Remote access 135

the time taken by the Roll-In user), indicates to the
operator that the Roll-In is now complete, and then
gives control back to MSOS which continues processing
the interrupted program at the point at which it left off.
Should the user program fail to return control to the
RIOS, an emergency auto-load feature in the form of a
special auto-load card, exists whereby the operator may
reload memory and continue the interrupted program as
if a normal return from Roll-In had occurred.

System usage

It was anticipated when the system was designed that
system usage would vary considerably according to the
requirements of the individual groups using it. This has
been found true in practice and it is unusual to find two
remote stations requesting the machine at the same time.
When this does happen, however, the remote station
operating on the interrupt line having higher priority is
allowed to access the central computer first.

The actual time involved in a complete Roll-In opera-

tion depends, of course, on the user program. Usually
the total time involved has been of the order of 10 seconds
of which 6 seconds is overhead time: core swapping,
loading, checking and accounting.

In the case of the group doing analysis of ionospheric
soundings, Roll-In requests have usually been made over
a period of an hour or two at intervals of about one
minute. It has been found that this does not seriously
disrupt normal batch processing operations.

Conclusions

The Roll-In System illustrates what can be done in the
field of remote access with a machine not originally
designed to provide this facility. No figures are avail-
able to indicate the cost of the hardware changes, as
much of the equipment was built within the Establish-
ment. The design and implementation of the software,
however, took about three man months.

The system obviously has its limitations but, as a short
term solution, is very effective.

Book

Automatic Programming, Vol. 6, part 2, by P. J. Brown and
G. F. Colouris, 1969; 67 pages. (Pergamon Press Ltd.,
£1.75)

For Volume 6 of the Annual Review in Automatic Program-
ming, the second to appear since its renaissance under a new
Editorial Board, the publishers have adopted a new format,
and the volume appears in four separate paperback parts
(though a hard cover edition will be available later). This
practice will commend itself to those who might balk at paying
£7 for a complete volume when only one of the papers is of
interest to them.

Most of this part-volume is devoted to ‘A Survey of Macro
Processors’ by P. J. Brown. This is a masterly survey, com-
prehensive and clearly written. The author first defines a
macro processor in a general way as ‘a piece of software
designed to allow the user to add new facilities of his own
design to an existing piece of software’, and discusses the main
application areas of such systems. He then considers in detail
the problems that face the designer of a macro processor, high-
lighting the difficulties and giving illustrations of the solutions
that have been produced by various designers. He succeeds
in fitting a number of diverse systems into a general frame-
work that permits meaningful comparisons and gives a clear
account of two problems which many designers of macro
systems do not even consider, the question of ‘call-by-name’
versus ‘call-by-value’ and the question of multi-level calls,
(that is, can a macro call be built up of separate pieces of
text?). Lest the reader should think that this latter question

review

is merely an academic fancy, the author shows how it has
important applications in code optimisation. The problems
of implementation are discussed, and the article concludes by
returning to the application areas outlined at the start, and
drawing conclusions as to the applicability of macro proces-
sors in each area. It is rounded off with a comprehensive and
cross-indexed set of references.

The remainder of the volume is taken up with a short (15
page) article by G. F. Colouris, entitled ‘A Machine Independ-
ent Assembly Language For Systems Programs’. The article
gives a short account of SICTRAN, a language in which ‘in
order to achieve machine independence and yet retain the
control of program and data organisation required, parts of
the run-time structure of the program and its data are left
undefined by the translator’. The description is brief, and
illustrated by few examples. Possibly the examples are not
typical, but they give the impression that one could achieve
the same effect by writing a few macro definitions for one of
Dr. Brown’s macro processors.

The meat of this volume is undoubtably the survey of
macro processors. This should be compulsory reading for
anyone concerned with the design of such systems, and can
be read with profit by anyone interested in computer software.
I will certainly make sure that all my students master its
contents.

D. W. BARRON (Southampton)

Vol. 6 part 3 appears on page 170

¥202 I4dy 61 U0 1senb Aq £9Z61E/SE L/Z/E L/eIoIe/|ulloo/woo dno-olwepeoe//:sdiy woij pepeojumod





