152

Generation of permutation sequences: Part 1

R. J. Ord-Smith

Computing Laboratory, University of Bradford, Bradford 7

There has been considerable interest in the last ten years or so in methods of generating sequences
of arrangements of n elements in such a way that each of the n! arrangements is generated once,
and only once, in the sequence. We call such sequences of arrangements permutation sequences.
In part 1 we consider several kinds of permutation sequences and describe some of their properties.
Part 2 is devoted to a detailed examination of the practically most efficient six published algorithms
and a discussion of implementation difficulties and compiler overheads. An Appendix to Part 2

contains an extensive bibliography of related work.

(Received November 1969)

1. Introduction

Much use of permutation algorithms has been made in
the last few years in studies in Combinatorial Math-
ematics. Many conjectures have been proved or have
fallen by computer techniques involving systematic
searches. Increased efficiency in such searches is due in
part to improvements in the speed of permutation
algorithms. Timing these algorithms on one computer
shows speed increases of a hundred or two hundredfold
between the earliest and the latest.

One of the interesting applications has been the search
for orthogonal Latin Square pairs of order 10, which
Euler had conjectured did not exist. Searches began in
earnest in the mid-1950s with the construction of large
fast computers, but it was not until 1959 that the exis-
tence of the first two such pairs was announced. By
1962 thousands of pairs had been discovered, and the
speed of search had increased by a factor of 10'2. Some
of these developments are nicely described by Gardner
(1966). The author (Ord-Smith, 1965) has described an
application of Block Design techniques to the problem
of constructing redundant fault reducing circuits using
majority votetakers. Block Design theory usually
regards as isomorphic two designs whose incidence
matrices have permuted rows and columns, since they
constitute merely re-labelled varieties within re-labelled
blocks. But by successively presenting fault carrying
information to a fault reducing circuit based on such a
design, a particular labelling of input and output wires
can produce greater fault reducing efficiency, i.e. the
elimination of faults in fewer passes. Thus, two iso-
morphic designs can differ in this respect. Systematic
generation of incidence matrices by permutation has
been used to find best fault reducing circuits.

2. Computer permutation sequence algorithms

Apart from a few algorithms describing some spec-
ialised purposes involving permutations (see, for example,
Hill 1968), the general algorithms all provide a common
facility, the systematic generation of n! arrangements of
n marks. It is usual to provide a procedure which, on
successive calls, will carry out permutations on a set of
marks so that, after n! calls, each arrangement of the
marks has been generated once and once only. In some,

The Computer Journal Volume 13 Number 2 May 1970

one can initialise the process by providing a boolean
parameter set true. This will be returned false and,
when subsequently given false in each call, will return
false until, after n! calls, it will be returned true again.

It is necessary, at each procedure call, to recall the
point which has been reached in the sequence of arrange-
ments. If the marks are distinct and numerical then the
arrangement can itself be used to give this information.
This technique has been described by Mok-Kong Shen
(1962 and 1963) and featured in several of the algorithms
to be described below. However, if there is to be no
such restriction on the marks then the information has
to be kept separately and, for this purpose, a signature
is contained within the procedure.

3. The Tompkins algorithms

The first explicit description of computer algorithms
for the generation of permutation sequences seems to
have been given by Tompkins (1956). Incidentally, his
paper also reviews some of the problems for which
permutation algorithms are required.

The basis of the Tompkins algorithms is that the
signatures are modified at each call by a process involving
mixed radix arithmetic. The simplest version, attributed
to M. Hall, Jnr., will show the mechanism.

Hall algorithm

A signature consists of n elements ¢, 7, ..., consti-
tuting a mixed radix number in which the element 7,
has radix k. ¢, is effectively a dummy element which
remains zero.

Successive calls produce modulus arithmetic counting
which takes place in the signature from the most signi-
ficant radix end. For example, with n = 5 we would
have signatures as shown in the first panel of Table 1.

Each signature defines an arrangement of a set of
simple marks 1,2, ..., n such that the value of #; in
the signature tells how many marks <k are to the right
of the mark k in the arrangement. Thus, signatures
shown in panel 1 of Table 1 correspond to the arrange-
ments of panel 2. Tompkins was already aware of
advantages in generating a sequence of arrangements in
‘a convenient order’. He describes a variation to this
end attributed to Paige.

¥202 I4dy 61 U0 1senb Aq ZeE61E/2S L/2/E LieIoIe/|uloo/woo dno-olwepeoe//:sdiy wolj pepeojumod

Permutation sequences 153

Table 1

Generation of Hall sequence

SIGNATURE ARRANGEMENT
t1 2 t3 13 ts
000 O0O 1 2 3 4°5
00 0 01 1 2 3 5 4
00 0 0 2 1 25 3 4
000 O0 3 1 52 3 4
00 0 0 4 512 3 4
00010 1 2 4 3 5
0 00 11 1 2 4 5 3
0001 2 1 2 5 4 3

Tompkins-Paige algorithm

In this algorithm modification of the signature again
involves modulus arithmetic counting, though this time
from the least significant radix end (see Table 2). If ¢,

Table 2
Generation of T-P sequence
SIGNATURE ARRANGEMENT

Is t4 15 2 1

000000 1 2 3[4 5
00010 1 2 3|5 4
0 00 @ 0 * 1 21314 5
00100 1 2153 4
00110 1 2 5|4 3
0 01 @ 0 * 1 2(513 4
00200 1 2(4]5 3
00 210 1 2 4,3 5
0 0 2 @ 0 * 1 2,45 3
00 @ 00 * 11213 4 5
01000 115 213 4
01010 1 5 214 3

is the most significant digit to be modified in a particular
call, taking account of a possible carry, then the arrange-
ment of marks suffers a cyclic permutation of the k right
most marks. If the next signature obtained by a further
step involves a carry, the corresponding arrangement
will have occurred before. Tompkins calls these recur-
ring arrangements ‘useless starred permutations’. They
have to be removed by continuing with the transmission
of the carry through several digit positions, if necessary.

This algorithm, organised in reverse order, with count-
ing down in the signature, was the second of the permu-
tation algorithms published in the Communications of the
A.C.M. as Algorithm 86 (Peck and Schrak, 1962). An
important improvement in the rules for constructing the
arrangement from the signature is that only the position

of the marks is important and not their value. As already
mentioned in Section 2, if one can rely on distinct
numerical marks then no signature is needed at all. In
fact, as we shall see in detail, the fastest algorithm of all,
an improved version of Algorithm 28 (Phillips, 1967)
exploits this most efficiently. Use of a signature should
allow the greater generality of any marks. The early
published ACM Algorithm 71 (Coveyou and Sullivan,
1961) suffers the same disadvantage as the Hall algorithm
in that the marks are restricted in spite of the use of a
signature.

4. Nested cycle methods
Inner-outer method

The Tompkins-Paige algorithm is effectively an
example of a nested cycle method. The permutations
carried out are all cyclic permutations, though the rules
of construction are such as to minimise the length of the
cycles and thus reduce the total number of transpositions
made. There is, however, the cost of carrying and up-
dating a signature and that of generating the unwanted
starred permutations. This is sometimes called the
‘inner—outer’ nested cycle method in which least work
is done in the innermost cycles.

Outer—inner method

Nested cycle methods have been revived more recently
by Langdon (1967). He suggests the use of rotational
registers to exploit cyclic generation. Langdon’s is an
‘outer—inner’ nested cycle method in which the length
of cycle is maximised whilst the generation of starred
permutations is minimised. The simplest way in which
to conceive the method is to regard it as identical to the
Tompkins-Paige algorithm but using a Hall signature.
However, by observing that there are always K successive
cycles of order K it is possible to dispense with the use
of a complicated signature. This is, therefore, a method
requiring neither signature nor imposing restriction on
the values of the marks. But the number of trans-
positions required is large and implementation in a high
level language is very inefficient. The method is justified
only if fast hardware rotation registers are available.
See also references, Langdon (1968), Hill (1968), Ord-
Smith (November 1967).

5. The Wells, Johnson and Trotter algorithms

The essential distinction in these and other efficient
algorithms lies not in the construction of the signature,
which remains virtually the same as that of Tompkins—
Paige; it lies in the construction of the corresponding
arrangement of marks. The inefficiency of the T-P
algorithm depends not only in the production of the
starred arrangements but in the use of cyclic permuta-
tions. Unless one can exploit these in a special way as
Langdon suggests, they involve, in the organisation
available to most computer programmers, the successive
interchange of a number of pairs of marks. Wells (1961)
has shown that each arrangement of a sequence can be
generated from its predecessor by just a single such
transposition. Although effectively of similar con-
struction to the T-P signature, the signature of Wells
uses an element 7, of radix k but with allowed values
1(1)k rather than O0(1)k — 1. This facilitates the des-

¥202 IMdy 61 U0 1senb Aq ZEEYE/2S L/2/E LIeIoe/|uloo/woo dno-olwepeoe//:sdiy wol papeojumod

154 R. J. Ord-Smith

cription of an arrangement as a function of the cor-
responding signature (see details of Section 6). Thus the
complete generation of n! arrangements involves the
generation of just n! transpositions. In the T-P
algorithm the number of transpositions tends to
(e — Dn! = 1-718n! transpositions as n increases.
Johnson (1963) has shown further that a sequence of
arrangements can be found for any n in which these
transpositions are adjacent. There may possibly be
certain combinatorial advantages in an adjacent trans-
position sequence but there is a severe penalty in the
complication of the algorithm.

Boothroyd’s Computer Journal Algorithm 29 is a direct
implementation of Wells’ method. In his Algorithm 30
he makes use of the fact that, for n > 5, there is a very
simple pattern in the successive generation of 23 arrange-
ments of the four least significant marks. This gives a
very fast algorithm, (Boothroyd, 1967). Improved
versions of these algorithms will be given and discussed
in Part 2. The existence of both Wells and Johnson
sequences shows that transposition sequences are not
unique. For n = 3 there are six distinct transposition
sequences. A sequence and its exact reverse are regarded
as the same. ACM Algorithm 115 (Trotter, 1962) is an
efficient transposition algorithm in which the adminis-
tration of the signature vector is particularly elegant
and which produces a bell-ringing sequence. This is
included among the six algorithms of Part 2.

6. The lexicographic algorithms

The lexicographic sequence is perhaps the most
natural. It is most readily imagined by regarding the
marks as labelled A, B, C, . . . then the sequence of
arrangements places these in dictionary order. For
example, on three marks the sequence is ABC, ACB,
BAC, BCA, CAB, CBA. 1t is at once clear that
the sequence involves more than n! transpositions.
ACB — BAC requires two in this example.

A succession of ACM Algorithms 87, 106, 130, 202
gradually improved the efficiency by a speed factor of
60, though Algorithm 202 remained more than twice as
slow as Algorithm 115. A speed comparison of these
algorithms for one computer has been made by the
author, Ord-Smith (July, 1967).

Rules for the generation of the lexicographic sequence
have been given by Mok-Kong Shen (1962) and are
included here with a practical improvement. In the case
of a lexicographic sequence there is the further problem
of determining the number of transpositions involved in
generating the full sequences of n! arrangements. A
careful examination of the lexicographic sequence shows
that generation can be described as a recursive applica-
tion of a simple set of rules which can be obtained from
a signature of precisely Wells kind. The rules for
construction of a Wells sequence of signatures and the
formation of corresponding arrangements into a lexico-
graphic sequence read right to left are as follows:

Let t; with i = 2(1)n be a set of elements of a signature
in the usual way. There is no need to use the ‘dummy’
element #; which would remain unity. The elements ¢;
are initially set 1. At any moment let kK’ be the smallest
k for which ¢, # k.

1. () Ift,=1thent, :=2.

(ii) The permutation PP, is performed on the
arrangement of marks.

2. (i) If 1, = 2 then determine k’ by examining ?;
with increasing i and all the while setting ¢,
unity for i < k”.

(ii) The permutation PP, is performed on the
arrangement of marks followed by a reversal
of the kK’ — 1 least significant position marks.

(iii) tp 1=t + 1.

3. (i) Generation is completed when ¢, = n.
(ii) Reversal of all n marks restores the identity.

Rules 1 are included within 2 but an increased
efficiency is gained in a computer program by dealing
with the case explicitly. Generation of the first few
arrangements in the sequence with n = 5 will make the
process clear and this is shown in Table 3.

Table 3

Generation of lexicographic sequence

SIGNATURE RULE | ., |
ot ota ts ARRANGEMENT No. | k itk’
|

1111 | 12345 |1 |
21 111|213 4S5 2 03 1
G 12 4 5 .

1 211 1 32 45 1 !
2211 |3124°%5 2 3002
G 21 4 5 f

1 31123145 1 3
2311 1|3214°%5 24]1
4 21 3 5 1
112112435 |
|

It can be seen that in the lexicographic sequence there
is a complete generation of (k — 1)! arrangements of
the first £ — 1 marks before the kth mark is involved.
Then there is a single transposition followed by a
reversal of the first kK — 1 marks. This reversal, if
carried out without the single transposition, would have
completed generation of the first (k — 1)! arrangements
of marks and restored the identity. This process is
repeated k times, whilst each of the first £ marks occupies
the kth position, before the (k + 1)th mark is involved.
It follows that, if S, is the number of transpositions
involved in complete generation of the kth subsequence
before the (k + 1)th mark is involved,

Sk - k(Sk—I + 1).

If this is used inductively in the calculation of S, for a
given n we must add a further term. In the final
regeneration of the identity with » marks, only a com-
plete reversal of marks is involved (see 3(ii) above).
This only involves an additional transposition compared
with reversal of n — 1 marks if n is even. Hence, if
Sy _; is truly the number of transpositions involved in
generation of (k — 1)! arrangements of k — 1 marks
then S, = (S,_; + Dk — 8(k) where 6(k) is one or zero

¥202 I4dy 61 U0 1senb Aq ZeE61E/2S L/2/E LieIoIe/|uloo/woo dno-olwepeoe//:sdiy wolj pepeojumod

Permutation sequences 155

as k is odd or even. In this way we can successively
evaluate

S, =2
S;=Q+ 13 -1
Sq=((2+1D3+14—-14
and in general
Sp=(C...24+D3+1D4+... +Dn
—(...454+1)67+... +Dn

1

Hence S,—cosh 1 X n!

for n even

= 1-583n! as n increases.

An explicit computer algorithm using these rules was
published by the author as A.C.M. Algorithm 323 (Ord-
Smith, 1968). This algorithm shows that, although
involving 1-583 times as many transpositions as the
Wells sequence, the rules for generating the sequence
are so simple that very little additional time is taken in
its construction. A certification and some discussion of
this algorithm has subsequently been given by Leitch in
Comm. A.C.M. (Leitch, 1969). Phillips has constructed
a fast lexicographic algorithm requiring numerical and
distinct marks and using no signature. In the case of
non-distinct marks Algorithm 28 will produce only those
distinct orderings of a higher lexicographical order
within the numerical code values of the particular data
representation. Algorithm 323 on the other hand will
generate, from the initial marks ABCDE, all conven-
tionally accepted dictionary orderings independent of
the coded numerical values of the alphabetic characters.
Since Algorithm 323 always produces n! orderings some
of these will be repeated if the marks are not distinct.
Ord-Smith and Phillips algorithms comprise two more
of the set of six fastest algorithms discussed in Part 2
(Phillips, 1967).

References

7. A pseudo-lexicographic algorithm

It is interesting to note that a slightly modified lexico-
graphic sequence preserves most of its properties,
including that of preserving the position of the kth
element during generation of a (k — 1)th arrangement
of marks, whilst demanding many fewer transpositions
in its generation. This is obtained from the lexico-
graphic rules simply by replacing 2(ii) by:
a reversal of the k’ least significant position marks.

The recursive formula for S, now becomes:
Sk = (Sk—1 + 1 — 3(k)k

and the number of transpositions S, —sinh 1 X n! =
1-178n! as n increases. The algorithm was published
by the author as A.C.M. Algorithm 308 (Ord-Smith,
July 1967) but an improvement to copy exactly the
rules 1, 2, 3 given above, with the modification to 2(ii),
slightly improves the performance (Ord-Smith, 1969).
This algorithm is discussed further in Part 2 of this
paper.

8. Conclusions

Evolution of permutation algorithms has led to the
production of six which are to date the fastest published.
Three of these have appeared in The Computer Journal
(Boothroyd, 1967, Phillips, 1967) and three in Com-
munications of A.C.M. (Trotter, 1962, Ord-Smith, 1967,
Ord-Smith, 1968). Three are transposition sequence
generators and three are lexicographic.

Each of these, given explicitly in Part 2, has been re-
written in a standard form to ensure that comparisons
of essential methods are, so far as is possible, compiler-
independent. In the process every opportunity has been
taken to implement each algorithm in the most efficient
manner and this has led to worthwhile improvements in
some cases. The author is indebted to the work of Mr.
J. Boothroyd of the Hydro-University Computing
Centre, University of Tasmania in this connection and
for discussions concerning much of the material of the
paper.

BooTHROYD, J. (1967). Algorithms 29, 30, The Computer Journal, Vol. 10, p. 310.
Coveyou, R. R., and SuLLIVAN, J. G. (1961). Permutation Algorithm 71, Comm. ACM, Vol. 4, p. 497.
GARDNER, M. (1966). New Mathematical Diversions from Scientific American, Simon and Schuster, New York.

Hiir, G. (1968). Computing Reviews, Vol. 9, Review No. 13891.

JounsoN, S. M. (1963). An Algorithm for Generating Permutations, Math. Comp., Vol. 17, p. 28.

LANGDON, G. G. (1967). Generation of Permutations by Adjacent Transposition, Comm. ACM, Vol. 10, p. 298.

LANGDON, G. G. (1968). Letter to Editor, Comm. ACM, Vol. 11, p. 392.

Lerrch, I. M. (1969). Certification of Algorithm 323, Comm. ACM, Vol. 12, p. 512.

Mok-KoNG SHEN (1962). On the generation of Permutations and Combinations, BIT, Vol. 2, p. 228.

Mok-KoNG SHEN (1963). Generation of Permutations in Lexicographic Order. Algorithm 202, Comm. ACM, Vol. 6, p. 517.

Orp-SMITH, R. J. (1965). An extension of block design methods and an application in the construction of redundant fault
reducing circuits for computers, The Computer Journal, Vol. 8, p. 28.

ORD-SMITH, R. J. (1967). Generation of Permutations in Pseudo-Lexicographic Order, Algorithm 308, Comm. ACM, Vol. 10,

p. 452.

ORrD-SMITH, R. J. (July 1967). Remarks on Algorithms 87, 102, 130, 202, Comm. ACM, Vol. 10, p. 453.

ORD-SMITH, R. J. (Nov. 1967). Remarks on Langdon’s Algorithm, Comm. ACM, Vol. 10, p. 684.

OrD-SMITH, R. J. (1968). Generation of Permutations in Lexicographic Order, Algorithm 323, Comm. ACM, Vol. 11, p. 117.
ORD-SMITH, R. J. (1969). Remark on Algorithm 308, Comm. ACM, Vol. 12, p. 638.

PEcK, J. E. L., and ScHrAK, G. F. (1962). Permute, Algorithm 86, Comm. ACM, Vol. S, p. 208.

PuiLLips, J. P. N. (1967). Algorithm 28, Comp. J., Vol. 10, p. 311.

RoDDEN, B. E. (1968). In defence of Langdon’s Algorithm, Comm. ACM, Vol. 11, p. 150.

Tompkins, C. (1956). Machine attacks on problems whose variables are Permutations, Sec. 3, Proc. 6th Symp. App. Maths.

Amer. Maths. Soc., McGraw-Hill, p. 198.

TROTTER, H. F. (1962). Perm, Algorithm 115, Comm. ACM, Vol. 5, p. 434.
WELLSs, M. B. (1961). Generation of Permutations by Transposition, Math. Comp., Vol. 15, p. 192.

C

¥202 I4dy 61 U0 1senb Aq ZeE61E/2S L/2/E LieIoIe/|uloo/woo dno-olwepeoe//:sdiy wolj pepeojumod

