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Computational experience with quadratically
convergent minimisation methods

B. A. Murtagh and R. W. H. Sargent

Imperial College, London SW7

A recently reported minimisation method allows great flexibility in choosing successive steps
without losing the property of quadratic convergence, but special precautions are necessary to
ensure ultimate convergence from an arbitrary point for general functions. The paper makes an
analysis of the required conditions, which give rise to several possible algorithms, and results of
these for a number of problems are presented and discussed.

(Received March 1969)

1. Introduction

In a recent paper (1968), the authors have discussed a
class of quadratically convergent minimisation methods
which allow steps of arbitrary length and direction. The
paper was directed to the problem of minimisation in the
presence of constraints, using a variable metric projection
operator, but recent numerical experience confirms that
one of the methods discussed is in itself a powerful tool
for unconstrained minimisation.

An initial approximation to the inverse of the Hessian
matrix of second partial derivatives is updated recursively
at each step. This approach is similar to Davidon’s
variable-metric method (1959) and the improved version
of this due to Fletcher and Powell (1963), the particular
matrix-updating scheme being only one of a number of
possible alternatives. The scheme to be discussed here
was first mentioned by Davidon (1959) and discussed
more recently by Broyden (1967) and Davidon (1968) as
well as the present authors (method 2 of the earlier paper,
1968).

Its attractiveness in constrained minimisation is
obvious, as the presence of constraints and the restriction
of search steps to subspaces which vary as the search
continues do not mar its convergence properties. Its
attractiveness as an alternative to the well-established
method of Fletcher and Powell for unconstrained mini-
misation lies in the fact that its quadratic convergence
properties for arbitrary steps obviate the need for
successive minimisation along each search direction.
This is likely to reduce the total number of function
evaluations required, and in addition it is possible to
choose the steps to ensure overall convergence for a
rather general class of functions.

Whether or not accurate one-dimensional searches are
necessary for the Fletcher-Powell method when it is
applied to general functions seems to be a point of some
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contention in the literature, but in any case the method
remains stable, with the approximating matrix finite and
positive-definite. The present matrix updating scheme
does not enjoy this stability. Indeed, there is no
guarantee that the matrix will remain finite and positive-
definite even for quadratic functions, so that remarks
concerning quadratic convergence must be qualified by
an assumption of stability.

The work reported here was therefore undertaken to
discover whether instability was significant in practice,
and to investigate various methods of dealing with it if
it should arise. Further efforts have been made to
establish, both theoretically and by numerical experi-
mentation with a variety of problems, the most effective
search algorithm, and comparisons with the Fletcher-
Powell method are also given.

2. The matrix updating scheme

It is desirable to base minimisation methods on a local
quadratic approximation to the function, since this
should at least ensure fast ultimate convergence for most
functions when the steps become small.

For quadratic functions, convergence is obtained in
one step by the formula:

X —x,=— H g, n

where H is the Hessian matrix of the second partial-
derivatives, and g, = g(x;), the gradient at the current
point x;.

Changes in gradients are also related to changes in
position by the Hessian matrix:

9x = Hp, V)]
where ¢, = g, — gx—y1 and p = x; — X4y

The basis of the class of methods considered is to use
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these differences to build up information on the Hessian
without calculating it explicitly. Thus, we start with an
initial approximation, Sy, to the inverse of the Hessian
and update it recursively so that

Squ:R, jzl,...,k (3)

There are few restrictions on the choice of steps p,
for updating the matrix, and indeed it is evident from (2)
and (3) that for a quadratic function with non-singular H
any set of n linearly independent steps spanning R” space
yield S, = H~!, and the minimum can thus be found
from equation (1) at the (n + 1)th step. Obviously a
lucky choice of S, can produce this result in less than
n steps so it is logical to use the current approximation S,
in equation (1) to generate the steps. However this can
give a very poor prediction of the position of the mini-
mum, so we introduce an arbitrary scalar, «;_, to allow
a variable step-length along the predicted direction,
according to the equation:

P = — %4 _1Sk_18k—1 @)

It was shown previously (Murtagh and Sargent, 1968)
that this choice of step produces the stronger result that
a stationary value of a quadratic function is found at the
latest at the (n + 1)th step (with «,= 1) even if H is
singular.

In the method discussed in this paper, the matrix is
updated by the symmetric formula:

S =3S8k_1 + Zsz/ck ®)
where Zk = Pr — Sk—149x } )
Cp = quk

The Fletcher-Powell method can also be considered a
member of this class of methods, with the recursion
formula:

PkP/{ N Sk—lqkqfsk—x
P/ZQk ‘I,fSk—ﬂIk

Equations (5) and (6) generate matrices S, satisfying (3)
provided only that the function is adequately represented
by a quadratic over the range of the steps involved,
whereas equation (7) requires in addition that steps be
generated according to (4) with «, _; chosen so that the
function is minimised with respect to o«,_, along the
defined direction.

It is shown in Appendix 1 that if steps p; are systemati-
cally made to the minimum along the line, all methods
which generate symmetric S to satisfy (3) will generate
directions which are mutually conjugate with respect to
S; !, and also to the Hessian matrix, H, when used on a
quadratic function.

In Appendix 2 it is further shown that when such
conjugate directions are generated for a quadratic
function, using either of the above recursion formulae,
both algorithms generate the same steps from the same
initial matrix, S,.

Sk:Sk—l + (7)

3. Conditions for convergence

Other authors (Fletcher and Powell, 1963; Broyden,
1967; Davidon, 1968) have emphasised the importance
of stability, which in the context of minimisation methods
means that the function must decrease at every step.
However, as remarked by both Broyden and Davidon

this is not of itself sufficient to ensure convergence to a
minimum. The following theorem is a slight improve-
ment on the convergence theorem given in our earlier
paper (1968):

Theorem:

Suppose that the function f(x) is defined on U < E"
and is such that

(@) f(x) is continuous on Q = {x|xe U; f(x) < c},
and Q is closed and bounded.

(ii) f(x) has continuous second derivatives on
Q" = {x|xe U; f(x) < c} and there is a A such
that ||[HX)|| < A, xe Q.

Starting at any point x€ Q' with g(x) # 0, we
generate a sequence Xg, Xy, . . . , Xg, Xg 41, - - - according
to:

D1 = Xp41 — X = — o Sigx ®

Then if the matrices S, satisfy the conditions:
pllgll < [ISkgell < ol gel] &)
|8eSkgil > 0| gwll-|1Skgell (10)

where p, o, 8 are fixed positive constants, it is always
possible to choose a finite non-zero «, at each step such
that:

SO) — f(xp 1) = €0 g Sigr >0 an

with € a fixed positive constant less than unity.

With the «; so chosen, the sequence (x;) lies in Q’
and tends to Q* = {x|x € Q’; g(x) = 0} in the sense that
the distance d(x;, Q*) of x, from Q¥ tends to zero as
k — oo.

This theorem is proved in Appendix 3. Of course it
tells us nothing about the rate of convergence, but it is
desirable that any procedure should satisfy its conditions
so that ultimate convergence is assured for this general
class of functions. Unfortunately, as we shall see, it is
not always possible to do this and retain at the same time
the property of quadratic convergence. It should also be
noted that the theorem only guarantees convergence to
a stationary point. We must therefore carry out a local
search at any stationary point found, to check that it is
indeed a minimum; if it is not, the local search will give
a new starting point with a smaller function-value, and
because of condition (11) the procedure cannot return
to this non-minimum stationary point. We must there-
fore ultimately converge on a (weak) local minimum.

So long as the correction to S, _, is finite (¢, 7% 0) we
can always keep ||S,g.|| within the bounds prescribed
by (9) by multiplying S, by an appropriate scalar if they
are transgressed. Such scaling is seldom likely to be
necessary but if it is it at least leaves unchanged the
eigenvectors of S;, and hence the orientation of its
principal axes, so that second-order information is not
entirely lost.

The upper bound on ||S,g,|| serves only to ensure
that condition (11) can be satisfied for a non-zero o,
and in practice it is more convenient to set a lower bound
on o, and test this directly. If the value of «, required
to satisfy condition (11) is below this bound, we can
scale it up appropriately and scale down S, by the same
factor so that the step is unchanged.

Condition (11) provides stability, and when coupled
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with conditions (9) and (10) it ensures that the successive
steps do not stop short of the stationary point. Condi-
tion (10) limits the angle between the search direction
and the direction of steepest descent and so ensures an
initial decrease of the function along the search direction
for positive a,; it is obviously satisfied for some § if all
S, are positive-definite.

4. Maintenance of positive-definiteness

It turns out that it is possible to devise a very simple
test to check whether S, is positive-definite. For this
purpose we consider the matrix:

S() = Si—1 + tz.2] Jcy (12)
Now a theorem given by Carathéodory (1967) shows
that S(¢) is positive-definite in the range 0 < r < 1 if
Sy _1 is positive-definite and S(¢) is non-singular over
this range. From (12) we have: .
det ]S(t)l = det |Sk—ll (1 + tZZS;:lzk/Ck) (13)
and using equations (4) and (6) this becomes:
det [S(7)| = det |Sy_y|. (1 — 7 — tax_1z] gy _1/ci)
(13a)
Since «;, _; is positive it follows that S}, will be positive-
definite if S, _, is positive-definite and
2z 8k —1/cx <0 (14)

Obviously S, can be chosen positive-definite, and it is
then sufficient to satisfy condition (14) every time the
matrix is updated.

To study the conditions under which (14) is likely to
fail we examine separately the numerator and denomina-
tor, which with the aid of equations (4) and (6) may be
written:

ZkTgkq =(1- “kq)gkr_xsk—l - ngSk—lgk—l (15)
Cr = Z;{Qk =1 - “k—l)gz—rgk—lgk
— gZSk—lgk - Z;{gk—1 (16)

Using (15) to eliminate «;_; from (16), we obtain
after some rearrangement:

gZ—xsk—lgk—l-ck = szgk_,
{gZ—ISk—lgk - ng_ISk—lgk—x}
- {gZSk~1gk~gZ—1Sk—1gk—l - (gz—1Sk—1gk)2}
17

Now S _, is positive definite, so g7_, S, _,gx_; >0,
and from the Schwarz inequality :

80Sk—18k- 84— 1Sk—18k—1 > (81— 1Sk—18)*  (18)
with equality only if g, is parallel to g, _,

It also follows from (15) that if zlg, ; > 0, then
8 1 Sk_18k—1 > 8 1Sk_18: and the first term on the
right-hand side of (17) is negative.

Thus if zlg,_, >0, it follows that ¢, <O and
condition (14) is satisfied. If this occurs for o) _; > 1,
equation (15) shows that pl g, > 0 and hence a minimum
must occur along the line between x, _; and x,.

If ¢, > 0 it follows that zTg, _; < 0 and again condi-
tion (14) is satisfied. In this case (15) shows that if
0 <oy <1 we have pfg, <0 and the function is

D

decreasing at x,; unless the function is quite badly
behaved it will not have both a maximum and a mini-
mum in this range of «, _; so that this normally implies
that f(x;) </f(x—1).

It is unfortunately possible to have ¢, < 0 and
zlg,_1 < 0 together (although both can be simulta-
neously zero only if g, is parallel to g,_,), so that
condition (14) can fail. If this failure occurs at o, _; =1,
then we have plg, < 0 and we shall normally have
obtained a function decrease, as explained above. If
a stationary point occurs at o, _; =1 (i.e. pfg, = 0)
this will normally be a minimum, correctly predicted
using S, _;, so it would seem reasonable simply to set
Sk == Sk—l'

We note also that condition (14) is not guaranteed at
a stationary point along the line unless this occurs for
0 < o,y < 1, in which case zJg, ; > 0 and ¢, < 0.

From the mean-value theorem we can write:

G = H(xp_y +0p).pr, 0< 6< 1 (19)

Then substituting (19) into (15) and (16) and leaving
the argument of H understood, we obtain:

Z;,Tgkfl = O‘k71~g13;1(Sk—1HSk—1

— Sk-1)8k-1 |
Ck = ZkT‘Ik = o1 §— 1 (Sk—1HS) _

j (20)
— Sk )HS, _181 1

From these equations it is evident that changing o, _,
is unlikely to have much effect on the signs of z7g, ,
and c;, unless H is changing fairly rapidly along the
search direction, in which case quadratic fitting is
unlikely to be very useful. It therefore seems reasonable
to use the choice of a;_; to achieve a function decrease
and satisfy equation (11), then if ¢, is zero or condition
(14) not satisfied at the resulting point it is probably best
to abandon the quadratic updating formula for this step.

However, S, _ is positive definite and contains all the
earlier information accumulated on local quadratic
behaviour, so that it would seem worth trying S, = S, _,
in this situation. Unfortunately numerical experience
shows that in many cases this rule leads to frequent
subsequent failure of the conditions. However there is
still a possibility of retaining the earlier information in
Si_1 by updating to S, using equation (5), but with a
different choice of c,.

That this does retain earlier quadratic information in
Sy _1 is easily proved:

Suppose that the local quadratic approximation of
equation (2) is valid and that:

P; = Sk 19; for some j
Then from (2) and the above:
%Sk-19; = 4{p; = Py Hp; = P4
and from the definition of z, in (6):
Z0q; =Pid; — 93 Sk—19; =0
Thus from (5):
Siq; = Sik—19; = p;

Of course equation (13a) does not hold for a general
¢ so that (14) is no longer a condition for positive-
definiteness, but it follows directly from (5) that S, is
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positive-definite for any positive c¢,. Since z, rapidly
approaches zero as the minimum is approached it is
important to keep ¢, in scale so that a significant
correction to S, _; is made, and the obvious choice is
¢x = zlz,. Several other choices were tried numerically,
but this choice in fact proved the most successful.

If even this device fails, there is nothing for it but to
start afresh with a new arbitrary matrix which does
satisfy all the conditions, and the identity matrix is the
obvious choice.

This problem of scale in the correction to the matrix
is also relevant to testing whether ¢, is too close to zero,
and in practice the condition tested was:

lex] = 8.27z, (21)

Davidon’s recent ‘variance algorithm’ (1968) uses the
same matrix recursion formula, and he also chooses a
new c;, if the value given by equation (6) fails to keep S,
positive-definite. However his algorithm uses a fixed
step-length with «,_; = 1 in equation (4); if this step
gives a function increase the matrix is still updated but
the step is rejected, starting the next step again from
X, _; but using the updated S,.

It is of interest to compare the behaviour of the
Davidon-Fletcher-Powell recursion formula (Colville,
1968) with the above results. Proceeding analogously
to Fletcher and Powell (1963), we have

(P/{x)2 (qkTSk —1%)?
xTS,.x = xTS, _x + —
, T Pl qISko 14k

whence :
(pix)*
P/{ dr

XIS, x > (22)

on account of the Schwarz inequality, and the equality
occurs only if x is parallel to g,. If pfg, > 0, x cannot
be simultaneously parallel to g, and orthogonal to p,,
so it follows from (22) that this is a sufficient condition
for S, to be positive-definite.

This condition is the analogue of condition (14), and
using equation (4) it may be written:

Pidr = o 1(88_ Sk—18k—1 — & 1Sk—18) >0 (23)

It is always satisfied if we step to the minimum, for then
the second term vanishes. Otherwise the condition may
fail, but unless the function is badly behaved the quantity
gl Sy _ 18 will normally decrease from g7_,S;_;18:_,
as a,_, increases from zero, becoming negative as we
pass through the minimum; the condition is therefore
certainly satisfied for a range of «,_; beyond the mini-
mum, and in most cases for all positive values of o _;.
If condition (23) is satisfied and S,_,; is positive-
definite, we note that both denominators in equation (7)
are non-zero, so the correction to S, _; is finite. Of
course the Davidon-Fletcher-Powell method may also
fail on conditions (9) and (10), but this is an unlikely
occurrence as for the method described above.

5. Choice of step-length

The desirability of generating conjugate directions has
been much discussed, and it has been argued that this
guarantees that the space is fully spanned. However

this is not necessary to ensure convergence, nor is it
sufficient even if the function decreases at each step, and
the necessity of determining the minimum accurately
along each search direction in any case seems likely to
increase the required number of function evaluations.
On the other hand, minimisation does give the largest
possible function decrease along each direction, and it
turns out that condition (11), which does ensure con-
vergence if the S, are positive-definite and bounded, will
in all probability be satisfied at the minimum, as the
following analysis indicates:

Suppose that p, ., steps from the point x; to the
minimum along the line at point x, . ;. Then a Taylor
expansion about the point x, gives:

JO D)= fx0) +&lpi 1 +3pf - HOx+ O0pic 1) -Prta
where 0 < 6§ < 1 (24a)

On the other hand, a Taylor expansion about the
point x; ,; gives:

SO = ) + P85 Hx + k1) - Prosr
where 0 < ¢ < 1 (24b)

From (24a) and (24b), and using equation (4):

S(x) — f(xeoy) = %“kgzskgk + %1714r AH (xy + Pk +1)
— H(x, + 9Pk+1)}1’k+1 (25)

This is true for any method using steps given by
equation (4) no matter how S is generated, and if € in
condition (11) is appreciably less than % the function
would have to be very badly behaved for the second
term in (25) to swamp the first term and cause the
condition to fail. In general therefore condition (11) is
a much less stringent requirement than going to the
minimum along the line.

Since the recursion formula defined by equations (5)
and (6) gives quadratic convergence for any step, and
will in addition generate conjugate directions if minimi-
sation is used, we can use it to make a direct numerical
test of the desirability of the latter without extraneous
complications. In addition, comparison of results for
this conjugate-direction method with those for the
Fletcher-Powell method enables us to compare the
relative effectiveness of the two matrix recursion formulae.

One would expect the Fletcher-Powell method to show
to advantage in this comparison, as the conditions for
use of the quadratic updating formula in our own
method are likely to fail more often. The results of the
last section indicate one way in which some fruitless
computation might be avoided by early detection of the
likely failure of these conditions. It was shown that if
zlgr—1 > 0 at «;_; = 1, then the function will have a
minimum in the range 0 < «;_; < 1 and the conditions
will also be satisfied at this minimum. Conversely, if
zlgr1 <0 at o;_; =1, the function will normally
have decreased and the minimum occurs at o;_; > 1;
if then ¢, < 0 condition (14) fails, and since a change of
o —1 1s unlikely to change the conditions much, it will
probably also fail at the minimum. This suggests an
initial step with «;, _; = 1 and testing zJ g, _; > O there.
If this is satisfied one can go to the minimum with the
assurance that the matrix can be updated there. Other-
wise there has been a function decrease and the step
provides an improved new starting point: if ¢, > 0 the
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quadratic updating formula can be used and otherwise
the matrix is reset.

In these methods the minimisation along the line can
be carried out in various ways. In our earlier paper
(1968) a quadratic interpolation method was suggested
which used the initial function and gradient values but
required only function evaluations in the search;
Davidon (1959) and Fletcher and Powell (1963) on the
other hand suggested cubic interpolation requiring both
function and gradient evaluation at each point in the
search. Preliminary numerical experiments showed that
the quadratic method was relatively inefficient and it was
well worth accepting the gradient evaluations required
for the cubic method, especially on steep-sided valleys.

It was shown earlier that the choice of «, _, has little
effect on the conditions for using the quadratic updating
formula, and that condition (11) for convergence will
usually be rather easy to satisfy. Minimisation certainly
produces the largest possible function decrease for the
given direction, but since accuracy in locating the mini-
mum is no longer necessary for quadratic convergence it
seems reasonable to be content with achieving merely
the greater part of this possible function decrease. In
view of the efficiency of the cubic minimisation algorithm,
one can revert essentially to the idea of Davidon’s
original variable-metric algorithm (1959), which simply
used one iteration, and carry out only as many iterations
as required to satisfy condition (11). In general this is
indeed likely to be only one iteration, but if we do
approach the minimum we have seen that we are
reasonably sure of satisfying condition (11) there. For
difficult functions even this may fail, but we know that
condition (11) must be satisfied for sufficiently small o,
so that if necessary we can continue with successive
halving of «, until condition (11) is satisfied; it may be
said at once that this has not been found necessary in
any numerical test made so far.

Often an initial step of «, _; can be very large and lead
to a function increase. Fletcher and Powell (1963) noted
this difficulty and suggested an alternative choice of «,
in this situation, basing it on equation (25) assuming a
quadratic function and an estimate of the function’s
minimum value. This leads to the initial choice:

oy = min {1, 2[f(x; ) —fL.B.]/gk[ 1Sk—18k—1y (26)

where f; p is the estimated lower bound on f(x). In
many cases f7 p can be taken as zero. Again numerical
experiments were carried out to test the possible advan-
tages of this initial choice.

6. Algorithms tested

The explicit procedures for a single step of each of the
algorithms tested are as follows:

Algorithm 1 (First conjugate-direction method)

(i) Make an initial step according to equation (4)
with o, _; given by equation (26).

(ii) Use cubic minimisation to find the minimum.

(i) If ||gx]| < & proceed to the local search for
confirmation of a minimum.

(iv) Test oy > o’ and [|Sc_18k—1ll/l|gx—1ll = p;
rescale «; _; and S, _, if necessary.

(V) Test |cx| > 87.2]z, and zlg,_ /e, < — &; if
either fails reset Sy, but otherwise update S, _; to
Sy using equations (5) and (6).

Algorithm 2 (Second conjugate-direction method)
(i) Make an initial step according to equation (4)
with o, | = 1.
(i) If ||gkl] < 8 proceed to the local search for
confirmation of a minimum.
(iii) Ifeither z[ g, | > &’ or the function has increased
go to step (iv), otherwise test |c;| > 6"zz, and
Zl g, /e, < — & if either fails reset S, and
return to (i) for the next step, but otherwise go to
step (vi).
(iv) Use cubic minimisation to find the minimum.
(v) If ||gl| < & proceed to the local search for
confirmation of a minimum.
(vi) Test a4 > o and ||S,_ &k 1ll/llgk-1ll = p;
rescale o, _; and S, _, if necessary.
(vii) Update S, _, to S, using equations (5) and (6).

Algorithm 2a

As Algorithm 2 but with the initial «, _; in (i) given
by equation (26). In this case cubic minimisation may
generate an o, _; > 1 and if this occurs we set «; _; = 1
and return to (iii).

Algorithm 3 (Ensuring convergence)
(i) Set o) = 1.

(if) Make a step according to equation (4).

(iii) If ||gk|| < 8 proceed to the local search for
confirmation of the minimum.

(iv) Test condition (11). If not satisfied make one
step of the minimisation algorithm, or if this has
converged halve «, _;, and return to (ii).

(v) Test ay > o’ and [[S,_1gx—ill/l|gx—1ll = p;
rescale a;_; and S, _ if necessary.

(vi) Test |c| > 8”zlz, and zlg, ,/c, < — &'; if
either fails reset S}, but otherwise update S, _,
to S, using equations (5) and (6).

Algorithm 3a

As Algorithm 3, but with the initial «,_, in (i) given
by equation (26).

All these algorithms were tested with two alternative
methods of resetting S; when the tests for positive-
definiteness failed, as follows:

Reset1. Set S, = L
Reset2. UpdateS, _ to S usingequation(5)withc,=z/z,.

In the various tests 8’ is a small positive constant used
to avoid problems with rounding errors or accumulator
overflow. The constants §’, o’, p’, and ¢ were all set
to 108,

In the one-dimensional searches for a minimum
along the line, convergence was assumed when either
|glpi] < 8 or Aw.||Sy_18x ]| < 8 where Ax is the
change in o _; for one iteration of the search algorithm.
For overall convergence || g.|| < 8 was used, and in all
the convergence tests 6" was set to 104,

We were also interested in the extent to which positive-
definiteness of S, ensured that condition (10) was
satisfied, and therefore tested this condition, with
8 =104 at the same time as |c;| > 8'z]z, and
zlgy_1/cx < — & (i.e. condition (14)). In nearly all
cases however condition (10) and condition (14) suc-
ceeded or failed together, in spite of the higher value of 8,
so that it is unnecessary to incorporate condition (10) as
an additional test in the algorithms.

In the first four examples given below, results were also
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obtained for the Fletcher-Powell algorithm, this being
identical to Algorithm 1 in all respects except step (V) in
which S, _; was updated to S, using equation (7); no
test is necessary as the function is minimised along the
line. The results given for the Fletcher-Powell algorithm
for Example 5 are those quoted in their paper (1963),
and may therefore have used different criteria for
termination; they were probably also obtained with
single-precision working.

All other calculations were made on an IBM 7094
using FORTRAN double-precision arithmetic, except
for some additional results in single-precision for
Algorithm 3 to test its sensitivity to rounding errors.

7. Discussion of numerical results

For each of the examples there is a table to show the
number of function evaluations required to achieve
convergence for the different algorithms. For the first
four examples additional tables are given to compare the
progress of Algorithms 3 and 3a, in each case using
Reset 2.

Example 1. Rosenbrock’s valley (Fletcher and Powell,
1963)

minimise f(x) = 100(x3 — x,)? + (1 — x,)?
starting at (—1-2, 1-0)

The performance on this problem is shown in Table 1.

Table 1
ALGORITHM RESET 1 RESET 2
1 93 96
2 113 93
2a 94 73
3 38 60
3(S.P.) 38 60
3a 64 60

Fletcher-Powell: 80.

Algorithm 3 with Reset 1 is far superior to any others
_ in this example. Otherwise Reset 2 is in general better
than Reset 1. Algorithm 2a is better than Algorithm 2,
but the opposite is true for 3 and 3a; this is strange
because the choice « = 1 is obviously far too large in
the early steps, but Algorithm 3 nevertheless descends
faster than 3a after the second step. Single-precision
working had no effect on the results for Algorithm 3.
The Fletcher-Powell method gives results similar to
Algorithm 1 and Algorithm 2a, but none of them are as
good as 3 and 3a with either Reset 1 or Reset 2.

Example 2. Quartic with singular Hessian (Fletcher and
Powell, 1963)
minimise f(x) = (x; + 10x,)?
+ 5(x3 — x4)% + (x3 — 2x3)*
+ 100x; — x4)*
starting at (3, —1, 0, 1)

The performance on this problem is shown in Table 2.

Table 2
ALGORITHM RESET 1 RESET 2
1 52 51
2 46 46
2a 36 , 36
3 45 38
3 (S.P.) 45 38
3a 32 40

Fletcher-Powell: 64.

One would expect this problem to be a severe test for
the methods because of the singularity of the Hessian
matrix at the minimum point, and the behaviour is
indeed atypical. The minimum value of the function is
again zero, but for the same termination criterion on
|lg«l|, the minimum value is not as closely approached
as in the other problems because of the flatness of the
minimum.

The inverse matrix grows large as the minimum is
approached, but even in this extreme case no scaling of
the S, was necessary. However improvement becomes
slow close to the minimum, and this is particularly
evident in the results for Algorithm 3a. A less stringent
termination condition would in fact give results much
more in line with those for the other problems.

The Fletcher-Powell method was worse than any of
the other conjugate-direction methods (1, 2, 2a), although
the minimisation along the search directions probably
overcomes some of the problems of the poor quadratic
approximation at the minimum and accounts for the
relatively good results of Algorithms 2 and 2a.

Curiously, single-precision working did not affect
Algorithm 3, although very small differences are involved
as the minimum is approached.

Example 3. Helical valley (Fletcher and Powell, 1963)
minimise f(x) = 100[(x; — 100)?
+ =12+
where 270 = tan—!(x,/x,)
— 72 <278 < 37/2

and r=(x}+ x)'?
starting at (—1, 0, 0)

The performance on this problem is shown in Table 3.

Table 3
ALGORITHM RESET 1 RESET 2
1 82 75
2 75 73
2a 64 62
3 54 41
3 (S.P.) 54 41
3a 35 33

Fletcher-Powell: 81.

Here Reset 2 shows a clear advantage over Reset 1 in
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all cases. Again 2a and 3a perform appreciably better
than 2 and 3 respectively. The Fletcher-Powell method
is comparable with Algorithm 1, but 2 and 2a are
significantly better, and Algorithms 3 and 3a much better
still. There is still no effect of single-precision working
on Algorithm 3.
Example 4. Four-dimensional banana (Colville, 1968)
minimise f(x) = 100(x? — x,)> + (1 — x,)?
+ 90033 — xg)2 + (1 — x;)
+10-1 [(x; — 12 + (x4 — 1)?]
+ 19:8(xy — D(x, — 1)
starting at (—3, —1, —3, —1)

The performance on this problem is shown in Table 4.

Table 4
ALGORITHM RESET 1 RESET 2
1 145 153
2 193 129
2a 175 113
3 70 68
3(S.P) 88 69
3a 230 130
Fletcher-Powell: 257.
This is an interesting set of results. What is striking is

the poor performance of all methods using equation (26)
for the initial step, and particularly the Fletcher-Powell
method. As in Example 1 this occurs in spite of the
fact that many function evaluations are used in the first
few steps where o = 1 gives too large a step-length, but
the function-value for Algorithm 3 nevertheless descends
faster than for 3a. The exceptionally poor performance
of the Fletcher-Powell method is inexplicable. Algo-
rithm 3 gives clearly the best result, but in this example
there is evidence of rounding-error effects from single-
precision working, especially with the use of Reset 1.
Again the general trend is for Reset 2 to perform better
than Reset 1.

Results for this problem in its original context as a
constrained problem with bounds of +10-0 on the
variables (which are usually inactive) have been quoted
at 142 and 114 function evaluations for the Fletcher-

Powell scheme (Colville, 1968). A corresponding result
for Algorithm 3 with Reset 2 is 43 function evaluations,
the decrease from 68 quoted in Table 4 being due to the
bounds limiting the initial step-length; also, one con-
straint was active for two early steps.

Example 5. Trigonometric Functions in 5, 10, and
20 variables

minimise f(x) = X [E; — X (4;; sin x;
j=1 j=1
+ B; cos x;)]?

i.e., solve the set of simultaneous non-linear
equations

;1 (4;;sin x; + B;; cos x;) = E;
i=1,...,n

The matrix elements of 4 and B were generated as
random integers between + 100, and the values of the
variables, x; i =1, . . . , n, were generated randomly
between +7. For these values the right-hand sides,
E;, were calculated, and the starting point given as
(x; +0-18;) where the §,s were also generated as
random numbers between +a. The experiments were
repeated a number of times for n = 5, 10 and 20.

The performance on these functions is shown in
Table 5. ‘

In these examples the difference between Reset 1 and
Reset 2 is less clear-cut; Reset 1 even seems generally
slightly better, especially for Algorithm 1, although
Reset 2 is still better for Algorithm 3a. Algorithms 2a
and 3a again give better results than 2 and 3 respectively.
The Fletcher-Powell method is clearly the best of the
conjugate-direction methods. Curiously Algorithm 1
on the whole performs better than 2 or 2a, and even
compares favourably with Algorithm 3; however Algo-
rithm 3a with Reset 2 is still the best overall method.

An interesting phenomenon observed in these examples
was that progress often went in cycles of around # steps;
n steps with small function decrease would be made,
followed by one or more steps with large function
decrease. Often a reset was then required. Presum-
ably, the n steps would build up curvature information,
producing a large improvement and leading to a region
where this information becomes invalid.

Table 5
n FLETCHER RESET 1 RESET 2
POWELL 1 2 2a 3 3a 1 2 2a 3 3a

5 19 23 42 27 33 15 27 46 28 34 15
23 25 51 31 37 19 33 52 30 39 17
10 29 45 68 52 56 49 49 83 43 58 30
| 36 51 87 70 63 67 62 89 49 78 44
20 | 68 78 136 75 104 79 84 141 81 103 61
84 80 140 81 112 90 95 142 85 104 65
89 82 142 92 150 93 9% 164 89 156 70
121 95 177 132 151 141 97 188 97 168 83
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8. Conclusions

Perhaps the most significant thing about all the results
is their general similarity, although there is sufficient
variation to confirm the usual observation that no
numerical method can be expected to perform uniformly
on all problems.

No rescaling of the S, either up or down, was
necessary at any time with any of the methods, even
including Example 2 which had a singular Hessian
matrix at the minimum point. However the tests are
simple, and probably worth keeping as a safeguard.

Reset 2 proved to be generally better than Reset 1, as
would be expected since only the current step is rejected
with Reset 2 rather than the whole matrix as in Reset 1.
This would be of special value in constrained minimisa-
tion using a projection method since resetting S, = I
would necessitate reforming and reinverting the inverse
moment matrix of the projection operator (Murtagh and
Sargent, 1968). The need for resetting did not arise as
often as might have been expected, and when it did it was
usually due to failure of condition (14) for positive-
definiteness, rather than ¢, being too close to zero.
Positive-definiteness is a wuseful property to retain,
especially if the inverse of the Hessian matrix at the
minimum point is of interest, and as pointed out earlier
the numerical results show that it is not more difficult to
achieve than satisfying condition (9).

The improved performance expected for Algorithms 2
and 2a over Algorithm 1 with respect to the need for
resetting is fully confirmed in the results (for example
Algorithms 2 and 2a needed no reset at all in Example 2).
Of the three comparable conjugate-direction methods
Algorithm 2a was generally the best, with Algorithm 1
usually giving a slight improvement over the Fletcher-
Powell method; however this general trend is reversed
for Example 5.

The choice of initial step-lengths provided in Algo-
rithms 1, 2a and 3a in general produced the expected
result of saving a significant number of function evalua-
tions; that it produced the opposite result for Algo-
rithms 3 and 3a in Examples 1 and 4 is interesting and
provides some food for thought. One possibility is that
the large step-length oversteps the minimum and hence
on these ‘curving-valley’ functions zig-zags easily round
the bend, whilst the smaller step-length tends to creep
round on one side of the valley. The fact that this
phenomenon is not evident in comparing Algorithms 2
and 2a on these examples is probably because an initial
step which overshoots the minimum results in minimisa-
tion along the line in each case.

Comparison of Algorithm 2 with 3, or 1 and 2a with 3a,
shows a clear superiority for the methods which do not
find the minimum accurately along each direction, the
only exception being that Algorithm 3a does not come
up to expectation in Example 4. Algorithm 3 is almost
completely insensitive to rounding errors and the single-
precision version performed very satisfactorily; it is
fairly safe to conclude that this would also be true of
Algorithm 3a.

Algorithm 3a using Reset 2 combines all the best
characteristics and gives the best all-round performance;
it is markedly superior to the classical Fletcher-Powell
method on all the examples tested. However, if it is
known that the function is likely to exhibit a curving
valley, as often occurs for example in penalty function

formulations of problems with non-linear constraints, it
is probably worth suppressing the choice of initial step-
length and using Algorithm 3.

Appendix 1

Conjugate directions

Consider the class of methods which generate steps to
satisfy the following relations:

Piri=—uSg 1<j<k (1.1
with «; chosen so that:
Pi+18i+1=0 1<j<k (1.2)

and where the S; are non-singular symmetric matrices
which satisfy:
S;q; = pi I<i<j<k (1.3)
We shall prove that the successive directions, p;, are
mutually conjugate with respect to the inverse of the
current matrix, Sj.

Proof:
From (1.3) and the fact that S, is symmetric we have:

PiS'p; = plq; = q'p; = q7Suy;

1<i<j<k (1.4)
Now from (1.1):
qip; = — % _197S;_18—1 I1<i<j<k
using (1.3)
= — a;_1Prg_1 I<i<j<k
= — oy _1Pgi_2— %_1P|q;—1 1<i<j<k

using (1.3) again
= — otj_1q,~TSj—2gj~2 - j—lP,qu—l
I<i<(—-—D<k

Now if &; _, # 0 we can use (1.1) to obtain:

oL
T, _ =11 _ T
9P = o 49iPi—1 1P 9 -1
j—2

I<i<(G—-D<k
and finally from (1.4):
l — o, -
ISy = j_l(“ﬁ) PIS P
I<i<(—D<k (L5
But we also have from (1.1):
g =— o 4q 4S8 1<j<k
and using (1.3):
= — o 1Pl 181 1 <j<k
and using (1.2) and (1.4):
Pi1Sg'p; =0 1<j<k (16)

Thus (1.5) and (1.6) together show that if p7S;'p; ;=0
for 1<i<(j—1)<k, then pIS;'p;=0 for 1<i<j<k.
But putting j = 2 in (1.6) shows that the premise is true

for (j — 1) = 2, and so the result is true generally.
Q.E.D.
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The above proof assumes that successive o; are non-

zero, and we can show that this is necessarily so if the S;
are positive-definite. For from (1.1), (1.2) and (1.3):

‘I;+1Pj+1 = ‘I,-+1Sj+1‘1j+1 = —ngj+1 = “jgisjgj
Thus:
q,T-+1Sj+1qj+1
o, = L= £ ()
! 875;8;
Q.E.D.

We note from (1.4) that the successive g; are also
mutually conjugate with respect to Si. If further the
function being minimised is quadratic (with Hessian
matrix H) we have:

Then from (1.4) and (1.7):

<k (1.7)

PiS;'p; =plg; = q7p;, = pTHp; (1.8)
Hence the p; are also mutually conjugate with respect
to H.
Finally we have, from (1.1), (1.2) and (1.7):

=Pl iHpjp1 = % 8]S;8;

and o; is therefore non-zero if H is positive-definite, as
it must be for a minimum, whether the S; are positive-
definite or not.

T
9i+1Pj+1

Appendix 2

Search directions for conjugate-direction methods

Myers (1968) has shown that the Fletcher-Powell
method generates the same set of search directions as
various other conjugate-direction methods when these
are used on a quadratic function, so long as the initial
search direction is along the gradient at the initial point.
We shall show similarly that the Fletcher-Powell method
and the method of this paper with minimisation along
the line generate the same search directions for a
quadratic function, provided only that the initial matrices
are proportional.

Present Method
Using equations (4), (5) and (6), and the fact that o
is chosen so that:
gip;=0 2.1
we obtain:

o)

1 —1
Sjgj = _J:,—_(g,rsj—lgj-sj—lgj—l
+ & iSi—18-1-

Fletcher-Powell Method

To avoid confusion we shall here denote the approxi-
mation to the inverse of the Hessian matrix by H; for
the Fletcher-Powell method. Then similarly from @),
(7) and (2.1) we obtain:

Sj—lgj) 2.2

1
H;g; = aTH, 4, (&7H;_18-H;_18;-1

+gl_\H;_1gi_1.H;_g) (2.3)
Now we showed in Appendix 1 that both methods

generate conjugate directions, and hence that:

qip; =0 k>j>1 2.9
Thus from (2.1) and (2.4):
gip; =0 k>j>1 (2.5)
and using equation (4); since o; # 0 (cf. Appendix 1):
8158 =8 H;g; =0 k>j>1 (2.6)
Thus from (2.2), and (2.6), so long as a; _; # 1:
2:S;-18 =0 k>j>1 2.7)
From (6), (2.5) and (2.7) we have:
8¥z; =0 k>j>1 (2.8)
and finally using this in (5) we obtain:
S;8k = Sog&k k>j>1 29
Similarly from (2.3) and (2.6) we have:
giH;_18,=0 k>j>1 (2.10)
and using (2.5) and (2.10) in (7):
H;g, = Hygy (2.11)
Thus if Sy = ByH,, where B, is a non-zero scalar, we
have from (2.9) and (2.11):
5,8 = BoH, k>j>1 (212

and of course Syg, = BoHogo. But at any stage, if we
also have Sy _ 181 = Br_1Hi_18k—1, Where B, _ is
again a non-zero scalar, we have from (2.2) and (2.12):

130,31(~1(°‘k—1 —1)

Ck

Sk8k = (gI{Hk—lgk-Hk—lgk—l

+ & Hy—18k—1-Hi_18%)
and comparing this with (2.3):

Si&x = BiHigx (2.13)
where

Boﬁk (a1 — 1)

Ck

Bk:

Since H, _; is positive-definite (if H, is positive-
definite), B, is non-zero so long as «;_; % 1. Whilst
Bi in (2.13) may be negative, the fact that we minimise
along each direction ensures that p, is the same for the
two methods. We have therefore shown that, subject
to the condition that o, _; 7 1 and ¢, 0 for all k, the
successive directions are the same for the two methods
if Sg = BoH,. Q.E.D.

THk 19k

Appendix 3

Theorem:

Suppose that the function f(x) is defined on U< E"
and is such that:

(i) f(x) is continuous on Q = {x|x e U; f(x) < c},
and Q is closed and bounded.
(i) f(x) has continuous second derivatives on
= {x|x € U; f(x) < c} and there is a A such
that ||[H(x)|| < A, xe Q’ 3.0
Starting at any point xo€ Q' with g(x,) # 0, we
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generate a SequUeNce Xg, Xy, . . « » Xg, Xg 415 - - - according
to:
Pi+1 = Xpp1 — Xp = — pSi 8 (3.2
Then if the matrices S, satisfy the conditions:
pllgell < lISkgill < oll gl (3.3
|&xSkgil = 8llgell-11Skgxll (3.4

where p, o, 6 are fixed constants, it is always possible to
choose a finite non-zero «; at each step such that:

S — flxei1) > € g Sigx >0 (3.5

with € a fixed positive constant less than unity.

With the «; so chosen, the sequence (x;) lies in €’
and tends to Q* = {x|x € Q’; g(x) = 0} in the sense that
the distance d(x;, Q*) of x, from Q* tends to zero as
k — oo.

Proof:

Suppose that x, e )’. Then for sufficiently small
DPr+1 We have x,,.,€€Q’ and (x; + 0p, ()€ Q" for
0< 0< 1. In view of condition (ii) we may therefore
expand f(x,,;) about x, in a Taylor series with a
remainder of second order:

SCer 1) = f(x) +g£Pk+1 +%ka+I.H(xk + 0Pk 1) Pt
0l (3.6)
Substituting (3.2) into (3.6):
S — [y = akgiskgk
{1 1 (S &) T-H(xy 4 0pr1)-(Skgr)
2 g;fskgk

Now we may choose the sign of o, to make a;g7S; g,
positive (as required by 3.5) and, still considering suffi-
ciently small p,,;, we may use conditions (3.1), (3.3)
and (3.4) to deduce from (3.7):

(3.7)

Ag?
160 — S0 > axlSien {1 = G5 Il G
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It follows that x; , ; remains in ’, and condition (3.5)
is satisfied, as || increases from zero so long as:

28(1 — €
ok | < ——(Ao—z) (3.9)
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