularly thin with
regard to differential equations and it is difficult to see how
interval analysis can have much impact on the numerical solu-
tion of partial differential equations in the foreseeable future.

The book is highly recommended and the editor has done a
good job in producing a review of recent progress in the fasci-
nating subject of interval analysis.

A. R. MirclHeLL (Dundee)

¥202 IMdy 61 U0 3senb Aq GOL6YE/ET L/Z/E L/oIoIE/|ulloo/woo dno-olwepeoe//:sdiy wolj peapeojumod

