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An algorithm for solving nonlinear programming
problems subject to nonlinear inequality constraints

R. R. Allran and S. E. J. Johnsen

Advanced Structures Group, Allison Division, General Motors Corporation, Indianapolis,

Indiana, U.S.A.

An algorithm of the penalty function class which solves linear or non-linear optimisation problems
subject to equality and/or inequality constraints is described. The ‘penalty term’ consists of
exponential summands like exp [7-g(x)] where T << 0 and g(x) > 0 is a constraint. Computa-
tional experience is discussed. Convergence is proved and is typically first-order. The algorithm
has found considerable application in its ability to distinguish readily between feasible and non-

feasible (i.e. no-domain) problems.
(Received November 1968)

Many algorithms have been proposed to solve nonlinear
programming problems (Zoutendijk, 1960; Fiacco and
McCormick, 1963; Rosen, 1961). A recent review of
some such methods has been published by Fiacco (1967).
We present here an original variant of a method referred
to as a ‘sequential unconstrained minimisation technique’
(SUMT) by some writers. It is a member of a class
of methods using the concept of penalty functions.
Development and applications of this technique have
been actively pursued since mid-1966 with the result that
at present, ‘production computer decks’ are being used
routinely on nonlinear problems involving up to seventeen
state variables subject to sixty-seven inequality con-
straints.

The ability of the algorithm to solve nonlinear pro-
gramming problems is not unique. What is often
important in our applications is the ability of the present
method to sense a non-feasible problem in an unam-
biguous manner. A non-feasible problem is one for
which no point of the space of independent variables can
satisfy all constraints simultaneously. Henceforth, non-
feasible problems will be referred to as ‘no-domain
problems’. Necessary and sufficient conditions charac-
terising the no-domain case are not known at the present
time. Three partial characterisations are available
however and are proved in the appropriate section.

Numerical results are given, Lagrange multipliers for
the equivalent equality constrained problem are identified
and order of convergence is computed.

Description of the algorithm

No distinction is made between scalar and vector
quantities since it is always clear from the context what
is meant.

The general problem to be solved is Problem G:
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minimize f(x); x € EN
subject to gi(x) > 0;i=1,..., m.

Equality constraints are approximated by two opposing
inequality constraints. That is, the equality A(x) = 0 is
approximated by requiring

—e< hx)< €
where € > 0 is an acceptable tolerance. Henceforth, no
further discussion of equality constraints will be made.

The method of solution is as follows. Define an
auxiliary function, F,(x) by

Fy(x) = f(x) +>§ exp [T,,.2/(x)]

where the sequences {T;,}; i = 1, ..., m each have the

properties 0 > T, > T; ,., and lim T;, = — o for
n—aoo

i=1,...,m

If Problem G has a solution and if f and all g; satisfy
certain reasonable hypotheses, each F,(x) will have a
unique minimum at x} where

min Fn(x) = Fn(-x:)

and g,(x}) > 0;i=1, ..., m, for n sufficiently large.
It is shown in the next section that
lim [min F,(x)] = inf f(x)
n— 0 X
over the domain of x which satisfy all g;(x) > 0. That
is, the sequence of minima {F,(x})} converges to the
solution of Problem G.

As a practical matter, x{ is found first and serves as
the starting point for the search for x3 and so on.

It is instructive to examine the problem: f(x) = x,
g(x) =x—1>0,T,= — n. Itcan be readily verified
that

x¥ =1+ (log n)/n
and F,(x) = x} + 1/n for all n.
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172 R. R. Allran and S. E. J. Johnsen

The algorithm can be applied equally well to find the
maximum of f(x) subject to g;(x) > 0;i=1,...,mby
defining the auxiliary function to be

Fix) = = /() + 3 oxp [T (0]

Convergence of the algorithm

The proof of convergence of the algorithm follows the
format used by Fiacco and McCormick (1963). We
first define

D, ={x|gx)>0};i=1,...,m.

The set D = N D, is called the domain of the prob-

i=1
lem—sometimes called the set of feasible points. To
avoid trivial cases, it will be assumed that each g;(x) is a
meaningful function in the sense that D; is non-empty.
‘We assume that the following hypotheses underlie all
subsequent claims.

1. D° is the interior of D and D° # ¢
2. fand all g; are in CV
3. the set Sz = {x|f(x) > R}n D is bounded for
every R
4. inf f(x) =f, > 0.
D

Certain inequalities become easier to handle if f; > 0.
If fy < 0 but bounded, there is no loss in adding a
positive constant to it.

Let X(n, x) denote X, exp [T},.g:(x)].
i=1

Lemma 1:

(1) F,(x) is bounded below in D for each »n and
(ii) one local minimum of F,(x) exists at x} € D° for
each sufficiently large ».

Proof:
Claim (i) follows from the obvious fact that

2(n, x) >0 for all n and x so that
0 < fo = inf f(x) < f(X)+ Z(n, x) = F,(x).
D

To prove (ii), choose x, € D° so that f(x,) is sufficiently
close to f;. This may be done by choosing % so that
0 <7 <1 and x, so that 0 < f(x,) — fo <. By the
divergent property of the sequences {T;,};i=1,...,m
there is an n, such that for any n > ny F,(xo) <1 + f,.

Define a set S by

S(xq, n) = {x|F,(x) < F,(x¢)} » D for n > ny.

It is then easy to show that

e Sis closed

o S+ ¢ (since xy €.5)

e S contains no boundary points so S < D°
o ifye D — S, F,(y) > F,(xo).

To finish the proof of (ii), note that S(x, n) is closed
and bounded by virtue of hypothesis (3). By hypo-
thesis (2), F, is continuous on S, a compact set, so F, has
a minimum at some point x} € S(xo,n) for each n > n,.
Since F,(y) > F,(xo) > F,(x}) on D — S, x¥ is a local
minimum of F, in D°.

This result is stated in slightly different terms in

Theorem 1:

Subject to hypotheses (1) through (4), for sufficiently
large n, there exists at least one local minimum of
F,(x) (at x}). For any such minimum, x} € D° and
VFE,(x}) = 0.

Proof:

Lemma 1 proves everything except VF,(x}) = 0 which
follows as a necessary condition for an interior minimum.

In order to prove convergence of {F,(x¥)} to f,, an
additional hypothesis is required:

5. The minimum of F,(x) is unique.

Lemma 2 is required before proving the final results.

Lemma 2:
F, . (xy 1) < F,(x}) for n sufficiently large.
Proof:
Choose n so large that x} and x; ., are both in D°.
Then
Z(n + 1, x7) < Zn, x7)
and
Fo(x3) = fO) + Z(n, x7) > f(x7) + Z(n + 1, x7).
Since a unique minimum exists by hypothesis (5),

SG3) + Zn + 1, x3) > [ 1) +
Z(n+ 1, x5 11) = Fp(X3 1)
and hence F,(xy) > F,,(x% 1)
Theorem 2, proving convergence, follows.

Theorem 2:
Hypotheses (1) through (5) imply that

lim {min F,(x)} = f,.

Proof:

For any €>0, choose x* € D° so that f(x*)<f,+e€/2.
Next choose n, so that the following hold for every
n>ny:

e maximum {exp [7},.8:(x*)]} < €/2m

e minimum F,(x) exists
o Fopy(xhyy) < F(x7)

By hypothesis (5), F, attains its minimum at a unique
point x¥. Then X(ng, x*) < €/2 and f(x*) < fy + €/2
so that

Fn(x:) < Fno(x:o) < Fno(X*) <f0 + €.
Since F,(x}) > f(x}) > fo > fo — ¢, it follows that

|F.(x¥) — fo| < e for all n>ny and the theorem is
proved.

Corollary:

Let x* be the unique point for which f(x*) = f,.
Then {x}} — x*.

Proof:

From Theorem 2,
0 < f(x}) — fo <F,(x}) —fo <e for n sufficiently
large. Thus, {f(x})} — f,. For any positive number 7,
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Nonlinear programming 173

let S, denote the neighbourhood of x* defined by
Sy ={x|lx; — x| <m;i=1,2,..., N} and suppose
that {x}} does not converge to x*. Then there is a
& > 0 such that for some n > n, (where n, is arbitrarily
large), x* is not in Ss. Let f= min f(x). Then
D-Sg
SO >F and f(x}) —fo >F—fo >0 since x* is
unique.

This contradicts the convergence of {f(x})} to f,.
Thus {x}} - x*.

In concluding the section on convergence, it should be
remarked that the algorithm has been observed to con-
verge under much weaker conditions than those needed
in the convergence proof. There is ample experimental
evidence that the domain D need not be convex and that
the —g; and f need not be either convex or in C(

Lagrange multipliers and order of convergence

Associated with problem G is a saddle value prob-
lem S. Problem S is:
Find vectors ¥ > 0 and i > O such that

F(x, ) > F(%, &) > F(%, p)
for all x > 0 and p > 0 where

FGi, w) =) = 3 i)

The p; are called Lagrange multipliers (LM’s). From
the Kuhn-Tucker Equivalence Theorem (Kuhn and
Tucker, 1951) and the definition of a saddle point it
follows that x* solves problem G only if there exists
wi > 0 such that

V) = 5 1 Ve(x®) M
and
3 e =0 @

where g;(x*) > 0 for all i.

These results are subject to appropriate hypotheses
and the ‘Kuhn-Tucker constraint qualification’ all of
which are implied by the hypotheses invoked in Theo-
rem 2. Equation (2) implies that if for some i,
g:(x*) > 0, then p% = 0 and if g;(x*) = 0, u% > 0.

To apply this result to the present case, fix n and note
that VF,(x¥) = 0. It follows that

0= VG + X T Vei(ed): oxp [Tirgi D) ()

Let A;, denote T;,.exp [T;,.g:(x¥)]. Then (3) may be
rewritten in the form

VAt = — 3 A Vgl @

By the corollary of Theorem 2, lim x; = x*, and
since fe CO®, lim Vf(x¥) = Vf(x*). Therefore,

n—»oo

lim X A;,.Vg(x}) exists and is equal to

n—o i=1

3 lim A, V().

i=1 n—>o

* It is assumed further that x* > 0.

Since each g;e CV also, lim Vg,(x}) = Vg,(x*) and
it then follows that for each i, lim A;, exists making it
possible to define A; = lim A;,. Using this A; and
passing to the limit in (4), equation (4) becomes
Vi) = — 3 A.Vgi(x®). )
i=1

From equations (1) and (5),
T (5 + A).Vex) = 0. ©)

The vectors Vg;(x*) are assumed linearly independent
and then

/.L}‘=-—~A,-;l'=l,...,m. (7)
Thus, the LM’s are given by
‘lL* = - hm Tin' exp [ngu(x:)] (8)
n—o

From (8) it is clear that u} = 0 if the g; is not binding.
Let p denote the number of binding constraints.

Exact LM’s calculated from a tightly converged
solution of the corresponding equality constraint prob-
lem are compared in Table 1 with LM’s derived from (8)
for a problem in which m =17, p=4, N="17. The
difference p% — pu; could have been reduced by con-
tinuing the sequential solution to larger 7, (equation (8)).

The availability of LM’s provides a means of compu-
ting order of convergence. If the sequence {x,} con-
verges to « and if there exists real numbers p and C % 0
such that

: Ixn+1 - OLI
nll>n; lxn - alp

= C,

then p is called the order of convergence of {x,} and C
is called the asymptotic error constant (Traub, 1964).

Table 1
Theoretical (p.¥) versus computed Lagrange multipliers
i ot M
1 4-482 x 10-6 4-544 x 10—¢
2 4-583 x 106 4-643 x 10—
3 2-364 x 10—6 2-453 x 10-¢
4 5-322 5-344

To find p and C for the sequence {F,(x})}, we rewrite
F,(x) in the form

Fy(x) = f(x) +N§C (m, x) + Ej (n, x)

where NBC denotes the sum over all non-binding con-
straints while BC denotes the sum over all binding
constraints. Note that the concept of order of con-
vergence, as defined above, does not apply to the case of
no binding constraints. Accordingly, we suppose that

> contains at least one summand. It is customary in
BC

most applications to choose T;, = K".T;, for n > 1 and
all i where K > 1. For such choices of the penalty
factors,
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1 Ain Ain
R S =~ | 3 7+ 2 3]

BC +i0,

It has been noted earlier that

A A .
lim ¥ - =0and lim ¥ 2=3Y L.
n—o NBC TiO n—>wo BC i0 BC Ti0

Using these relations, the result
FupiGer) — fGri0) 1

n—o F,,(X:) _f(x:) K

follows. This implies that the order of convergence is 1
and that the asymptotic error constant is 1/K. Num-
erous computational verifications have confirmed this
result.

It is tempting to believe that large K’s will produce a
tightly converged solution ‘more quickly’ than smaller
K’s will. For large K’s, fewer members of the sequence
{F,(x%)} are required to attain a given small neighbour-
hood of x*. However, it is almost invariably true that
more actual computation time is required to find suc-
cessive members of the sequence {x}} for large K than
for small K. There appears then to be an optimal
choice of K for each problem in the sense that such a K
will enable one to ‘converge’ a problem with the least
amount of computation.

The case of no-domain

To motivate the discussion of the no-domain case
consider the problem in one variable—viz. find min f(x)
subject to x < a and b < x where a <<b. Restated,
this is equivalent to the problem: find min f(x)

X

subjectto gi(x) =a— x>0
and X)) =x—5b>0.

Obviously this is a no-domain problem. Suppose
that it is not known a priori that this is a no-domain
problem and the auxiliary function is defined in the usual
way by

Fy(x) = f(x) + exp [T},.g1(x)] + exp [T,,.8:(x)]

Whether the original problem has a domain or not,
F,(x) is defined wherever f(x) and g;(x) are defined—a
crucial property. To provide a concrete situation, take
T,,=T,,=—mn, f(x)=x, a=1 and b=2. For
these choices, F, becomes

F,(x) = x +exp [—n(l — x)] + exp [— n(x — 2)].
For large n, x5 = 3/2 asymptotically, and
F,(x%) = 3/2 + 2. exp [n/2].

Moreover, F,(xy) rises exponentially with » to arbitrarily
large positive values. This behaviour of the algorithm
carries over to problems in higher dimensions and
provides the basis for deciding in practice whether or
not a problem is a no-domain problem.

As suggested in the example, if the problem has no
domain, it appears that there are points x}, for suffi-
ciently large n, at which F,(x}) is a minimum and
lim F,(x}) = + oo. Necessary and sufficient condi-

n—o

tions characterising the no-domain case are not known

at the present time. Three partial characterisations are
proved in Theorems 3, 4 and 5 which follow.

Theorem 3:

If for all n sufficiently large (i) F,, has a minimum at
xp and (i) if lim F,(x¥) = 4 oo, then no point of D is

n— oo

in any compact subset of EN.

Proof:

Let S denote any compact subset of EN. Then f is
bounded on S so let C(S) = sup f(x). Choose any
s

number M > C(S) + m. By hypotheses, there exists
ny(M) so that for all n > ny(M),

Sx) + X (n, x) > f(x7) + Z (n, x7) = F,(x})

> M > C(S) + m.
Then

as) + Z(n, x) > f(x) + Z(n, x) > C(S) + m
and it follows that X(n, x) > m for any x €S and for
all n > ny(M). If gi(x) > O for all i, then T;,.g(x) <0
and exp [T},.g:(x)] < 1 from which Z(n, x) < m for
all n. Therefore, Z(n, x) > m implies g;(x) <O for
some i and all x € S. Hence by definition of no-domain,
S contains no domain points.
A variation of theorem 3 follows.

Theorem 4

If for all n sufficiently large, (i) F, has a unique mini-
mum at x; and (ii) lim F,(x%) = + oo, then D = ¢.
Proof:

Suppose xo € D. Then Z(n, xy) < m.

Since xj is the minimum of F,,,

F(x¥) < Fy(x,) or

F,(x3) < f(xo) + 2(n, xo) < f(xo) + m, a bound inde-
pendent of n.

Therefore {F,(x})} is bounded contradicting (ii). Thus

Theorem 5:

If for all n sufficiently large, (i) F, has a minimum, x},
(ii) if D = ¢ and (iii) if f is bounded below by M > 0
for all x € EN, then

lim F,(x}) = + oo.
Proof:
By (ii) there exists an € < O such that for some i = k,
lim g, (x}) < e <.

n— oo

Then
lim F(xy) = lim [f(x7) + Z (n, x})]

n—- oo n—co

> lim [M + X (n, x;)]

n—oo

lim [M + X' (n, x}) + exp [Ten-gr(x]]

n— o

> lim [M + X' (n, x3) + exp [Ty,.€]]

n— o

\%

V

lim [exp [T;,.€]] = + ©

n— oo
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Table 2

No-domain example in six variables

FUNCTION
NAME 1 2
X 0-2842 0-2831
x5 0-7083 0-7013
x3 0-3261 0-3237
x5 0-1533 0-1495
x* 0-3056 0-2933
x; 0-0601 0-0495

f(xH 3-260 3-230

F,(x*) 17-4 47-4

where X’ (ns x:) =X (na x:) — eXp [Tkn'gk(x:)]'

Theorem 4 is the result most often applied in practice
to detect no-domain cases. For complex problems it is
rarely possible to guarantee a unique minimum for F,.
Moreover, observations on any finite set of F,(x¥) values
however large, cannot guarantee that lim F,(x*)= -+ co.

n— oo

These objections notwithstanding, much computational
experience has shown that (at least for applications with
engineering significance) if the sequence {F,(x¥)} of

3.0

X, 2.0

1.0

Fig. 1. Plots of x% versus » for various i

n

3 4 5
0-2827 0-2824 0-2820
0-6957 0-6925 0-6915
0-3243 0-3254 0-3258
0-1478 0-1471 0-1466
0-2847 0-2802 0-2785
0-0443 0-0419 0-0411
3-205 3-192 3-187

481-0 5-86E + 4 8-1E + 8

minima increases rapidly for n = 4, 5, 6, etc. when
T;y = Kn.T;o(K = 2, 3), the problem at hand is indeed
a no-domain problem. A typical example of this
behaviour is shown in Table 2 for a problem in which
N=6,m=19and K= 2.

It is worth noting that these properties could be used
to test a family of inequality constraints for feasibility
by simply applying the algorithm to Problem G with
S(x) = 0. A similar suggestion was apparently made
by Motzkin (1952) for the case of linear g;(x).

0.7
0.5 ¥ X12
0.4
0.3
0.2
0.1 /\ \ s : X9
N xg
\-¥ X7, Xg
ol v v Ty .t * ]
0 5 10 15 20

Fig. 2. Plots of x} versus n for various 7
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Convergence behaviour in a twelve variable problem

The method described herein has been applied to
many physically meaningful problems. As such, the
objective functions and constraints are often quite
complex and frequently contain functions involving
absolute values and logical ‘if* statements. Such struc-
tures have partial derivatives which experience finite
jumps at points or along arcs in EN,

These problems are readily handled by the algorithm
provided an appropriate method for locating the mini-
mum of F,(x) is used. The well-known Fletcher-
Powell-Davidon (Fletcher and Powell, 1963; Davidon,
1959) method (FPD), which requires continuous first
partial derivatives, has been used in the vast majority of
our applications and when used, the occurrence of jumps
in the partial derivatives cannot be tolerated. Various
schemes are available to smooth such discontinuities.
Our work employs a variant of the arctangent function to
do this. An example of how a large problem converges is
shown in Fig. 1 and Fig. 2 and in Table 3. For this
example, N =12, m = 67, p = 10 and T}, = 2"/2.T;;
i=1,...,67. The FPD method was used to minimize
F, and the problem was computed on the IBM 360/44
computer in extended (16 decimal) precision. Comput-
ing time was 86-4 minutes. The detailed structure of
these convergence paths (Figs. 1 and 2) depends on
many factors—i.e. the starting point for finding x%, the
choice of T-sequences, etc. These data were extracted

from a file of production runs and have no intrinsic
significance here except to illustrate the convergence
behaviour of a large problem. Table 3 lists all the data
plotted in Figs. 1 and 2. Table 3 also shows the
behaviour of the u¥ for all ten binding constraints (all
other p* are rapidly going to zero).

From n =9 onward, the u} are ‘practically con-
verged’. The noise observed in these values can be
attributed directly to the limited precision with which the
x¥ were determined. For each n, x} was said to be
converged when max |[dF,(x)/dx;| < 0-1. Note the

extreme range of the p}:—from -5 X 1076 to 4-4.
There is nothing in the theory of convergence which
requires anything special of the 7-sequences except that

0>T;,>T; . foralliandn> 0
and
lim T;,= — co.
In most applications to date, T-sequences have been
defined by

T,~,,=K".Ti0;i=1,...,m

and T;, < 0. There has never been a clear need to use
different K’s for different constraints. Other methods
of defining T-sequences have been found useful. The
most important of these is the so-called ‘constant 7' — g
product method’. An almost arbitrary set of T;, are

Table 3
Typical convergence behaviour of a 12-variable problem

n XY X%n x5, Xhn x§n Xn X X%n Xon X Yon *Tin X fon
1 0-467037 0-048137 1-44619 1-74703 0-656308 0-170542 0-044916 0-044165 0-118909 1-19516 0-807825 0-663840
2 0-484049 0-043871 1-45467 1:73773 0-652150 0-178412 0-045089 0-045301 0-126551 1-19210 0-769976 0-643841
3 0-491110 0-034472 1-49282 1:76906 0-589870 0-174744 0:041826 0-042565 0-111113 1-16016 0-709137 0-585041
4 0-485855 0-024135 1-60593 1-88570 0-507164 0-157993 0-037528 0-038361 0-087592 1-12097 0-638072 0-554408
5 0-467993 0-017088 1-85306 2-15201 0-444748 0-130200 0:034250 0-034968 0-071656 1-11395 0-584225 0-528923
6 0-441001 0-013752 2-19656 2-52285 0-415242 0-130534 0-031642 0-032084 0-073730 1-13316 0-549769 0-513571
7 0-418902 0-008575 2-52650 2-88333 0-401892 0-086176 0-029644 0-029818 0-088600 1-13536 0-505188 0-505392
8 0-411850 0-004120 2-78323 3-16270 0-396575 0-:077359 0-028597 0-028649 0-100913 1-13342 0-468666 0-501809
9 0-411247 0-000987 2-94279 3-33519 0-394679 0-073318 0-028097 0-028102 0-108798 1-13041 0-444024 0-500267
10 0-411179 0-000541 2-96992 3-36481 0-394488 0-072669 0-028044 0-028046 0-109915 1-13005 0-441481 0-500118
11 0-411133 0-000310 2-98184 3-37784 0-394408 0-072388 0-028022 0-028023 0-110492 1-12989 0-440275 0-500056
12 0-411106 0-000185 2-98743 3-38395 0-:394373 0-072257 0-028011 0-028012 0-110803 1-12981 0-439671 0-500029
13 0-411092 0-000114 2-99022 3-38700 0-:394356 0-072193 0:028006 0-028006 0-110978 1-12976 0-439356 0-500015
14 0-411087 0-000073 2-99170 3-38862 0-394347 0-072159 0-028004 0-028004 0-111080 1-12974 0-439184 0-500009
15 0-411078 0-000048 2-99248 3-38946 0-394343 0-072141 0-028002 0-028002 0-111141 1-12973 0-439085 0-500005
16 0-411073 0-000032 2-99291 3-38994 0-394340 0-072131 0-028001 0-028001 0-111181 1-12972 0-439030 0-500003
17 0-411074 0-000022 2-99321 3-39026 0-394339 0-072124 0-028001 0-028001 0-111204 1-12972 0-438994 0-500002
18 0-411070 0-000016 2-99336 3-39042 0-394338 0-072121 0-028001 0-028001 0-111221 1-12971 0-438971 0-500001

F () f(xp) Win W5y H3, Whn T P Hn Wen  BSn  Hion
1 8-17558 3-65912 — — — — — — — — — —_
2 6-11999 3-49765 — — — — — — — — — —
3 4-05644 2-90479 — — — — — — — — — —
4 2-72959 2-32642 —_ — — — — — — — — —_
5 2-06421 1-95123 — — — — — — — —_ —_ —_
6 1-79601 1-76541 — — — — — — — — — —
7 1-68248 1-67271 — — — — — — — — — —
8 1-63341 1-63054 O0-5214E—6 0-1726E—5 0-3329E—5 0-1909E—5 3:727 3-881 O0-5007E—1 0-3428 2-118 0-5109
9 1-61165 1:61128 0-4902E—6 0:2606E—5 0-3000E—5 0-1871E—5 4-127 4-384 0-4722E—1 0-3077 2-174 0-5097
10 1-60941 1:60925 0-4865E—6 0:2722E—5 0:2973E—5 0-1873E—5 4-162 4-431 0-4707E—1 0-3037 2-180 0-5108
11 1-60846 1:60839 0-4851E—6 0:2732E—5 0:2949E—5 0-1865E—5 4-212 4-443 0-4711E—1 0-3016 2-187 0-5098
12 1-60802 1:60799 0-4844E—6 0:2730E—5 0-2943E—5 0-1866E—5 4:199 4:470 0-4668E—1 0-3012 2-185 0-5114
13 1:60781 1:60779 0-4839E—6 0-2730E—5 0:2940E—5 0-1866E—5 4:207 4:478 0-4668E—1 0-3007 2-185 0-5110
14 1:60770 1:60769 0-4907E—6 0-:2724E—5 0:2948E—5 0-1864E—5 4-189 4:476 0-4651E—1 0-3034 2-172 0-5148
15 1-60764 1:60764 0-4902E—6 0:2723E—5 0:2937TE—5 0-1860E—5 4-211 4-476 0-4554E—1 0-2996 2-184 0-5084
16 1-60761 1-60760 0-4866E—6 0:2707TE—5 0:2937E—5 0-1870E—S5 4:235 4:479 0-4661E—1 0-2965 2:203 0-5132
17 1:60759 1:60759 0-4872E—6 0-:2728E—5 0:2928E—5 0-1872E—5 4:214 4:470 0-4569E—1 0-2972 2-191 0-5159
18 1-60758 1-60758 0-4823E—6 0:2700E—5 0:2950E—S5 0-1871E—5 4-241 4-472 0-4673E—1 0-3005 2-182 0-5106
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chosen in order to find xf. Having done this, a new
set of T7s, {T;} are defined by

Ty =K[lgGD;i=1,...,m
where K’ = — 2 (or —3, or —4 etc.). These are used
to find x} from which
T, = 2.K’/|gi(x3)|, or in general
Tiw=n.K/[lgG);i=1,...,m;n> 1.
This scheme has no known theoretical justification but
it appears to have a ‘smoothing property’ in the sense that

convergence paths often appear to be smoother and as a
result, less computation time is required to find x} than
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Book review

Theory of Problem Solving—An Approach to Artificial Intelli-
gence, by R. B. Banerji, 1969; 189 pages. (Elsevier Pub-
lishing Co. Ltd., £6.50.)

As Banerji points out in his preface, this book is an account
of work at Case University rather than a general account of
work to date in this area of Artificial Intelligence Research.
The title is misleading since although a general definition of a
‘problem’ is given, wide enough to cover puzzles and 2-person
games, nothing worth calling a theory of problem solving is
developed.

The first half of the book deals with alternative formulations
of the notion of a problem and the associated notions of stra-
tegy, winning strategy, etc. A number of ‘theorems’ are pro-
duced and duly proved but they are all rather obvious con-
sequences of the definitions. The reader has to plough through
a lot of formalism for scant reward. Two classes of games
are then defined and studied: Nim-like games and Tic-tac-toe
games (Tic-tac-toe = noughts and crosses). The latter in-
clude 3-dimensional Tic-tac-toe and Go-Moku. For Nim-
like games some graph theoretic ideas are introduced. It
transpires that the ‘graph of the game’ can sometimes be
expressed as the sum of simpler graphs and that this helps
one to find positions which enable a win to be forced. The
technique is confined to Nim-like games. The notion of
forcing positions is also explored for the Tic-tac-toe class of
games and a method for discovering such positions is given.
A Go-Moku program is referred to but not described.

The second half of the book deals with concept-formation,
alias ‘induction’ or ‘pattern recognition’, especially as a tool
for classifying situations in a game. It considers how to find
a derived property as a Boolean combination of simpler ones
so as to account for given examples. Some algorithms are
given but there is no information about their effectiveness.
A language for describing more elaborate concepts is descri-
cribed, in fact first order logic with some primitives to handle
pairs and strings, but no algorithms are given for this.

The style throughout is set-theoretic. Banerji rightly depre-
cates the looseness of much earlier writing in this field.
Unfortunately the new-found precision only exposes the lack
of any general theory of problem solving. This is mostly
formalism rather than mathematics. There has indeed been
useful and non-obvious work in the area of semi-enumerative
search methods e.g. dynamic programming, branch and bound
methods, the ‘alpha-beta heuristic’ for game playing and
Samuel’s work on learning in checkers. But although this
book gives detailed study to two classes of games it does not
come up with any new generally applicable technique, nor
does it provide any really helpful framework for previously
existing work. Since mathematical concepts as simple as a
finite state automata or even a semi-group have produced
interesting theories there is no a priori reason why there should
not be a theory of problem solving. But we are still waiting
for one.

R. M. BurstALL (Edinburgh)
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