156

An improved algorithm for the Jardine-Sibson
method of generating overlapping clusters

A. J. Cole and D. Wishart

Computing Laboratory, University of St. Andrews, St. Andrews, Fife

An improved algorithm for generating k-partition overlapping clusters is discussed. Jardine and
Sibson (1968) proposed the basic algorithm and suggested that it was likely that an improved
algorithm could be found. In addition an attempt is made to automate the subsequent process of

cluster recognition.
(Received July 1969)

Suppose that for a population P, comprising N in-
dividuals, a similarity matrix D is computed using a
suitable coefficient of association, and a linkage para-
meter k and similarity threshold 4 are chosen. Each
individual may be represented by a vertex on a graph,
and all pairs of vertices which correspond to pairs of
individuals having a similarity of at least 4 are connected.
All maximal complete subgraphs are found and all pairs
of such subgraphs that intersect in at least k vertices are
further connected. This leads to the concept of a chain
of connected subgraphs. In particular, since a suffi-
ciently dense set of points in Euclidean space could
form such a chain cluster having any shape or variance,
the method when applied to metric data is of the ‘natural
class’ type (Wishart, 1968). The method induces over-
lapping clusters since two intersecting maximal complete
subgraphs which have less than k overlap vertices are
distinguished as separate clusters. When k=1 no
overlap occurs and the procedure is identical to single
linkage.

Method I below is a summary of the method proposed
by Jardine and Sibson for deriving a numerical repre-
sentation of this ‘k-partition’ clustering from the simila-
rity matrix D. The modified matrix U that results from
these operations on D expresses the connections com-
pleted within all the chain clusters. Method II describes
our alternative method. A method of constructing the
clusters from U is discussed later.

Method I:

1. In one ‘scan’ of D, all possible subsets of P com-
prising exactly k + 2 objects are considered.

2. For each subset determine the least and second least
similarities 4’ and A’ respectively. If A < h’ replace
k by k"’ in D. If b’ = h” leave D unchanged.

3. Step 2 is repeated on the reduced similarity matrix
until every subset contains a non-unique minimum
similarity (if dissimilarities are used, the expressions
‘least’, &’ < h’* and minimum are replaced by ‘greatest’,
k> h” and maximum respectively: see, for example,
Jardine and Sibson, 1968). This condition is detected
when no further transformations of the reduced matrix
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occur during one complete scan. The reduced matrix
is then the modified matrix U.

Similar algorithms are used by Johnson (1967) and
Roux (1968) for the ultrametric transformation in the
special case k = 1.

Method I evidently requires a considerable amount of
unproductive work. During the second and subsequent
scans of D, the examination of the majority of the

N . . "
(k i 2) subsets of P will yield no additional trans-

formation, and the last scan of D is completely un-
productive since the matrix is merely checked for the
lack of any further modification. Also, the work
required for the algorithm is proportional to

)4 N!
W= &+ Dk + DX N =21k + 2!

where p is the number of scans required. Clearly, when
N>k
p
WI ~ 7! N(k+2)
and the population will be restricted by most computers
to N < 20.

One approach to the reduction of W is to eliminate as
much of the unproductive work as possible. Williams,
Lambert and Lance (1966) define a single linkage algo-
rithm which uses an ordering of the similarities in D,
tagged by their corresponding object pairs. The method
works progressively through this ordered similarity list
deriving the single linkage hierarchic dendrogram in the
process, and since the similarities associated with each
fusion on the dendrogram correspond precisely to the
ultrametric distances when k = 1, the method in-
cidentally develops the elements of U. 'We choose there-
fore to adapt this approach to the construction of U for
all k, and propose the following basic algorithm together
with its subsequent improvements as a means of inserting
similarities directly from the ordered similarity list into U.

Method II:

1. Tag the elements of the similarity matrix D and
order them by descending similarity in an array Q
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Initialise an empty matrix U which is to receive the
reduced matrix associated with D.

2. Sequentially remove similarities from Q. If we
are con51der1ng the pth similarity Q, corresponding to
the object pair (i, j) and if U;; has been filled, then we
ignore 0, and proceed to Q. ;. If Uj; is not filled, then
we set R = Q,, put the object pair (7, j) at the head of
a new ‘insertion list’ L and then proceed to 3.

3. From the insertion list L, select object pairs (g, %)
corresponding to entries that are to be made in U.
Initially L contains one ‘pair only, but the procedure
below may cause additional object pairs to be added.
If U,, is filled, then, we consider the next pair in L.
If Uy, is not filled, we set Uy, = R and proceed to 4.

4. Now consider all (k + 2)-element subsets of P
containing both g and A. Associated with each subset
S = (o1, &, . .., a, g h) we have the set n of simi-
larities {U};; i, jeS}, which can be partitioned into two
subsets 7', " where 7’ contains the elements U;; of 9
which are not filled in U, and 7" is the complement of
7’ in i containing those elements U;; which have been
filled in U. We observe that the least similarity in 5"
is R and no element of 7’ is greater than R by virtue
of the ordering in Q. 1If, for some subset S, 7’ is a
single unfilled element d’ correspondlng to U,y, then
d’ < R. Hence, either d’ is a unique minimum in
which case Method I requires that we replace U, by
R, orelse d’ = R. We therefore set Uy, = R and add
the pair (g’, h’) to L.

5. When all subsets containing objects g and 4 have
been considered, we return to 3 and select a new pair
from the insertion list L.

6. When L is finally exhausted, we check U for
unfilled elements. If U is completely filled then we
exit; otherwise we return to 2 and consider new simi-
larities from Q for insertion.

A comparison between Methods I and IT

We shall omit the rather tedious formal proof that
Method II derives the correct reduced matrix U. How-
ever, it is not immediately clear that the final matrix U
obtained by Method II cannot be further modified by
a Method I-type scan. We shall call steps 3-6 of
Method II one ‘cycle’ of the algorithm.

Let p be the set of all subsets of P containing (k + 2)
objects. Partition p into p; and pj, where p; contains
all the subsets of p which, at the end of the ith cycle,
are currently maximal complete subgraphs in U (that is,
subsets S for which all $(k + 2)(k + 1) similarities 7
have been filled in U). Let p; be the complement of
pi in p; that is

p=pi+ piand p;. p/' = ¢
We observe that for each subset Sepj, |7’| > 2, since

step 4 of the algorithm always completes the subgraphs
for those subsets having |7’| = 1. Let

€= Pi — Pi-1
be the set of all maximal complete subgraphs of (k + 2)
objects which are completed during the ith cycle; then
for each Se¢; we have |7’|>2 at the start, and || =0
at the end of the ith cycle. Hence at least 2 of the

similarities » for S are filled during the ith cycle, and
therefore, by virtue of the ordering on Q, R is the non-

unique minimum similarity in 7 for all See¢;. It follows
that the similarities n cannot be further modified by a
Method I-type reduction on any See;. But

pi=e+p1=€+e_ +pioa=...
=€ t+e€_1+...4+ ¢

Hence p; contains no subset S for which 7 can be
modified by a Method I-type reduction. Now suppose
at the rth cycle of Method II all elements of U have been
ﬁlled and the algorithm terminates, then p, ¢, and
p: = p. Hence for all S€ p, the 51m11ar1t1es in 7 cannot
be further modified by a Method I-type ultrametric
reduction. It follows that the matrix U obtained by
Method II cannot be further modified by Method I.
Stage 4 of Method II requires a search through all
(k + 2)—subsets of P which contain the pair of objects

N-—-2
(g, h). Since there are ( X ) such subsets for each

of the $N(N — 1) entries to be filled into U, the ratio
of the work required for Methods I and II is

Wa INN—1 (N—2C°% 1
= N3 = T+ D

where p is the number of scans of U which are required
for the completion of Method I. Since p is usually in
the range 3 to 5, it is clear that Method II requires
considerably more work than Method I except for the
marginal case when kK = 1. However, the approach of
Method II now suggests the following three ways of
reducing the amount of work W,:

(i) After any one entry in U, the number of subsets
that must be examined at stage 4 can be minimised by
excluding certain objects from the (N — 2) possibilities.

(ii) During stage 4, the size of these subsets can be
reduced under certain conditions when a local value of
k, which is smaller than the general value of k, is
adopted. In general, this also reduces the number of
subsets that must be examined.

(iii) We also consider situations in which the general
value of k can be reduced, and it is shown, in the para-
graph on ending conditions, that the algorithm can be
terminated as soon as k rows of U have been completely
filled. Hence the factor $N(N — 1) for Wj can be
improved.

For the ensuing development we shall adopt certain
new terms which are defined as follows:

1. If, at some stage of Method II, the similarity U; is
filled in U then we say that objects i and j are ‘connected’;
similarly, if U;; is not filled then i and j are ‘not connected’
or ‘disconnected’.

2. Any subset of g objects for which all pairs of
objects are connected is called a ‘complete g-subset’.

3. Any subset of g objects for which all but one of the
possible pairs of objects are connected is called an
‘almost complete g-subset’, which we abbreviate to an
‘a.c. g-subset’.

4. In any subset of objects S, s; is the number of objects
in S which are connected to the ith member of S. This
convention is applied to the base subset B (defined
below), and the object universe P, where b; and p;
are the respective connection counts for the ith object.

Step 4 of Method II can now be described as a search
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158 A. J. Cole and D. Wishart

for all a.c.(k + 2)-subsets of P which contain objects g
and A, and in the next three sections we discuss means
of improving the efficiency of this search.

Reducing the number of subsets

Let S={oy, a, . . ., ay, g h} be an a.c. (k + 2)-
subset, then by definition exactly one of the connections
within S is missing. Hence k of the members of S have
(k 4+ 1) connections within S, while the remaining two
members are disconnected and have exactly k other
connections. Since the connection U, is completed
during step 3 of Method II, g and A cannot be the dis-
connected pair of objects, and therefore

either se>kands, =k +1
or s,=k+4+1lands, > k )
Also for every object i € .S, we have

s; >k 2)

and it follows that each i€ S, i £ g, h is at least connected
to g or h. We can, therefore, restrict the objects «;,
which are placed in S during the search for a.c.(k + 2)-
subsets, to those objects which are at least connected to
g or h, and we define the base subset B as the set of all
such objects together with objects g and h. Associated
with each object i € B we have the number of connections
b; between i and the other objects in B.

Note that for each object i € S, where S is any subset of
(k 4 2) objects taken from B, s; < b;; it follows, from
(1) above, that no such a.c.(k + 2)-subset S exists unless

either by>kandb,> k + 1
or b,>k+1land b, > k 3)

Similarly, suppose that for some object i€ B, i # g, h,
we have
b; <k

then for any subset S containing i, s; < b; < k, and hence
S is not an a.c.(k + 2)-subset, by (2) above. Therefore,
no a.c.(k 4+ 2)-subset exists which includes an object
i for which b; < k, and hence such objects can be
removed from B. If there are any removals, the b,’s for
the remaining objects are recomputed and the procedure
iterates until there are no further removals. The search
for a.c.(k + 2)-subsets can be concluded if, at any stage
of this procedure,

either (i) B is now empty,

or (ii) B is not empty, but either g or A have been
removed,

or (iii) B is not empty, but condition (3) is no longer
satisfied,

in which case we return to stage 3 of the algorithm.
Otherwise, B contains a list of objects, including g and
h, which may form a.c.(k 4+ 2)-subsets and we proceed
to consider methods for reducing the value of k and
hence the size of the subsets that must be examined in
the subsequent search.

Reducing the size of the subsets

We denote the number of objects in the base subset B
by |B|, and hence

b;< |B| —1

Suppose that for some object i€ B, b; = |B| — 1; that is,
i is connected to every other object in B. Then if i is
removed from B we can reduce the value of k by 1 in
the search for a.c.(k + 2)-subsets of B. Let B’ be the
subset of B which excludes object 7, and let S" = {«,,

o, . . ., apyqt be any a.c.(k 4 1)-subset of objects
taken from B’, then the subset S = {a, oy, . . ., 044 ¢, i}
is an a.c.(k + 2)-subset since b, = |B| — 1 = i is con-

nected to every «; €S’. Notice that the removed object i
could be either object g, object & or some other member
of B, but we always require that S contains both objects
g and A (the only a.c.(k + 2)-subsets which can be found
contain both objects g and A by virtue of the insertion of
U,;). This result can be generalised to the extent that
if t members i € B satisfy b; = |B| — 1, and these ¢ objects
are removed to form the residual base subset B’, then
an a.c.(k + 2 — t)-subset S* of B’ becomes an a.c.
(k + 2)-subset S of B with the addition of the ¢ com-
pletely connected objects previously removed from B.
Furthermore, the single disconnected pair of objects in
S’ will be the same disconnected pair in S, and in the
limiting case when ¢ > k but |B’| > 0, any disconnected
pair of objects in B’ is associated with an a.c.(k + 2)-
subset of B.

To implement these results we use a local value &,
of k which applies throughout the search for a.c.(k + 2)-
subsets of B. Initially k; = k, and each object i€ B for
which b; = |B| — 1 is removed from B and k/ is reduced
by 1. When all such removals are complete, and
provided that k; > 0, B is searched for a.c.(k, + 2)-
subsets subject to the inclusion of either or both objects g
and & provided that either or both objects g and 4 are
retained in B; when k; < 0 and |B| > 0, B is searched
for disconnected pairs of objects. When such a subset
or disconnected pair is found, its single residual discon-
nection is completed in U with the current similarity R,
and the associated object pair is added to L (as described
at Stage 4). If after all removals B is empty, no a.c.
(k + 2)-subsets are to be found and the search is con-
cluded. In the computer program KDEND, the search
for (k; + 2)-subsets is further reduced by first con-
sidering triples of objects from B. When a complete or
a.c. triple is found in B, other objects are tested for
addition until a complete or a.c. 4-subset is found, and
so on, until an a.c.(k, + 2)-subset has been obtained.
The choice of objects for addition is, at each stage,
restricted to those which have neither been considered
in a previous base triple, nor have been considered at a
previous stage in the generation of the current subset.
Furthermore, when objects are being tested for addition
to a current subset of size r, it is only necessary to
examine r connections to determine if the addition yields
a complete or a.c.(r + 1)-subset. This procedure, which
is used only when k, > 1, further reduces the amount of
work required for the consideration of all subsets of size
(k. + 2) taken from B.

Ending conditions

In the previous section it was shown that we can
remove from B any object i for which b; = |B| — 1, and
reduce the local k; value by 1. If we consider the
universe of objects P as base subset, where p; is the
number of overall connections for object i, then the
result can be generalised as follows: if there exists an
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Generating overlapping clusters 159

object ie P such that p; = N — 1, then we can remove
object i from further consideration and reduce the
general value of k by 1. Furthermore, when k = 0 after
such a reduction, all empty elements of U can be filled
with the current similarity R; that is, the matrix U can
be completed as soon as k rows or columns are filled.
In the computer program, the overall connection counts
p; are stored and updated at each insertion into U.
When one such count reaches N — 1, the associated
object i is deleted from further consideration and the
value of k is reduced by 1; however, if such an insertion
occurs during a scan of the base subset B and k # 0,
it is important to retain object i with the current local
value of k; unmodified until the scan of B has been
completed. When an insertion reduces k to zero, we
exit from further scanning of B and complete all empty
elements of U with the current similarity R. We are
now finished, and U contains the final reduced matrix.

The Cluster Recognition Algorithm

Jardine and Sibson (1968) appear to have avoided the
problem of automatically isolating clusters from the
reduced matrix U, and simply advocate their construc-
tion by hand for any chosen similarity threshold #. This
process, although not difficult, can be tedious and,
therefore, we proposed an algorithmic solution to the
problem.

A binary linkage matrix L is defined as follows: for
any chosen similarity threshold A, we set

or LUZOIfU,I<h
and L; = 1foralli

Fig. 1 shows the linkage matrix L obtained when
h=5-50, from the reduced matrix Uderivedin theexample

used by Jardine and Sibson when k = 3. Also shown
is a linkage diagram for this set of 9 objects, on which
connected objects are joined and clusters are indicated
by dotted lines. We notice that there are two types of
objects: ‘explicit’ objects belong to one cluster only, and
‘overlap’ objects belong to two or more clusters. Also,
for each cluster of objects we know that every member
is connected to every other member. The problem of
cluster recognition is to isolate the maximal complete
subgraphs expressed in L, and remove them one at a
time until all such clusters have been found. Further-
more, in removing connections from L, it is important
to retain those connections to overlap objects which are
used to describe other clusters. For example, suppose
we remove cluster (159) (shown in Fig. 1) and in doing
so delete the (5, 9) connection, then cluster (569) will
not be recognised later. Our approach is to search
for explicit (see below) objects, remove the clusters con-
taining them, and then delete only those connections to
each explicit object. Hence, in our example of cluster
(159) we discover that object 1 is explicit and so we reset
the first row and column of L to zero.

An ‘overlap’ object is defined as an object i, connected
to objects {ay, oy, . . .}, for which at least one of the
pairs (a;, «;) is not connected. Any other object is
termed ‘explicit’. It follows that only overlap objects
belong to more than one cluster. In our example,
object 1 is explicit because it is connected to 5 and 9,
and the pair (5, 9) is also connected. By contrast,
object 5 has connections to objects 1, 6 and 9, and since
the pair (1, 6) is not connected, 5 is an overlap object.
We observe that objects 1, 4 and 8 are the only explicit
objects in Fig. 1.

The first step in the cluster recognition algorithm is to
search for isolated objects. Each such object is charac-
terised by a 1 in the diagonal and zeros elsewhere of its

OVONANWN =

—OOO=OO M
O OO =ON
COMMO==OW
O=OCOO=Oh
—OOMOO =W
ot O ek et et e © O O\
OCOMMO=~=ON
O=OO0O0O=O®
OO OO =\0

Fig. 1. An example of overlapping clusters for a 9-object

population, and the associated linkage matrix derived from the

ultrametric. Clusters are indicated by dotted lines, and solid

lines join objects whose similarity exceeds the threshold. In

the linkage matrix significant similarities are coded 1. Observe
that only objects 1, 4 and 8 are explicit.
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associated row and column in L. The diagonal 1 ele-
ment is replaced by O for each isolated object, and a
‘single object cluster’ message is printed. Next we look
for explicit objects and their parent clusters by the
following terminating procedure:

(1) We scan L for objects that have 1’s in their asso-
ciated row: suppose we find that the ith. object has
connections in L, then vectors I and I’ are set equal to
the ith row of L.

(2) For each ‘I’ in I, corresponding to a connection
(@i, j), we replace I’ by the product of vector I’ and the
jth. row in L.

(3) When all 1’s in I have been treated in this way, the
current vector I’ is compared with the original vector I:
if they are the same, then object i is explicit; if they
differ, then i is an overlap object. We ignore any overlap
objects and continue the scan of L until an explicit
object is found, when we proceed to 4.

(4) Suppose there are ¢ 1’s in I, then each 1 corre-
sponds to a member of the current cluster C, whose size
is ¢. Since the row and column of L corresponding to
each explicit object in C will be identical to I, the
number of connections in L for each such object will be c.
We now form a list E = {o, a5, ...} of objects a;€C
such that the row in L corresonding to o; contains
exactly ¢ 1’s; E is therefore a list of all the explicit
objects in C.

(5) The rows and columns of L corresponding to each
o;€E are now reset to zero, and we return to (1) and
look for new explicit objects and their parent clusters.
When every element of L is zero, the procedure is
terminated and all clusters have been found.

This process, when applied to the linkage diagram of
Fig. 1, will first recognise cluster (159), find the explicit
object 1 and then reset row 1 and column 1 of L to zero.
Next, explicit object 4 will be discovered and the parent

cluster (248) recognised. In this case, E will contain
explicit objects 4 and 8, and so the corresponding rows
and columns of L will be reset to zero. Fig. 2 shows
the stage that has now been reached. Two clusters have
been peeled off the chain of overlapping clusters with
the result that objects 2, 5 and 9, which were previously
overlap objects, are now explicit. When the algorithm
is reapplied, the clusters (237), (367) and (569) are
recognised, at which point L contains zeros everywhere
and the scan is concluded.

So far we have omitted one special case: the situation
when every object is in an overlap position. This may
occur with the entire population or with a subset of
objects, but in any event, it is detected when steps 1-3
of the algorithm fail to find an explicit object while there
are still 1’sin L. Fig. 3 shows the connections between
six overlap objects, for which the clusters are (1245),
(1246), (1345) and (1346). We observe that if any
overlap object i has p; residual connections in L (the
connection L;; is included), then the maximum size of
cluster to which i can belong cannot exceed p; — 2. Let
Pumax b€ the maximum number of residual connections in
L for any one object, then a search through all subsets
comprising from 2 to p,... — 2 overlap objects will
reveal all overlapping clusters. Our approach is to first
consider all subsets of size p,,,, — 2 objects, and form a
list of those subsets which are maximal complete sub-
graphs in L. Next, all subsets of size p,,. — 3 are
considered and any maximal complete subgraph is added
to the list provided that it does not form a subset of a
cluster previously found. As each new cluster is dis-
covered, a check is made to test whether the present list
of clusters accounts for all the residual connections in L.
When this happens the process is terminated. Although
this procedure appears to be lengthy, in practice the
total overlap condition occurs for small spherical group-
ings of overlapping clusters (as in Fig. 3) or for con-
nected circuits of overlapping clusters, because of the
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9 7011001100
8000000000
9000011001

Fig. 2. Residual clusters and linkage matrix for the 9-object

population in Fig. 1 after 2 cycles of the cluster recognition

algorithm. Clusters (248) and (159) have been recognised and

removed from the linkage matrix with the result that objects

2, 5 and 9 are now explicit. The next cluster that will be
recognised is (237).
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Generating overlapping clusters 161

severe requirement that every object must belong to
more than one cluster. Consequently p,,,. is usually
small, and the exhaustive search for clusters is often
terminated at or near the subset size p,,,, — 2 level.
In the example shown in Fig. 3, p,... = p; = 6 so that
only the 15 subsets of size 4 need be considered.

Finally, one modification to the cluster recognition
algorithm has to be made. A cluster can contain
subsets of explicit and overlap objects, respectively.
When a cluster is recognised, those connections to the
explicit objects are removed from L while the connections
to the overlap objects are retained in L. If the overlap
objects happen to belong to more than one other cluster,
then this subset of overlap objects will be recognised later
as a separate cluster. This means that not only clusters,
but also subsets of clusters will be recognised by the
algorithm. To correct this case, the computer program
compiles a list of the clusters as they are found. When
the cluster recognition phase is terminated, this list is
searched for duplicated cluster subsets which are removed
before the final classifications are printed.

Obtaining a hierarchy of clusterings

The cluster recognition algorithm is defined for one
chosen similarity threshold #. However, if we apply the
algorithm using each unique entry contained in U as
threshold, we obtain the hierarchy of all the clusterings
that can possibly be generated for any chosen value of A.
In their introduction of Method I, Jardine and Sibson
distinguish between the variants of the sequence which
yield non-overlapping (k = 1) and overlapping (k > 1)
clusters by the terms ‘heirarchic’ and ‘non-hierarchic’
respectively. This use of the term ‘hierarchy’ to describe
a sequence of nested partitions which give rise to strictly
disjoint subsets, differs from the conventional meaning
where ‘hierarchic’ refers to those methods that produce
ordered clusterings from a monotonic decreasing simi-
larity threshold. For this reason, we prefer to use the
terms ‘non-overlapping’ and ‘overlapping’ to describe the
type of clusters which are obtained. In our terminology

1

6%N3

4

Fig. 3. An example of the complete overlap situation for 6
objects when & = 4. The clusters are (1245), (1246), (1345)
and (1346).

therefore, we obtain a hierarchy of clusterings for all
values of k by applying the ultrametric similarities
contained in U to the cluster recognition algorithm in
order of decreasing similarity.

In the computer program KDEND, the ordering of
ultrametric similarities is stored in Q at step 2 of
Method II. Any value Q,, corresponding to an entry
U;; which is not filled, is retained in Q for subsequent
use as a threshold with the cluster recognition algorithm.

Large populations

In a situation where we wish to describe a large
population in terms of a few ‘types’, we tend to look
for large clusters that signal a concurrence of pattern.
These large groups need not be the most interesting—
the peripheral and intermediate objects may attract our
attention through being unusual—nevertheless, we must
first detect and isolate the types before the classification
can be examined in detail. If we consider the specific
instance of a large population represented by a multi-
variate Euclidean sample distribution, then as N — o
the distribution will approximate some complex theo-
retical density function F. Suppose that at some arbi-
trary level of probability p the volume F > p can be
partitioned by closed disjoint surfaces, then it has been
reasoned (Wishart, 1968, 1969A) that each closed surface
is an instance of a particular ‘type’ within the population.
Conversely, if there is only one connected surface F = p,
we can conclude that there is no evidence that the data
can be subclassified ‘naturally’ at level p. Furthermore,
by examining different values of p we select different
levels of hierarchic classification: in taxonomy, certain
levels might correspond to family, genera, species, etc.
Wishart (1968) proposes the following ‘one-level’ method
designed to detect such classes within a large population.
A distance threshold r and density parameter k are
chosen, and each sample point is visualised at the centre
of a sphere of radius r, which is used to estimate the
density of observations within the local spherical neigh-
bourhood of the point. We assume that those spheres
which contain at least k other points are located in the
volume F > p, where p is now some unknown probability
determined by r, k and N, and we detect the disjoint
connected surfaces by joining all such spheres which
intersect. In short, any point which lies within a distance
r from at least k other points is ‘dense’, and clusters are
formed by using single linkage on the dense points at
threshold r. The method has been further developed as
a hierarchical process which obtains the family of nested
disjoint surfaces corresponding to all probabilities p, and
does not require the choice of threshold. However, the
classification obtained at one threshold level r can con-
veniently be used to compare Wishart’s method with the
k-partition.

Earlier we introduced the concept of a chain cluster
for the k-partition, which consists of a straggle of
maximal complete subgraphs that intersect in at least
k vertices. We shall restrict our interest in the clusters of
a large population to the chain clusters, or those distinct
maximal complete subgraphs that at least have the
potential to chain if there were any local connections.
We observe that each individual maximal complete
subgraph (which we shall call a ‘unit’) must possess at
least k + 1 mutually connected objects. Furthermore,
since each unit is maximally connected at threshold r its
diameter cannot exceed r. Hence the units can be
considered as spherical dense neighbourhoods, contain-
ing at least k 4 1 objects, and clusters are formed by
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connecting intersecting units (provided that they intersect
in at least k vertices). This is essentially the concept
on which Wishart’s probabilistic method is based, and
it is interesting to note that both methods degenerate
to single linkage when k = 1. Of course, there are
differences: two intersecting chain clusters are separated
by the k-partition if they fail to intersect in more than
k — 1 objects, and the k-partition also recognises maxi-
mal complete subgraphs which contain fewer than k — 1
objects. Nevertheless, with a large population which
exhibits distinct data swarms we can expect the two
methods to yield very similar major clusters (that is, if
it were possible to use the k-partition method with a
large population).

These considerations now suggest an algorithm for
the specific solution of large clusters by the k-partition
when a single initial threshold value is given. We
observe that every member of a unit is connected to at
least k other objects, and conversely any object which
has less than k connections at threshold /4 cannot belong
to a large cluster. We can therefore eliminate some of
the objects which are not members of units at threshold
h by removing those objects having less than k connec-
tions. Furthermore, since the connection counts within
the residual population may be modified by these
removals, we now recompute the connection counts,
reapply the test for k connections and repeat this pro-
cedure until there are no further removals. The residual
population now contains all the members of units, and
possibly some others. We now perform the Method 1II
ultrametric reduction on the similarity submatrix for the
residual population, and use the cluster recognition
algorithm at threshold 4 to identify the large cluster
members. This algorithm will evidently work well for
any size of population, provided that the similarity
threshold is sufficiently large to yield a residual popula-
tion of order less than 60. However, since this restric-
tion reduces the effective generality of the k-partition
method, we have not programmed the algorithm.

Conclusions

Fig. 4 shows the times required for Methods I and
II using different population sizes. Each timing repre-
sents the average of two trials using different 2-cluster
populations generated by a pseudo-normal number
routine. The similarity matrix was computed from Eucli-
dean distances, and the tests were completed by FOR-
TRAN II programs on the IBM 1620 II, and FORTRAN
IV programs on the IBM 360/Model 44. It became clear
that the sequence k = 1 to 5 could only be reasonably
computed with the IBM 360/Model 44 for up to 20 indi-
viduals by Method I and 60 individuals for Method II
(these limits can probably be extended by 5 and 20 objects
respectively on a faster computer). The largest popula-
tion size that we tried was 35, for which Method II
required 18 minutes for the completion of the sequence
k =1 to 5 on the IBM 360/Model 44. In view of the
fact that the similarity matrix must be held in core for
these algorithms, Method II is necessarily restricted to
small data problems.

An important practical feature of the k-partition is
the large number of clusterings that are obtained. In
our trials with the 9-object population cited by Jardine
and Sibson, the cluster recognition algorithm produced
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Fig. 4. An indication of the times required for the two algo-
rithms. Dotted lines correspond to Methed I; solid lines are
Method II.

70 separate classifications for the sequence kK =1 to 5,
and although not all of these groupings were unique, a
user must be severely selective when presenting his
results. This is in complete contrast to Wishart’s
hierarchic method which incorporates a selective mech-
anism that seldom presents the user with more than
about 12 groupings for any population size.

On the whole, we feel that the detailed analysis of
data structure which is offered by the k-partition is
desirable for small populations; large data applications
which suggest a natural class approach should be referred
to the alternative probabilistic model.

Appendix

A computer program (KDEND) for the k-partition
by the modified Method II algorithm with cluster recog-
tion has been incorporated in the ‘CLUSTAN’ package
of FORTRAN Programs for cluster analysis. The
program is included in the second version (CLUSTAN
IA) and operates in conjunction with programs FILE
and CORREL of CLUSTAN 1. Further details can be
obtained from D. Wishart.

1. Features of CLUSTAN I

This first version of CLUSTAN (Wishart, 1969C)
contains programs FILE, CORREL and RESULT
(which perform the basic operations of data input,
principal components, computation of similarities and
analysis of results) together with the probabilistic
clustering method of Wishart (Wishart, 1968, 1969A)
(program MODE), and 7 hierarchical fusion methods
(program HIERAR: see Lance and Williams, 1967A;
Wishart, 1969B).

By using magnetic disk as backing store, the standard
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version of CLUSTAN can accommodate problems sub-
ject to the following general conditions:

Maximum number of individuals (N) = 999

Maximum number of continuous variables (MN) =
200

Maximum number of binary variables (MB) = 400

No missing data permitted.

2. Features of CLUSTAN IA

This group of programs is designed to complement
and extend CLUSTAN I, and uses FILE and CORREL
for the initial computations. The package, which is
yet to be published, contains programs KDEND,
DIVIDE (for 9 monothetic divisive options: see Lance
and Williams, 1965; MacNaughton-Smith, 1965; Craw-
ford and Wishart, 1967; Gower, 1967), CENTRO
(centroid sorting with some non-combinatorial coeffi-
cients: see Lance and Williams, 1966) and RELOC (an
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