164

Hybrid computing techniques for solving parabolic
and hyperbolic partial differential equations

T. I. Silveyt and J. R. Barker*®

* School of Mathematics, Bath University of Technology
t Electronic Associates Ltd. (formerly at Bath Universily)

This paper describes the development of the serial method for solving partial differential equations
of parabolic or hyperbolic type, and describes some recent improvements in the method which can

be carried out on a hybrid computer.
(Received June 1969)

The solution of parabolic and hyperbolic partial differ-
ential equations by analogue or hybrid computers began
with mechanical differential analysers in the 1930’s and
has been the subject of many papers. Most of the
methods used involve the reduction of the partial
differential equations to a set of ordinary differential
equations by using finite differences, and there is a choice
as to which variable is left in continuous form leading to
various computing processes (Hartree, 1950; MacKay
and Fisher, 1962).

As an example of a parabolic equation, consider the
simple heat-conduction equation in one space dimension,
x, and time, ¢, with u(x,) denoting temperature,

Ny du,
X2’
given the initial condition u(x,0), and the two end

conditions u(0,) and u(L,). A finite-difference
expansion of the second derivative in x leads to:

0<Kx<L O t<®)]

un+l_2un+un—l_%_ _
B ==’ n=12..,N-1 L ®
where N = L/Ax J

This is a set of ordinary differential equations suitable
for simultaneous, i.e. ‘parallel’ solution by an analogue
computer. No problems of stability arise, but the
quantity of equipment required can be formidable,
especially if the physical problem is more complicated,
although Hartree and his group at the University of
Manchester found close agreement between u(x, #) and
u,(f) using surprisingly coarse subdivisions in the
x-direction.

Due to shortage of equipment (a mechanical differential
analyser had no more than eight integrators) Hartree’s
group gave more attention to the serial method. In its
practical form, this involves taking finite differences in ¢
instead of in x, such as with the following backward-
difference scheme:

The Computer Journal Volume 13 Number 2 May 1970

2
dou; _wy—

=N =125, Q)
t=jAt
So,
du;, 1 1
aETRMY T T MY @)
where

ui(x) = u(x, jAr)

The initial temperature distribution uy(x) and the
boundary conditions [e.g. values of #,(0) and u;(L)] are
given. The variable x is represented by computer
time = through x = Br where B is a constant and
0< 7< L/B. The set of equations (4) can be solved
one at a time, using a single differential equation solver,
to produce the solution over the whole x-range at
successive times Atf, 2At, 3At, etc. Each solution
u(x, jAr) is put into a function store and played back
into the equation solver on the j +1% run. As is well
known, solving the ordinary differential equation (4)
with known boundary values #;(0) and u;(L) is done on
an analogue computer by iteration, adjusting the un-
known initial condition du;(0)/dx until the solution takes
the value (L) at x = L. The difficulty is that the
differential equation has a complementary function
(C.F.) of the form

C.F. = A exp (—x/+/Af) + Bexp (+x//Af) 5)

in which the second term grows exponentially through-
out the run. As one can show that B is small in the
solution required, any error in the computer which
effectively alters B will give rise to an exponential growth
of error which may cause the solution obtained to have
serious errors in between the boundary values at x =0
and x = L.

The smaller At is made in order to reduce the finite-
difference error, the more sensitive does the solution
become to the setting of du;(0)/dx and to noise in the

¥202 I4dy 61 U0 3senb Aq 0LE6YE/Y9L/Z/E LIeIoIE/|UulWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

Hybrid computing 165

computer; this is because the term B exp (x/4/At) in
Eqn. 5 grows faster. In an extreme case, noise may
make it impossible to match the required value of u;(L)
because no two runs are alike.

The accuracy of the serial method can be optimised
by decreasing the finite-difference interval A¢ until the
decreasing finite-difference error is matched by the
increasing error due to noise and instability in the
analogue computer. Some investigations were carried
out by Silvey (1966) on the problem specified by Eqn. 1
with u(x,00=1 and u(0,f) = u(L,t)=0. Using
1 or 2 seconds to scan the x-range from 0 to L, the
optimum value of At/L? is about 0-025. The finite-
difference error in wu(x, ¢) has a maximum of 0-05 at
t=20-15if L =1. All this assumes that the solution
exactly satisfies the far boundary value, but to achieve
this within 19 requires adjustment of du;(0)/dx to
within 3 x 10—39% which is almost impossible. The
noise level relative to the signals in the, now, obsolete
mechanical differential analysers was significantly less
than in the present-day electronic analogue computers.

In Eqn. 4, the formula is of backward-difference type
with a finite-difference error proportional to At. Hartree
used a central-difference formula

dzu 1

s+) =" ©
for which the error is proportional to (At)z. Hartree’s
formula is more accurate than Eqn. 3, but is only
marginally stable in that errors generated in the solution
at any one time step are propagated to later times
without attenuation, so that serious accumulation of
error can occur if many steps are taken. The backward-
difference formula (4) is completely stable in this respect
as errors at each time step die out in the later steps.
Mitchell (1963) suggested that the difference equation
could be adjusted to be intermediate between backward
and central differences to give the best compromise
between accuracy of formula and stability. Fisher (see
MacKay and Fisher, 1962) gave noise figures for the case
of Hartree’s central-difference formula which are similar
to Silvey’s later results (quoted above) for the backward-
difference case.

Much of the early work using mechanical differential
analysers was of high quality but tends to be forgotten.
For example, Miura and Iwata proposed in 1966 that
Richardson’s process of h2-extrapolation should be used
to reduce finite-difference errors in the parallel method,
yet it appears to have been regularly used—on the serial
method—by Hartree’s group, the theory being given by
Hartree and Womersley in 1937. Neither the serial nor
parallel method are restricted to the simple problem
discussed so far. The co-ordinate system need not be
Cartesian, the thermal properties of the substance can
vary with temperature (Eyres et al., 1946), or with
position. Heat can be generated in the substance itself,
e.g. by dielectric heating (Copple et al., 1939), and
changes of state can occur with consequent liberation of
latent heat and movement of (say) a liquid-solid boundary
(Butler et al., 1962).

Recent improvements to the serial method

Considerably improved accuracy (Silvey, 1966) was
obtained by rearranging the equations to compute, not

the solution at each stage, but the difference between
successive solutions as j was increased, but the improve-
ment only occurs if the difference is small, that is, if At
is small enough to keep [u;j(x) — u;_;(x)]/u;(x) much
less than unity for all x and j.

In an alternative approach, solutions of the differential
equation (4) were computed from x = 0 (‘forwards’)
and from x = L (‘backwards’), the solutions being
matched in the middle by adjusting one unknown initial
condition in each. The troublesome part of the comple-
mentary function (see Eqn. 5) is the ‘B’ term when
computing forwards, and the ‘4’ term when computing
backwards. However, if L =1 and Az = 0-025, the
term B exp (x/4/Atf) is 557B at the right-hand boundary
but is only 24 B at the centre point. Hence the instability
trouble is much reduced for a given At¢, but, of course,
matching the value and the slope in the middle is
complicated.

Another technique considered was the use of higher
order difference formulae to reduce the truncation error,
but MacKay and Fisher (1962) pointed out that these
introduce spurious additions to the true solution which,
once started by errors in the analogue computer, may
grow to significant size. However, a scheme has been
invented (Silvey, 1966) which does not introduce spurious
solutions. The finite-difference error of the equations is
0((Ar)?) which is two orders of magnitude better than the
simple scheme. Each time step is divided into thirds,
and the partial differential equation reduces to three
coupled ordinary differential equations:

d?u; 3

N

auj_y3
a2 T aart-n
1 3 1 _
A T A -1 — Ay -
d?u; _ d’uj_y3 3
dxz T A M-
1 3 (O
= Euj —Ktuj—z/s + E‘A_tuj—l
dw; 11
dxz 2At W
9 9 1 _
ly vL/ESE + Az Y23 — A -1

where j=0, 1, 2, . . . ; t = jAt; the ‘bar’ over u;_
denotes that this function has been stored.

The three interconnected second-order differential
equations (needing six integrators) are solved simulta-
neously and all of them are driven by i;_; which was
generated and stored during the previous time step. In
order to satisfy the boundary conditions at x = 0 and
x = L, iterative techniques may be used. One possible
method is to set approximate values of du; 2,3(0)/dx
du; _13(0)/dx, and du;(0)/dx on the approprlate inte-
grators and then to adjust them one at a time (in a
sequence) to satisfy the known boundary values of
u;_23(L), u;_1;3(L), u(L). The exact conditions under
which this scheme would converge have not been investi-
gated as we have concentrated our work on the method
described in the next section.

Note that all three of the improvements discussed in
this section could—in principle—be combined in one
scheme.

¥202 I4dy 61 U0 3senb Aq 0LE6YE/Y9L/Z/E LIeIoIE/|UulWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

166 T. I. Silvey and J. R. Barker

A new stable method

The most significant and recent improvement in the
serial method is the ‘method of decomposition’ due to
Vichnevetsky (1968) and, independently, to one of us
(T.1.S.) at Bath, but our publication was delayed for lack
of suitable equipment with which to test the method.
However, our version has some advantages and is likely
to be the more accurate so that a brief account is now
given together with some of our test results.

The simplest example of the method is obtained from
the backward-difference scheme of Eqn. (4) by factorising
the operator on the left-hand side, giving

d 1 du; o\ Uiy
(&+ \/(At)) (& — \/(At)) =—a ®
where the bar again indicates the solution at the previous
time step read out from a store.

A new variable v; is introduced and defined by

du; u; 7

&~ Vi)~ ViAD ©

so that Eqn. 8 becomes

dv Y i1

4 =

dx /(A V(A1)
However, although Eqn. 10 is stable, Eqn. 9 is unstable
with increasing x. Putting

y=L—x and dy = — dx (11)

(10

into Eqn. 9 gives

dyy Wb

dy ' (Ap) V/(AD)

which is stable for increasing y. The process of solution

now consists of solving these two stable first order

differential equations, in turn, representing x and then y
by computer time.

Consider the process for the j* time step. Firstly,

Eqn. 10 is solved using integrator I, of Fig. 1 which is

driven by #;_,(x) from the previous time step, and v;(x)

(12)

known
boundary
values

A

Vj(x) _

or uj(y)

»

DAC DIGITAL COMPUTER ADC

U0 from punched cards

Fig. 1. Arrangement for solving heat conduction problem by
new serial method. Upper labels refer to solving Eqn. 10 and
lower ones to Eqn. 12

is stored. Storage is achieved by the analogue-digital-
converter (‘(ADC’ in Fig. 1) which takes samples from
the waveform v;(x) at regular and frequent intervals and
puts them in the digital computer core-store. The
driving function 4; _(x), which had been similarly stored
at an earlier stage, is passed to integrator I, via the
digital-analogue-converter (‘DAC’). The proper value
for the initial condition in integrator I,, solving Eqn. 10,
is not known at this stage and a guessed value v, is
provided via I, which is also in the initial-condition state
at this time.

Secondly, Eqn. 12 is solved by integrator I; now driven
by the stored 7; (read backwards). The initial value on
integrator I, is u;(at y = 0) = u;(L) which is the known
boundary temperature at x = L and ¢ = jAt. As the
proper value for the integrator initial value for Eqn. 10,
v;(at x = 0), was not known, the function u,(y) generated
from Eqn. 12 will be in error; in particular, the value at
the end of the integration will not be the known boundary
temperature. From the measured discrepancy, a cor-
rection to v;(x = 0) can be calculated. Our method,
which differs from Vichnevetsky’s at this point, is to find
the sensitivity coefficient relating changes in u;(y = L)
to changes in v;(x = 0) and to use this in an automatic,
self-checking, iterative procedure until u; satisfies the
boundary temperature to within 0-002 machine unit.
A simple analysis shows that

du;(0
50— — M- ewQLvVAN a3

which, as At¢/L? is always small, is very nearly equal
to —3. Hence if the achieved value of uj(y = L) is less
than the required value by Au;(0), the correction to be
added to v;(0) is closely given by

Av;(0) = — 2Au,(0) (14)

where ‘0’ denotes ‘x = 0’. This correction can be made
in practice by using track-hold circuits or by accumulating
the increments on an integrator.

In Fig. 1, integrator I, accumulates the corrections by
integrating Au;(0) from Eqn. 14 for any convenient short
constant time S through a gain of 2/S. In between
corrections, this integrator is in the ‘hold’ state. The
integrator is loaded with the guessed value of v;(0)
(denoted v,) at the beginning of the process for the j*!
time step. After each correction, Eqns. 10 and 12 are
run again. One correction is sufficient in theory as the
process is linear but in practice two corrections are
needed.

The final function u; which satisfies the boundary
conditions is retained inside the digital store ready to be
used as the driving function #; _, for the next time step,
and the whole process is repeated.

The method was tried out on an E.A.I. 690 hybrid
computer; the control program was implemented on the
parallel-logic section and the digital computer was used
merely for storage and playback. The analogue-digital-
converter took 180 samples in the range 0 to L; the
reconstructed waveforms from the DAC were staircases
with 179 steps. Experiments using fewer samples in the
range suggested that errors due to the discrete nature of
the storage were insignificant compared with other errors.
The analogue signals were converted into a digital form
of 13 bits plus sign.

The sampling interval for storage and playback was

¥202 I4dy 61 U0 3senb Aq 0LE6YE/Y9L/Z/E LIeIoIE/|UulWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

Hybrid computing 167

2 ms so that, with 180 samples, each integration from
0 to L took 0-36s. It is anticipated however that by
writing the function storage and playback program in
Assembler language instead of FORTRAN IV, this time
could be cut by at least a factor of 10. However, graphs
of uy(x) have to be recorded on an electro-mechanical
graph plotter for some values of j and, for these, the
final integration of Eqn. 12 has to be slowed down.

Such graphs were obtained on the graph plotter of the
E.A.L 690 hybrid computer for the cooling problem with
both boundary temperatures equal to zero, and an initial
temperature distribution everywhere equal to unity, with
L =1, At=0-005. This describes the temperatures
inside a parallel-sided slab, of thickness L, heated to
unit temperature and then plunged into a cold fluid at
zero temperature. The temperatures on the actual graph
sheet were almost perfectly symmetrical about the centre
of the slab, the biggest discrepancy being about 1 part
in 100. The first column of Table 1 shows the tempera-
tures at the centre (x = 0-5) at various times as printed
from the digital store of the hybrid computer. The
second column gives the corresponding values calculated
by a digital computer from the known analytic solution
of Eqns. 4. If the hybrid computer were completely free
of errors, these two columns would agree exactly. At
the 75th time step (¢ = 0-375), the error is only 0:29%
relative to the initial temperature. The maximum
relative error in the table is 19 at about the 20th time
step. The third column gives values calculated from the
known analytic solution of the partial differential equa-
tion (1); these differ from the values in the second
column on account of the finite-difference error. This
latter error is greatest at the beginning of the process
because of the very rapid initial cooling near the two
boundaries. For example, at x = 0-1, ¢t = 0-005, the
discrepancy between the two analytic solutions reached
7%, but at the centre of the slab the worst is 1-29 at
t=0-02. It should be remembered that the given
boundary conditions are of an extreme nature and that
less severe ones would be encountered in engineering
practice, resulting in smaller errors.

One trial run and two correcting runs (at each time

Table 1
Temperatures u;(0.5) at centre of slab at times ¢ = 0.005j
TEMPERATURES

DIFFERENTIAL- PARTIAL

j HYBRID DIFFERENCE DIFFERENTIAL

COMPUTER EQNS. 4 EQN. 1

1 0.9969 0.9983 1.0000
3 0.9767 0.9802 0.9922
5 0.9322 0.9374 0.9493
6 0.9029 0.9088 0.9175
8 0.8368 0.8440 0.8458
10 0.7676 0.7759 0.7723
12 0.7001 0.7091 0.7022
15 0.6066 0.6165 0.6068
18 0.5246 0.5344 0.5236
22 0.4314 0.4411 0.4299
26 0.3551 0.3639 0.3529
32 0.2653 0.2726 0.2625
42 0.1636 0.1684 0.1602
54 0.0928 0.0945 0.0886
75 0.0366 0.0344 0.0314

step) satisfy the boundary conditions to within 0-001,
and the iterative method used here is thought likely to
give greater accuracy than the method of superimposing
solutions used by Vichnevetsky.

The special feature of the method is the small amount
of analogue equipment used, which leaves the bulk of
the analogue available for simulating other systems to
which the heat-flow equation might be coupled. 1In such
a case, the computing time should be the same for each
increment At of problem time, which would be so if a
fixed number of runs are made at each time step, three
being sufficient as already mentioned.

Satisfactory results were also obtained when one face
of the slab was thermally insulated,

du;
—_ = t =]
x 0 atx=0
and heat was drawn out through the other face according
to
du;
dx
Hyperbolic equations such as the one-dimensional
wave-equation

—u(L) atx=1L

2 1%

W

can also be solved by the serial method with factorisation,
and progress has been made in solving some non-linear
equations.

The counterflow heat exchanger

Fig. 2 shows a simple heat exchanger in which heat
transfer takes place across a thin wall separating two
fluids moving in opposite directions along the x-axis at
constant speeds v; and v,. The temperatures 7, § and W
are functions of time ¢ and distance x; fluid turbulence
prevents temperature variations at right angles to the
fluid flow while the wall is so thin that heat conduction
in the x-direction can be neglected. With these assump-
tions, the equations of the system are

. . oT 13T
Primary fluid: = k(W —T) + T
., o8 120
Secondary fluid: > = ky(W — 0) — T (15)
Wall: 0= p(T — W) + puy(6 — W)
W
BT

where k|, k,, py, p, and A are constants.

Carling (1968) described a serial process for the
solution of these equations. The time derivatives are
replaced by finite-difference approximations changing
the system to two first-order ordinary differential equa-
tions to be integrated with respect to x, together with
one algebraic equation:

ar; 1T, —T,_,
E__k'(%_]})+1f_,T (16)
E—kz(Wj”' gj)_?)_zT (17)

¥202 I4dy 61 U0 3senb Aq 0LE6YE/Y9L/Z/E LIeIoIE/|UulWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

168 T. I. Silvey and J. R. Barker

thermal insulation

v
hot 2l q— —
° PRIMARY FLUID (TEMP. T) j cool
, — o+—WALL (TEMP, W)
1} .
)
warm v—"g" SECONDARY FLUID (TEMP.@) el
x;0 x=L
T EQN. 21
STORE 1

EQN, 22

EQN. 23

Fig. 2. Counterflow heat exchanger and its analogue

0= (T — W) + atty — W) — (=it ag)

wherej=1,2,3,...;t =1 =jAt. Wy(x), 04(x) and
To(x) are the grven 1n1t1al temperature distributions in
the system. T(L) and 6,(0) are the boundary conditions
representing the fluid inlet temperatures and are assumed
to be known for all j, that is at all times # > 0. The
finite-difference errors in all three equations are pro-
portional to At. For constant coefficients, Eqn. 16 has
a complementary function 4 exp [k, + 1/(v;Af)]x so
that it is unstable for x increasing, and decreasing At
reduces the finite-difference error but worsens the
instability. However, by computing the solution of
Eqn. 16 ‘backwards’, this instability is completely
removed. (Itis interesting to note that both integrations
will then be carried out in the directions of flow of the
fluids.)

Economy of equipment can be achieved by using the
‘serial’ method of solution in which one analogue of
Eqns. 16-18 is used over and over again for successive
time steps. This requires that hybrid computing facili-
ties be available because three temperature functions
Ty(x), 05(x) and Wj(x) generated at the j* time step have
to be stored for use at the j + 1 step, and Eqns. 16
and 17 have to be 1ntegrated alternately. With Carling’s
Eqn. 18, iteration is needed within each step so that
control of the process becomes rather comphcated
However, it has been found that if Eqn. 18 is changed to

pi(Tjmy — W) + pao(8,_— W, 1)
- A(“) 0 (19

the calculations at each time step are direct and not
iterative so that the hybrid program is much simplified.
Since the stability of this version of the method has been
proved, both theoretically and by practical trial, a short
account is given.

Equation 16 has to be computed backwards so that
the substitution

x=L—y (20)

is made in Eqn. 16 only, and all three equations are
rearranged; bars over certain variables denote functions
which are being re-played from high-speed function
stores.

dT; 1 _ 1
DT (kl + v—A;)Tf =k + 5 T @D

W= 1= 5+ w7,

At At
+ pY pi, 1—1 + hY #29 (22)

df; 1 1
wt et og)o=rW+ 5o, @)

Both integrations now proceed from O to L, and y and x
are represented (in turn) on the analogue computer by S+
where T is computer time and B a time-scaling factor.

Referring now to the computer diagram in Fig. 2,
integration of Eqns. 21-23 proceeds as follows. Assume
that integration along y and x at problem-time ¢ = jAt
is about to begin. Stores 1, 2 and 3 are already loaded
respectively with T;_;, W;_, and 8,_, produced during
the previous time step. Eqns. 22 and 23 are run on the
analogue using summer S and integrator I, integrating
with respect to x from 0 to L. The new functions W;
and 6; are written in the stores during this run but T;_,
is left unchanged. The next stage of the process is to
1ntegrate Eqn. 21 with respect to y from 0 to L using

T;_, from store 1 and W; from store 2 as forcing
functions to integrator Il, noting that both these
functions must be read out of the stores in backwards
order because integration is with respect to y, not x.
Durlng this process, the solution T; gradually replaces
T;_, in store 1. W; is left in store 2 so that when the
two stages of the j‘h step are completed, all three stores
have been up-dated and the process can be repeated for
the j + 1" step, etc.

An error analysis has shown the process to be stable
in the sense that an error introduced during one time
step decays through the subsequent time steps and does
not affect the final steady-state temperatures (assuming
the problem to be one which has a steady state). If Az
is decreased, a single error decays by the same amount
in a given interval of problem time. Consequently,
errors such as amplifier bias or drift, which are intro-
duced at every step and act in the same sense, will
accumulate to some extent and may shift an observed
steady state from its true value. This phenomenon was
observed in preliminary runs using a relay-controlled
computer with transistor digital logic and some rather
inaccurate function storage equipment. With this, it
was established that there is an optimum value of At in
order to balance truncation errors against accumulated
drift etc.,, and with a modern hybrid computer with
function storage equipment producing errors of the order

¥202 I4dy 61 U0 3senb Aq 0LE6YE/Y9L/Z/E LIeIoIE/|UulWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

Hybrid computing 169

of 0-19, we expect our version of Carling’s scheme to
produce solutions with steady state errors not exceeding
0-5%.

Parallel-logic control
In the hybrid solution of partial differential equations,

it is necessary to control a number of integrators through -

‘reset’, ‘compute’ and ‘hold’ states in different sequences,
and to control function stores and switches, as the
examples in this paper have shown. Control can be
achieved via the digital computer program in the case of
a full hybrid system, or by means of the parallel logic
associated with the analogue computer.

The method developed at Bath of using the parallel
logic is simple, systematic and readily checked; it differs
from that usually used on the commercially available
hybrid computers but could be used with them. 1t is
based on an n-stage ring counter (Fig. 3 shows n = 9)

C[pattern walks ———- RING
ofofof1]ofofofo]0 COUNTER
TRIGGER
I
E-CODER A ¢
cLock D [——% ourputs
PULSES —a

Fig. 3. Control system based on a ring counter

holding a pattern of n — 1 ‘zeros’ and a single ‘one’,
which latter jumps from stage to stage on receipt of the
leading edge of a clock pulse; this pattern defines the
n stages of the control sequence. The outputs from the
ring counter are de-coded to operate the integrators and
switches in the required sequence. Fig. 4 shows a

control lines R H STATE
R H
0 compute
1 hold
1 0 reset
INTEGRATOR

Fig. 4. Integrator controls

typical integrator control table in which the logic signals
R and H define the state of the integrator. Table 2
shows a sequence of n = 9 states which might be required
of a particular integrator, together with the corresponding
values of R and H copied from Fig. 4. After inspecting
the sequence of values of R and of H, Boolean statements
for R and H are devised (see Table 2) and translated into
hardware in Fig. 5. This process is carried out for
every device which has to be controlled from the ring
counter, until the decoder of Fig. 3 is complete.

Table 2
Integrator control logic table

STAGE NO. INTEGRATOR STATE
ON RING REQUIRED R H
1 Reset 1 0
2 Hold 0 1
3 Compute 0 0
4,5 Hold 0 1
6,7,8,9 Compute 0 0
Logic statements: R = (stage 1)
H = (stage 2) or (stage 4) or
(stage 5)

Corresponding Hardware: Fig. 5.

-4

p——
112]3|4]s5|6]7]|8]9

DE-CODER

“I==-t-f -|==~-==-- -:/
J
v

INTEGRATOR

Fig. 5. Sequence control of one integrator

As it stands, each stage of the control sequence lasts
for the same time interval, set by the clock pulses, and
although this is satisfactory for most stages it is unlikely
to be so for all. Fig. 6 shows how, by introducing extra
hardware, times which are an integral number of clock
pulses can be obtained. Even more usefully, the adjustable
timers which are available on analogue computers can
be employed to stretch the times spent on particular

Gl?lsl‘%lf’lehlalﬂ)
\

}
\'1' for 3clock pulses

R A
\Af for 7 clock pulses

S

BISTABLE

Fig. 6. Control signals which last for several clock pulses

¥202 I4dy 61 U0 3senb Aq 0LE6YE/Y9L/Z/E LIeIoIE/|UulWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

170 T. I. Silvey and J. R. Barker

<

(11|2|3|4\|5|6]7|8|9}J4A
| I ——

>

trigger

clock
tart§ 1imeR to

» de-coder
l4L

B

manual
pulse

£

freeze

Fig. 7. Ring counter combined with adjustable timer and
comparator signal

stages, as follows. As the clock pulse shifts the ‘one’ to
stage 3 of the ring counter (Fig. 7), the output from that
stage starts the timer which, in turn, inhibits the clock
pulse input until the set time has elapsed. The next
clock pulse is then allowed to move the ‘one’ to stage 4
on the ring. As a further example, when stage 6 is
reached, suppose that some integrators have to compute

References

until a particular analogue variable changes sign. It is
simple to use a comparator to produce a logic signal,
Cp on Fig. 7, which is ‘one’ during this time and switches
smartly to ‘zero’ at the end. This signal can, as shown,
inhibit the clock to give the appropriate time on stage 6.

For testing the logic, the free-running clock can be
replaced by a single-shot (MANUAL) pulse, and another
useful feature is a manually applied FREEZE signal
which causes the computation to stop at some particular
stage (stage 2 on Fig. 7) at which the integrators will all
be in HOLD. Not shown on Fig. 7 is a means of
obtaining a SET state in which potentiometers and
initial integrator values can be set, and there are some
technical details omitted which ensure that the inhibit
signals can only open or shut the clock gate in between
the clock pulses.

Some of the points made above will still be relevant
when a digital computer is made to control the analogue
integrators and switches.

Acknowledgements

We wish to thank A. S. Charlesworth and the computer
technicians led by E. Perkins for assistance at Bath
University on many occasions; also K. Jones of Elec-
tronic Associates Ltd. in connection with the computing
runs on the heat flow problem; and the Science Research
Council for financial assistance to T. I. Silvey.

BUTLER, R., LLoYD, E. C,, MicHEL, J. G. L., and SuLLy, E. D. (1962). A.I.C.A., No. 1, pp. 15-26.

CARLING, L. N. (1968). A.I.C.A., No. 1, pp. 6-18.

CoppLE, C., HARTREE, D. R., PORTER, A., and TysoN, H. (1939). J. Inst. Elec. Engrs., Vol. 85, p. 56.
Eyres, N. R., HARTREE, D. R., INGHAM, J., JACKSON, R., SARGENT, R. J., and WAGSTAFF, J. B. (1946). Phil. Trans. Roy. Soc.,

A, Vol. 240, pp. 1-57.

HARTREE, D. R. (1950). Calculating Instruments and Machines, Cambridge University Press.

HARTREE, D. R., and WOMERSLEY, J. R. (1937). Proc. Roy. Soc., A, Vol. 161, pp. 353-366.

MacKay, D. M., and FisHer, M. E. (1962). Analogue Computing at Ultra-high Speed, Chapman and Hall.

MircHELL, E. E. L. (1963). S.A.G. Report No. 19. Electronic Associates Inc., Princeton, N.J.

MIura, T., and IWATA, J. (1966). Simulation, Vol. 6, pp. 105-108.

SiLvEY, T. L. (1966). M.Sc. Thesis. Bath University of Technology.

VICHNEVETSKY, R. (1968). Proc. Spring Joint Computer Conference, 1968. I.F.I.P. Congress, Edinburgh 1968. (Both in the

press.)

Book review

Automatic Programming, Vol. 6, part 3, by P. Lucas and
K. Walk, 1969; 182 pages. (Pergamon Press Ltd., £2.00)

Part 3 of this volume contains just one paper: ‘On the formal
description of PL/1’ by P. Lucas and K. Walk.

‘This paper presents the tools and the design criteria for
the formal description of programming languages. The
results reported were achieved mainly during the development
of the formal definition of PL/1 as documented in a series of
technical reports (published by IBM Laboratory, Vienna).
An appropriately tailored subset of PL/1 is used to illustrate
these results. Their applicability is, however, not restricted
to PL/1.” (quoted from first paragraph).

The paper must be heartily welcomed as the first public
manifestation of the valuable and original work which has
been carried out over a period of some five years in the
IBM Laboratory at Vienna. It is recommended as a useful
general overview of the subject, suitable as an introduction
for a reader with some inclination towards formal studies and
at least a nodding acquaintance with PL/1.

At the same time, it must be recognised that it is impossible
to convey any full understanding of the properties of the
‘Vienna’ method and its application to PL/1 within the limits
of a monograph. Like Gibbon’s ‘Decline and Fall’, the
true nature of the achievement can only be appreciated after
completing the entire work in unabridged form. The reason
for this is plain. The purpose of a formal language definition
is to be complete—to fill all the ‘gaps’ that may be left in an
informal description. A formalisation which appears to be
partially complete can be wholly unsatisfying. And yet very
few who embark on the complete work will ever finish it.

The main problem seems to me that the human reader
does not take kindly to very large sets of definitions and
axioms; he has an urgent need for worked examples and
proofs. After all, even Gibbon has his jokes, and Shakespeare
his comic relief. It is much to be hoped that the authors
will have an opportunity to present their work more com-
pletely, with more concession to human weakness, between
the covers of a book.

C. A. R. HoaARre (Belfast)

¥202 I4dy 61 U0 3senb Aq 0LE6YE/Y9L/Z/E LIeIoIE/|UulWoo/woo dno-olwepeoe//:sdiy wolj pepeojumod

